Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Extracell Biol ; 2(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37588411

RESUMO

Extracellular vesicles (EVs) are heterogeneous biological nanoparticles secreted by all cell types. Identifying the proteins preferentially encapsulated in secreted EVs will help understand their heterogeneity. Src family kinases including Src and Fyn are a group of tyrosine kinases with fatty acylation modifications and/or multiple lysine residues (contributing charge interaction) at their N-terminus. Here, we demonstrate that Src and Fyn kinases were preferentially encapsulated in EVs and fatty acylation including myristoylation and palmitoylation facilitated their encapsulation. Genetic loss or pharmacological inhibition of myristoylation suppressed Src and/or Fyn kinase levels in EVs. Similarly, loss of palmitoylation reduced Fyn levels in EVs. Additionally, mutation of lysine at sites 5, 7, and 9 of Src kinase also inhibited the encapsulation of myristoylated Src into EVs. Knockdown of TSG101, which is a protein involved in the endosomal sorting complexes required for transport (ESCRT) protein complex mediated EVs biogenesis and led to a reduction of Src levels in EVs. In contrast, filipin III treatment, which disturbed the lipid raft structure, reduced Fyn kinase levels, but not Src kinase levels in EVs. Finally, elevated levels of Src protein were detected in the serum EVs of host mice carrying constitutively active Src-mediated prostate tumors in vivo. Collectively, the data suggest that different EVs biogenesis pathways exist and can regulate the encapsulation of specific proteins into EVs. This study provides an understanding of the EVs heterogeneity created by different EVs biogenesis pathways.

2.
Oncogene ; 40(10): 1806-1820, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33564069

RESUMO

Fatty acid metabolism is essential for the biogenesis of cellular components and ATP production to sustain proliferation of cancer cells. Long-chain fatty acyl-CoA synthetases (ACSLs), a group of rate-limiting enzymes in fatty acid metabolism, catalyze the bioconversion of exogenous or de novo synthesized fatty acids to their corresponding fatty acyl-CoAs. In this study, systematical analysis of ACSLs levels and the amount of fatty acyl-CoAs illustrated that ACSL1 were significantly associated with the levels of a broad spectrum of fatty acyl-CoAs, and were elevated in human prostate tumors. ACSL1 increased the biosynthesis of fatty acyl-CoAs including C16:0-, C18:0-, C18:1-, and C18:2-CoA, triglycerides and lipid accumulation in cancer cells. Mechanistically, ACSL1 modulated mitochondrial respiration, ß-oxidation, and ATP production through regulation of CPT1 activity. Knockdown of ACSL1 inhibited the cell cycle, and suppressed the proliferation and migration of prostate cancer cells in vitro, and growth of prostate xenograft tumors in vivo. Our study implicates ACSL1 as playing an important role in prostate tumor progression, and provides a therapeutic strategy of targeting fatty acid metabolism for the treatment of prostate cancer.


Assuntos
Coenzima A Ligases/genética , Ácidos Graxos/metabolismo , Lipogênese/genética , Neoplasias da Próstata/genética , Trifosfato de Adenosina/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Ácidos Graxos/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Oxirredução , Neoplasias da Próstata/patologia
3.
Mol Cancer Res ; 19(1): 124-135, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33077484

RESUMO

Androgen deprivation therapy has led to elevated cases of androgen receptor (AR) pathway-independent prostate cancer with dysregulated fatty acid metabolism. However, it is unclear how prostate cancer cells sustain dysregulated fatty acid metabolism to drive AR-independent prostate cancer. Long-chain acyl-CoA synthetases (ACSL) catalyze the conversion of fatty acids into fatty acyl-CoAs that are required for fatty acid metabolism. In this study, we demonstrate that expression levels of ACSL3 and 4 were oppositely regulated by androgen-AR signaling in prostate cancer cells. AR served as a transcription suppressor to bind at the ACSL4 promoter region and inhibited its transcription. Inhibition of androgen-AR signaling significantly downregulated ACSL3 and PSA, but elevated ACSL4 levels. ACSL4 regulated a broad spectrum of fatty acyl-CoA levels, and its catalytic efficiency in fatty acyl-CoAs biosynthesis was about 1.9- to 4.3-fold higher than ACSL3. In addition, in contrast to ACSL3, ACSL4 significantly regulated global protein myristoylation or myristoylation of Src kinase in prostate cancer cells. Knockdown of ACSL4 inhibited the proliferation, migration, invasion, and xenograft growth of AR-independent prostate cancer cells. Our results suggest that the surge of ACSL4 levels by targeting AR signaling increases fatty acyl-CoAs biosynthesis and protein myristoylation, indicating the opposite, yet complementary or Yin-Yang regulation of ACSL3 and 4 levels in sustaining fatty acid metabolism when targeting androgen-AR signaling. This study reveals a mechanistic understanding of ACSL4 as a potential therapeutic target for treatment of AR-independent prostate cancer. IMPLICATIONS: AR coordinately regulates the expression of ACSL3 and ACSL4, such that AR pathway-independent prostate tumors become dependent on ACSL4-mediated fatty acid metabolism.


Assuntos
Coenzima A Ligases/metabolismo , Ácidos Graxos/metabolismo , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias da Próstata/patologia , Transdução de Sinais
4.
Prostate ; 79(8): 896-908, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30900312

RESUMO

Numerous genetic alterations have been identified during prostate cancer progression. The influence of environmental factors, particularly the diet, on the acceleration of tumor progression is largely unknown. Expression levels and/or activity of Src kinase are highly elevated in numerous cancers including advanced stages of prostate cancer. In this study, we demonstrate that high-fat diets (HFDs) promoted pathological transformation mediated by the synergy of Src and androgen receptor in vivo. Additionally, a diet high in saturated fat significantly enhanced proliferation of Src-mediated xenograft tumors in comparison with a diet high in unsaturated fat. The saturated fatty acid palmitate, a major constituent in a HFD, significantly upregulated the biosynthesis of palmitoyl-CoA in cancer cells in vitro and in xenograft tumors in vivo. The exogenous palmitate enhanced Src-dependent mitochondrial ß-oxidation. Additionally, it elevated the amount of C16-ceramide and total saturated ceramides, increased the level of Src kinase localized in the cell membrane, and Src-mediated downstream signaling, such as the activation of mitogen-activated protein kinase and focal adhesion kinase. Our results uncover how the metabolism of dietary palmitate cooperates with elevated Src kinase in the acceleration of prostate tumor progression.


Assuntos
Palmitatos/administração & dosagem , Neoplasias da Próstata/etiologia , Quinases da Família src/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Células HEK293 , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Células PC-3 , Palmitatos/metabolismo , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA