Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202401380, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987889

RESUMO

Photocatalytic ozonation is considered to be a promising approach for the treatment of refractory organic pollutants, but the design of efficient catalyst remains a challenge. Surface modification provides a potential strategy to improve the activity of photocatalytic ozonation. In this work, density functional theory (DFT) calculations were first performed to check the interaction between O3 and TiO2-OH (surface hydroxylated TiO2) or TiO2-F (surface fluorinated TiO2), and the results suggest that TiO2-OH displays better O3 adsorption and activation than does TiO2-F, which is confirmed by experimental results. The surface hydroxyl groups greatly promote the O3 activation, which is beneficial for the generation of reactive oxygen species (ROS). Importantly, TiO2-OH displays better performance towards pollutants (such as berberine hydrochloride) removal than does TiO2-F and most reported ozonation photocatalysts. The total organic carbon (TOC) removal efficiency reaches 84.4 % within two hours. This work highlights the effect of surface hydroxylation on photocatalytic ozonation and provides ideas for the design of efficient photocatalytic ozonation catalysts.

2.
Sci Adv ; 10(26): eado4390, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941471

RESUMO

Light-driven oxidative coupling of methane (OCM) for multi-carbon (C2+) product evolution is a promising approach toward the sustainable production of value-added chemicals, yet remains challenging due to its low intrinsic activity. Here, we demonstrate the integration of bismuth oxide (BiOx) and gold (Au) on titanium dioxide (TiO2) substrate to achieve a high conversion rate, product selectivity, and catalytic durability toward photocatalytic OCM through rational catalytic site engineering. Mechanistic investigations reveal that the lattice oxygen in BiOx is effectively activated as the localized oxidant to promote methane dissociation, while Au governs the methyl transfer to avoid undesirable overoxidation and promote carbon─carbon coupling. The optimal Au/BiOx-TiO2 hybrid delivers a conversion rate of 20.8 millimoles per gram per hour with C2+ product selectivity high to 97% in the flow reactor. More specifically, the veritable participation of lattice oxygen during OCM is chemically looped by introduced dioxygen via the Mars-van Krevelen mechanism, endowing superior catalyst stability.

3.
Adv Sci (Weinh) ; 11(28): e2401933, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666482

RESUMO

Solar-driven CO2 reduction into value-added C2+ chemical fuels, such as C2H4, is promising in meeting the carbon-neutral future, yet the performance is usually hindered by the high energy barrier of the C─C coupling process. Here, an efficient and stabilized Cu(I) single atoms-modified W18O49 nanowires (Cu1/W18O49) photocatalyst with asymmetric Cu─W dual sites is reported for selective photocatalytic CO2 reduction to C2H4. The interconversion between W(V) and W(VI) in W18O49 ensures the stability of Cu(I) during the photocatalytic process. Under light irradiation, the optimal Cu1/W18O49 (3.6-Cu1/W18O49) catalyst exhibits concurrent high activity and selectivity toward C2H4 production, reaching a corresponding yield rate of 4.9 µmol g-1 h-1 and selectivity as high as 72.8%, respectively. Combined in situ spectroscopies and computational calculations reveal that Cu(I) single atoms stabilize the *CO intermediate, and the asymmetric Cu─W dual sites effectively reduce the energy barrier for the C─C coupling of two neighboring CO intermediates, enabling the highly selective C2H4 generation from CO2 photoreduction. This work demonstrates leveraging stabilized atomically-dispersed Cu(I) in asymmetric dual-sites for selective CO2-to-C2H4 conversion and can provide new insight into photocatalytic CO2 reduction to other targeted C2+ products through rational construction of active sites for C─C coupling.

4.
Rev Cardiovasc Med ; 23(8): 263, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39076642

RESUMO

Background: As an alternative method to evaluate insulin resistance (IR), triglyceride-glucose index (TyG) was shown to be related to the severity and prognosis of cardiovascular diseases. The main aim of this study was to explore the association between TyG and in-hospital mortality in critically ill patients with heart disease. Method: The calculation method of TyG has been confirmed in previous report: Ln [fasting TGs (mg/dL) × FBG (mg/dL)/2]. All patients were divided into four different categories according to TyG quartiles. Primary outcome was in-hospital mortality. Binary logistic regression analysis was performed to determine the independent effect of TyG. Result: 4839 critically ill patients with heart disease were involved. The overall mortality was 8.53 cases per 100 idviduals. In-hospital mortality increased as TyG quartiles increased (Quartile 4 vs Quartile 1: 12.1 vs 5.3, p < 0.001). Even after adjusting for confounding variables, TyG was still independently associated with the increased risk of in-hospital mortality in critically ill patients with heart disease (Quartile 4 vs Quartile 1: OR (95% CI): 1.83 (1.27, 2.64), p < 0.001, P for trend < 0.001). In the subgroup analysis, we failed to observe the association between increased TyG and the risk of mortality in patients complicated by diabetes. In addition, as TyG quartiles increased, the length of intensive care unit (ICU) stay was prolonged (Quartile 4 vs Quartile 1: 2.3 (1.3, 4.9) vs 2.1 (1.3, 3.8), p = 0.007). And the significant interactions were not found in most subgroups. Conclusions: TyG was independently correlated with in-hospital mortality in critically ill patients with heart disease.

5.
Rev Cardiovasc Med ; 23(7): 222, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39076919

RESUMO

Background: Serum uric acid (SUA) levels has been considered a possible risk factor for coronary artery disease (CAD) for many years. Since SUA levels are greatly affected by medications, diet, and metabolism, the association between SUA and CAD has been controversial for centuries. While, the state of hyperuricemia (HUA) has been proven to have a negative impact on CAD in previous studies, there are still few clinical and epidemiological studies of HUA in CAD. In particular, evidence of this association is limited in postmenopausal women. This study explored the influence of SUA levels and HUA on CAD in this demographic group. Methods: In total, 5435 postmenopausal women were allocated to either a non-CAD group (n = 2021) or a CAD group (n = 3414). Regression analyses, including generalized linear models (GLM), correlation analysis, comparison between stratified groups, and analysis by use of diuretics were carried out on data obtained in this study. Results: SUA and HUA were found to associate significantly with CAD by univariate logistic regression analysis. In addition, GLM showed nonlinear response of CAD probability with increasing level of SUA. In multivariate analysis, we found that SUA and HUA were independently related to CAD. Correlation analysis showed that SUA and HUA both correlated positively with CAD (p < 0.001). By comparing the stratified age groups, we found that the differences among the age groups were significant (p < 0.05). Conclusions: SUA and HUA were shown to be independently associated with CAD among postmenopausal women.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA