Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Phys Chem Chem Phys ; 24(8): 5001-5013, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142769

RESUMO

In the present study, time-resolved aerosol particle formation from sulfuric acid vapor is examined with special attention to the stabilization of molecular clusters in the early phase of unary nucleation. An important factor governing this process is the amount of condensable acid vapor. Here it is produced from fast gas-phase reactions in a batch-type reaction cell for which we introduce modifications enabling real-time monitoring. The key component for size- and time-resolved detection of ultrafine particles is a new 1 nm-SMPS. With this new tool at hand, the effect of varying the precursor concentration over two orders of magnitude is investigated. We demonstrate the ability to tune between different growth scenarios as indicated by the size-resolved particle traces which exhibit a transition from sigmoidal over quasi-stationary to peak-like shape. The second key parameter relevant for nucleation studies is the temperature-dependent cluster evaporation. Due to a temperature rise during the mixing stage of the experiment, evaporation is strongly promoted in the early phase. Therefore, the present study extends the T-range used in, e.g., smog chambers. We investigate this temperature effect in a kinetic simulation and can successfully combine simulated and measured data for validating theoretical evaporation rates obtained from DLPNO-CCSD(T0)-calculations.

2.
Phys Chem Chem Phys ; 23(13): 7682-7695, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33496289

RESUMO

The combination of supersonic expansions with IR action spectroscopy techniques is the basis of many successful approaches to study cluster structure and dynamics. The effects of temperature and temperature evolution are important with regard to both the cluster synthesis and the cluster dynamics upon IR excitation. In the past the combination of the sodium doping technique with IR excitation enhanced near threshold photoionization has been successfully applied to study neutral, especially water clusters. In this work we follow an overall examination approach for inspecting the interplay of cluster temperature and cluster structure in the initial cooling process and in the IR excitation induced heating of the clusters. In molecular simulations, we study the temperature dependent photoionization spectra of the sodium doped clusters and the evaporative cooling process by water molecule ejection at the cluster surface. We present a comprehensive analysis that provides constraints for the temperature evolution from the nozzle to cluster detection in the mass spectrometer. We attribute the IR action effect to the strong temperature dependence of sodium solvation in the IR excited clusters and we discuss the effects of geometry changes during the IR multi-photon absorption process with regard to application prospects of the method.

3.
J Phys Chem Lett ; 11(10): 4239-4244, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32357300

RESUMO

The role of sulfuric acid during atmospheric new particle formation is an ongoing topic of discussion. In this work, we provide quantitative experimental constraints for quantum chemically calculated evaporation rates for the smallest H2SO4-H2O clusters, characterizing the mechanism governing nucleation on a kinetic, single-molecule level. We compare experimental particle size distributions resulting from a highly supersaturated homogeneous H2SO4 gas phase with the results from kinetic simulations employing quantum chemically derived decomposition rates of electrically neutral H2SO4 molecular clusters up to the pentamer at a large range of relative humidities. By using high H2SO4 concentrations, we circumvent the uncertainties concerning contaminants and competing reactions present in studies at atmospheric conditions. We show good agreement between molecular simulation and experimental measurements and provide the first evaluation of theoretical predictions of the stabilization provided by water molecules.

4.
Proc Natl Acad Sci U S A ; 116(49): 24413-24419, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31685641

RESUMO

The appearance of ice I in the smallest possible clusters and the nature of its phase coexistence with liquid water could not thus far be unraveled. The experimental and theoretical infrared spectroscopic and free-energy results of this work show the emergence of the characteristic hydrogen-bonding pattern of ice I in clusters containing only around 90 water molecules. The onset of crystallization is accompanied by an increase of surface oscillator intensity with decreasing surface-to-volume ratio, a spectral indicator of nanoscale crystallinity of water. In the size range from 90 to 150 water molecules, we observe mixtures of largely crystalline and purely amorphous clusters. Our analysis suggests that the liquid-ice I transition in clusters loses its sharp 1st-order character at the end of the crystalline-size regime and occurs over a range of temperatures through heterophasic oscillations in time, a process without analog in bulk water.

5.
J Chem Phys ; 148(10): 104303, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29544311

RESUMO

We have developed a new model utilizing our existing kinetic gas phase models to simulate experimental particle size distributions emerging in dry supersaturated H2SO4 vapor homogeneously produced by rapid oxidation of SO2 through stabilized Criegee-Intermediates from 2-butene ozonolysis. We use a sectional method for simulating the particle dynamics. The particle treatment in the model is based on first principles and takes into account the transition from the kinetic to the diffusion-limited regime. It captures the temporal evolution of size distributions at the end of the ozonolysis experiment well, noting a slight underrepresentation of coagulation effects for larger particle sizes. The model correctly predicts the shape and the modes of the experimentally observed particle size distributions. The predicted modes show an extremely high sensitivity to the H2SO4 evaporation rates of the initially formed H2SO4 clusters (dimer to pentamer), which were arbitrarily restricted to decrease exponentially with increasing cluster size. In future, the analysis presented in this work can be extended to allow a direct validation of quantum chemically predicted stabilities of small H2SO4 clusters, which are believed to initiate a significant fraction of atmospheric new particle formation events. We discuss the prospects and possible limitations of the here presented approach.

6.
Phys Chem Chem Phys ; 19(28): 18128-18146, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28681879

RESUMO

Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.

7.
J Chem Phys ; 146(24): 244303, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28668069

RESUMO

Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H2O)n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n<5. In the size range from n = 5 to n = 15, broad ion yield curves emerge; for larger clusters, a constant range between signal appearance (∼2.8 eV) and signal saturation (∼4.1 eV) has been observed. The measurements are interpreted with ab initio calculations and ab initio molecular dynamics simulations for selected cluster sizes (n≤ 15). The simulations revealed theory shortfalls when aiming at quantitative agreement but allowed us identifying structural motifs consistent with the observed ionization energy distributions. We found a decrease in the ionization energy with increasing coordination of the Na atom and increasing delocalization of the Na 3s electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action spectroscopy, based on near threshold photoionization of Na(H2O)n clusters. In addition, simulations of the sodium pick-up process were carried out to study the gradual formation of the hydrated electron which is the basis of the sodium-tagging sizing.

8.
J Phys Chem A ; 119(11): 2709-20, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25515154

RESUMO

In water clusters containing 10-100 water molecules the structural transition takes place between "all surface" structures without internally solvated water molecules to amorphous water clusters with a three dimensionally structured interior. This structural evolution is explored with rigorous size selection by IR excitation modulated photoionization spectroscopy of sodium-doped (H2O)n clusters. The emergence of fully coordinated interior water molecules is observed by an increased relative absorption from 3200 to 3400 cm(-1) in agreement with theoretical predictions and earlier experimental studies. The analysis has also shown that the intermediate-sized water clusters (n = 40-65) do not smoothly link the structures in the largest and smallest analyzed size regions (n = 15-35 and n = 100-150) in line with previous reports suggesting the appearance of exceptionally stable water cluster isomers at n = 51, 53, 55, and 57. In the size range from n = 49 to n = 55 a reduced ion yield, a plateau in the total IR signal gain and signatures in the distribution of free OH stretch oscillator absorption have been observed. Recently reported putative global minima structures for n = 51 and n = 54 point to the presence of periplanar interior rings in odd-numbered clusters in this size range, which may affect cluster (surface) stability and the shape of the free OH stretch absorption peak. Potential links between pure and sodium-doped water cluster structures and the signatures of solvated electrons in photoelectron spectra of anionic water clusters are discussed.

9.
Phys Chem Chem Phys ; 16(48): 26691-6, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25231162

RESUMO

Water clusters with internally solvated water molecules are widespread models that mimic the local environment of the condensed phase. The appearance of stable (H2O)n cluster isomers having a fully coordinated interior molecule has been theoretically predicted to occur around the n = 20 size range. However, our current knowledge about the size regime in which those structures become energetically more stable has remained hypothetical from simulations in lieu of the absence of precisely size-resolved experimental measurements. Here we report size and isomer selective infrared (IR) spectra of (H2O)20 clusters tagged with a sodium atom by employing IR excitation modulated photoionization spectroscopy. The observed absorption patterns in the OH stretching region are consistent with the theoretically predicted spectra of two structurally distinct isomers of exceptional stability: a drop-like cluster with a fully coordinated (interior) water molecule and an edge-sharing pentagonal prism cluster in which all atoms are on the surface. The drop-like structure is the first experimentally detected water cluster exhibiting the local connectivity found in liquid water.


Assuntos
Espectrofotometria Infravermelho/métodos , Água/química , Isomerismo , Modelos Moleculares , Termodinâmica
10.
Phys Chem Chem Phys ; 16(15): 6859-71, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24603719

RESUMO

Size selected water clusters are generated by photoionizing sodium doped clusters close to the ionization threshold. This procedure is free of fragmentation. Upon infrared excitation, size- and isomer-specific OH-stretch spectra are obtained over a large range of cluster sizes. In one application of this method the infrared spectra of single water cluster sizes are investigated. A comparison with calculations, based on structures optimized by genetic algorithms, has been made to tentatively derive cluster structures which reproduce the experimental spectra. We identified a single all-surface structure for n = 25 and mixtures with one or two interior molecules for n = 24 and 32. In another application the sizes are determined at which the crystallization sets in. Surprisingly, this process strongly depends on the cluster temperature. The crystallization starts at sizes below n = 200 at higher temperatures and the onset is shifted to sizes above n = 400 at lower temperatures.

11.
Angew Chem Int Ed Engl ; 53(3): 715-9, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24402798

RESUMO

Recently, direct kinetic experiments have shown that the oxidation of sulfur dioxide to sulfur trioxide by reaction with stabilized Criegee intermediates (CIs) is an important source of sulfuric acid in the atmosphere. So far, only small CIs, generated in photolysis experiments, have been directly detected. Herein, it is shown that large, stabilized CIs can be detected in the gas phase by FTIR spectroscopy during the ozonolysis of ß-pinene. Their transient absorption bands between 930 and 830 cm(-1) appear only in the initial phase of the ozonolysis reaction when the scavenging of stabilized CIs by the reaction products is slow. The large CIs react with sulfur dioxide to give sulfur trioxide and nopinone with a yield exceeding 80%. Reactant consumption and product formation in time-resolved ß-pinene ozonolysis experiments in the presence of sulfur dioxide have been kinetically modeled. The results suggest a fast reaction of sulfur dioxide with CIs arising from ß-pinene ozonolysis.


Assuntos
Compostos Bicíclicos com Pontes/química , Monoterpenos/química , Ozônio/química , Dióxido de Enxofre/química , Alcenos/química , Monoterpenos Bicíclicos , Radical Hidroxila/química , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Óxidos de Enxofre/síntese química , Óxidos de Enxofre/química
12.
Molecules ; 18(11): 13608-22, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24192913

RESUMO

Photochemically driven reactions involving unsaturated radicals produce a thick global layer of organic haze on Titan, Saturn's largest moon. The allyl radical self-reaction is an example for this type of chemistry and was examined at room temperature from an experimental and kinetic modelling perspective. The experiments were performed in a static reactor with a volume of 5 L under wall free conditions. The allyl radicals were produced from laser flash photolysis of three different precursors allyl bromide (C3H5Br), allyl chloride (C3H5Cl), and 1,5-hexadiene (CH2CH(CH2)2CHCH2) at 193 nm. Stable products were identified by their characteristic vibrational modes and quantified using FTIR spectroscopy. In addition to the (re-) combination pathway C3H5+C3H5 → C6H10 we found at low pressures around 1 mbar the highest final product yields for allene and propene for the precursor C3H5Br. A kinetic analysis indicates that the end product formation is influenced by specific reaction kinetics of photochemically activated allyl radicals. Above 10 mbar the (re-) combination pathway becomes dominant. These findings exemplify the specificities of reaction kinetics involving chemically activated species, which for certain conditions cannot be simply deduced from combustion kinetics or atmospheric chemistry on Earth.


Assuntos
Fotoquímica/métodos , Compostos Alílicos/química , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Phys Chem Chem Phys ; 14(45): 15637-40, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23090096

RESUMO

Recent studies have suggested that the reaction of stabilised Criegee Intermediates (CIs) with sulfur dioxide (SO(2)), leading to the formation of a carbonyl compound and sulfur trioxide, is a relevant atmospheric source of sulfuric acid. Here, the significance of this pathway has been examined by studying the formation of gas phase products and aerosol during the ozonolysis of ß-pinene and 2-butene in the presence of SO(2) in the pressure range of 10 to 1000 mbar. For ß-pinene at atmospheric pressure, the addition of SO(2) suppresses the formation of the secondary ozonide and leads to highly increased nopinone yields. A complete consumption of SO(2) is observed at initial SO(2) concentrations below the yield of stabilised CIs. In experiments using 2-butene a significant consumption of SO(2) and additional formation of acetaldehyde are observed at 1 bar. A consistent kinetic simulation of the experimental findings is possible when a fast CI + SO(2) reaction rate in the range of recent direct measurements [Welz et al., Science, 2012, 335, 204] is used. For 2-butene the addition of SO(2) drastically increases the observed aerosol yields at higher pressures. Below 60 mbar the SO(2) oxidation induced particle formation becomes inefficient pointing to the critical role of collisional stabilisation for sulfuric acid controlled nucleation at low pressures.


Assuntos
Alcenos/química , Compostos Bicíclicos com Pontes/química , Monoterpenos/química , Ozônio/química , Dióxido de Enxofre/química , Monoterpenos Bicíclicos , Oxirredução
14.
Science ; 337(6101): 1529-32, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22997336

RESUMO

The number of water molecules needed to form the smallest ice crystals has proven challenging to pinpoint experimentally. This information would help to better understand the hydrogen-bonding interactions that account for the macroscopic properties of water. Here, we report infrared (IR) spectra of precisely size-selected (H(2)O)(n) clusters, with n ranging from 85 to 475; sodium doping and associated IR excitation-modulated photoionization spectroscopy allowed the study of this previously intractable size domain. Spectral features indicating the onset of crystallization are first observed for n = 275 ± 25; for n = 475 ± 25, the well-known band of crystalline ice around 3200 cm(-1) dominates the OH-stretching region. The applied method has the potential to push size-resolved IR spectroscopy of neutral clusters more broadly to the 100- to 1000-molecule range, in which many solvents start to manifest condensed phase properties.

15.
Phys Chem Chem Phys ; 14(33): 11695-705, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22825796

RESUMO

The ozonolysis of cyclohexene is studied with respect to the pressure dependent formation of stable gas-phase products and secondary organic aerosol (SOA) as well as the influence of the presence of SO(2). In addition the rate coefficient for the initial reaction cyclohexene + O(3) was determined at 295 K. The observed increase in CO and ethene yields at low pressures and the absence of ketene in the product spectrum confirm previously proposed reaction pathways forming these decomposition products. An enhanced ethene formation at pressures below 300 mbar coincides with drastically decreased aerosol yields pointing to a high influence on SOA formation of chemical activation driven dynamics in the vinylhydroperoxide channel. The static reactor experiments at 450 mbar in the presence of SO(2) in the present study showed a similar sensitivity of additional particle formation to H(2)SO(4) number densities as found in near-atmospheric flow reactor experiments [Sipiläet al., Science, 2010, 327, 1243], a surprising result with regard to the very different experimental approaches. At low pressures (around 40 mbar) no significant new particle formation is observed even at high H(2)SO(4) concentrations. These findings indicate that the collisional stabilisation of initial clusters is an important aspect for SOA formation processes involving sulfuric acid and organic compounds. The results may have implications for geo-engineering strategies based on stratospheric sulfur injection, but caution is mandatory when room temperature laboratory results are extrapolated to stratospheric conditions.


Assuntos
Aerossóis/química , Cicloexenos/química , Gases/química , Ozônio/química , Dióxido de Enxofre/química , Cinética , Pressão , Temperatura
16.
Phys Chem Chem Phys ; 14(25): 9054-7, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22641269

RESUMO

The structures of sodium doped water trimers are characterized on the basis of their infrared action spectra in the OH-stretching region and a global optimization approach to identify the lowest energy minima. The most stable structure is an open ring with two contacts of terminal water molecules to the Na atom. This structure explains the dominating feature in the IR depletion spectrum around 3410 cm(-1). Three additional isomer classes were found in an energy window of 12 kJ mol(-1) with vertical ionization energies ranging from ∼3.83 eV to ∼4.36 eV. These structures show different hydrogen bonding and sodium coordination patterns and are identified by specific spectral features in the IR spectra. The significant abundance of closed rings with an external Na atom, resembling the undoped water trimer, suggests that for larger clusters the picture of the sodium atom being situated on the cluster surface seems adequate.

17.
Phys Chem Chem Phys ; 14(9): 3004-16, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22286963

RESUMO

Size resolved IR action spectra of neutral sodium doped methanol clusters have been measured using IR excitation modulated photoionisation mass spectroscopy. The Na(CH(3)OH)(n) clusters were generated in a supersonic He seeded expansion of methanol by subsequent Na doping in a pick-up cell. A combined analysis of IR action spectra, IP evolutions and harmonic predictions of IR spectra (using density functional theory) of the most stable structures revealed that for n = 4, 5 structures with an exterior Na atom showing high ionisation potentials (IPs) of ~4 eV dominate, while for n = 6, 7 clusters with lower IPs (~3.2 eV) featuring fully solvated Na atoms and solvated electrons emerge and dominate the IR action spectra. For n = 4 simulations of photoionisation spectra using an ab initio MD approach confirm the dominance of exterior structures and explain the previously reported appearance IP of 3.48 eV by small fractions of clusters with partly solvated Na atoms. Only for this cluster size a shift in the isomer composition with cluster temperature has been observed, which may be related to kinetic stabilisation of less Na solvated clusters at low temperatures. Features of slow fragmentation dynamics of cationic Na(+)(CH(3)OH)(6) clusters have been observed for the photoionisation near the adiabatic limit. This finding points to the relevance of previously proposed non-vertical photoionisation dynamics of this system.


Assuntos
Elétrons , Hidróxidos/química , Metanol/química , Sódio/química , Solventes/química , Espectrofotometria Infravermelho/métodos , Conformação Molecular , Simulação de Dinâmica Molecular
18.
J Phys Chem Lett ; 3(21): 3096-101, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26296012

RESUMO

Mixed (HNO3)m(H2O)n clusters generated in supersonic expansion of nitric acid vapor are investigated in two different experiments, (1) time-of-flight mass spectrometry after electron ionization and (2) Na doping and photoionization. This combination of complementary methods reveals that only clusters containing at least one acid molecule are generated, that is, the acid molecule serves as the nucleation center in the expansion. The experiments also suggest that at least four water molecules are needed for HNO3 acidic dissociation. The clusters are undoubtedly generated, as proved by electron ionization; however, they are not detected by the Na doping due to a fast charge-transfer reaction between the Na atom and HNO3. This points to limitations of the Na doping recently advocated as a general method for atmospheric aerosol detection. On the other hand, the combination of the two methods introduces a tool for detecting molecules with sizable electron affinity in clusters.

19.
J Phys Chem A ; 115(23): 6068-76, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21405035

RESUMO

Ethanol clusters are generated in a continuous He seeded supersonic expansion and doped with sodium atoms in a pick-up cell. By this method clusters of the type Na(C(2)H(5)OH)(n) are formed and characterized by determining size selectively their ionization potentials (IPs) for n = 2-40 in photoionization experiments. A continuous decrease to 3.1 eV is found from n = 2 to 6 and a constant value of 3.07 ± 0.06 eV for n = 10-40. This IP evolution is similar to the sodium-water and the sodium-methanol system. Quantum chemical calculations (B3LYP and MP2) of the IPs indicate adiabatic contributions to the photoionization process for the cluster sizes n = 4 and 5, which is similar to the sodium-methanol case. The results of the extrapolated IPs and the vertical binding energies (VEBs) of cluster anions are compared with the recently reported VEBs of solvated electrons in liquid water, methanol, and ethanol solutions in the range of 3.1-3.4 eV. The new results imply that the extrapolated VBEs of solvated electrons in anionic clusters match the VBE in liquid water, while they are about 0.5 eV too low for methanol. The influence of the presence of counterions on these findings is discussed.


Assuntos
Etanol/química , Sódio/química , Metanol/química , Teoria Quântica , Soluções , Solventes/química , Água/química
20.
Phys Chem Chem Phys ; 13(23): 10952-64, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21442094

RESUMO

The gas-phase ozonolysis of cyclic-alkenes (1-methyl-cyclohexene, methylene-cyclohexane, α-pinene, ß-pinene) is studied with respect to the pressure dependent formation of secondary organic aerosol (SOA). We find that SOA formation is substantially suppressed at lower pressures for all alkenes under study. The suppression coincides with the formation of ketene (α-pinene, 1-methyl-cyclohexene), ethene (1-methyl-cyclohexene) and the increased formation of CO (all alkenes) at lower reaction pressures. The formation of these products is independent of the presence of an OH scavenger and explained by an increased chemical activation of intermediate species in the hydroperoxide channel after the OH elimination. These findings underline the central role of the hydroperoxide pathway for SOA formation and give insight into the gas-phase ozonolysis mechanism after the stage of the Criegee intermediate chemistry.


Assuntos
Aerossóis/química , Alcenos/química , Gases/química , Ozônio/química , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/química , Cicloexanos/química , Cicloexenos/química , Cinética , Monoterpenos/química , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA