RESUMO
Male reproductive dysfunction is a clinical disease, with a large number of cases being idiopathic. Reproductive disorders have been found in obese (diet-induced obesity and diet-induced obesity-resistant) mice, but the mechanism behind the male reproductive dysfunction between them may be different. The purpose of this study was to explore the possible role and mechanism of miR-34c on sperm production in high-fat-diet-induced obesity-resistant (DIO-R) mice and GC-1 spg cells, which may differ from those in high-fat-diet-induced obesity (DIO) mice. In vivo and in vitro experiments were performed. C57BL/6J mice were fed a high-fat diet for 10 weeks to establish the DIO and DIO-R mouse model. GC-1 spg cells were used to verify the mechanism of miR-34c on sperm production. During in vivo experiments, sperm production damage was found in both DIO and DIO-R male mice. Compared to the control mice, significantly decreased levels of testosterone, LH, activities of acrosome enzyme (ACE), HAse, and activating transcription factor 1 (ATF1) were found in both DIO and DIO-R male mice (p < 0.05). Compared with the control group, the ratio of B-cell lymphoma-2 (Bcl-2)/bcl-2-associated X protein (Bax) in the DIO group was significantly decreased, and the expression level of cleaved caspase-3 was significantly increased (p < 0.05). Compared with the control group, the Bcl-2 protein expression level in the testes of the DIO-R group significantly decreased (p < 0.05). However, the Bax expression level increased. Thus, the Bcl-2/Bax ratio significantly decreased (p < 0.01); however, the factor-related apoptosis (Fas), Fas ligand (FasLG), cleaved caspase-8, caspase-8, cleaved caspase-3, and caspase-3 protein expression levels significantly increased (p < 0.05). Compared with the DIO group, in DIO-R mice, the activities of ACE, ATF1, Bcl-2, and Bcl-2/Bax's spermatogenesis protein expression decreased, while the apoptosis-promoting protein expression significantly increased (p < 0.05). During the in vitro experiment, the late and early apoptotic ratio in the miR-34c over-expression group increased. MiR-34c over-expression enhanced the expression of apoptosis-related proteins Fas/FasLG and Bax/Bcl-2 while inhibiting the expression of ATF1 and the sperm-associated protein in GC-1 spg cells. DIO and DIO-R could harm sperm production. DIO-R could impair sperm production by inducing the miR-34c-activated apoptosis and spermatogenesis pathway, which may be different from that of DIO.
Assuntos
Apoptose , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , MicroRNAs , Obesidade , Espermatogênese , Espermatozoides , Animais , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Espermatogênese/genética , Camundongos , Obesidade/metabolismo , Obesidade/genética , Espermatozoides/metabolismo , Dieta Hiperlipídica/efeitos adversos , Linhagem CelularRESUMO
The current study aimed to explore whether bisphenol A (BPA) exposure aggravated the decrease in Tregs induced by ovalbumin (OVA) in adolescent female mouse models of asthma, and whether the process was associated with mTOR-mediated signaling pathways and DNA methylation levels. A total of 40 female C57BL/6 mice at the age of four weeks were used and divided into five groups after 1 week of domestication. Each group consisted of eight mice: the control group, OVA group, OVA + BPA (0.1 µg mL-1) group, OVA + BPA (0.2 µg mL-1) group, and OVA + BPA (0.4 µg mL-1) group. Results revealed that Foxp3 protein levels decreased in the spleens of mice exposed to BPA compared to those in the OVA group. After an elevation in BPA dose, the mRNAs of methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) were gradually upregulated. The mechanism was related to the activity of TLR4/NF-κB and PI3K/Akt/mTOR signaling pathways and the enhancement of Foxp3 DNA methylation. Our results, collectively, provided a new view for studying the mechanisms underlying BPA exposure-induced immune dysfunction. Investigation of the regulatory mechanisms of DNA methylation in the abnormal Th immune response caused by BPA exposure could help reveal the causes and molecular mechanisms underlying the high incidence of allergic diseases in children in recent years.
Assuntos
Compostos Benzidrílicos , Metilação de DNA , Fenóis , Transdução de Sinais , Linfócitos T Reguladores , Animais , Feminino , Camundongos , Asma/induzido quimicamente , Compostos Benzidrílicos/toxicidade , Metilação de DNA/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Camundongos Endogâmicos C57BL , Ovalbumina , Fenóis/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
BACKGROUND: Experimental studies have suggested exposure to bisphenol A (BPA) and its alternatives, such as bisphenol F (BPF) and bisphenol S (BPS), may exert adverse effects on ovarian reserve, but human evidence is limited. Moreover, the potential predictors of exposure to bisphenols among women seeking infertility treatment have not been reported. OBJECTIVE: To explore whether individual or mixture of BPA, BPF, and BPS were related to antral follicle count (AFC), and further identify the predictors of exposure to bisphenols among women seeking assisted reproductive treatment. METHODS: A total of 111 women from a reproductive center in Shenyang, China were enrolled in this study from September 2020 to February 2021. The concentrations of urinary BPA, BPF, and BPS were measured using ultra-high-performance liquid chromatography-triple quadruple mass spectrometry (UHPLC-MS/MS). AFC was measured by two infertility physicians through transvaginal ultrasonography on the 2-5 days of a natural cycle. Demographic characteristics, dietary habits, and lifestyles were obtained by questionnaires. The associations between individual and mixture of urinary bisphenols concentrations (BPA, BPF, and BPS) and AFC were assessed by the Poisson regression models and the quantile-based g-computation (QGC) model, respectively. The potential predictors of exposure to bisphenols were identified by the multivariate linear regression models. RESULTS: After adjusting for confounders, elevated urinary concentrations of BPA, BPF and BPS were associated with reduced AFC (ß = -0.016; 95%CI: -0.025, -0.006 in BPA; ß = -0.017; 95%CI: -0.029, -0.004 in BPF; ß = -0.128; 95%CI: -0.197, -0.060 in BPS). A quantile increase in the bisphenols mixture was negatively associated with AFC (ß = -0.101; 95%CI: -0.173, -0.030). Intake of fried food had higher urinary concentrations of BPF, BPS, and total bisphenols (∑BPs) than women who did not eat, and age was related to increased urinary BPF concentrations. CONCLUSION: Our findings indicated that exposure to individual BPA, BPF, BPS and bisphenol mixtures were associated with impaired ovarian reserve. Furthermore, the intake of fried food, as identified in this study, could serve as an important bisphenols exposure route for reproductive-aged women.
Assuntos
Compostos Benzidrílicos , Folículo Ovariano , Fenóis , Sulfonas , Adulto , Feminino , Humanos , Compostos Benzidrílicos/urina , China , Exposição Ambiental/análise , Poluentes Ambientais/urina , Clínicas de Fertilização , Folículo Ovariano/efeitos dos fármacos , Fenóis/urina , Sulfonas/urina , Estudos TransversaisRESUMO
The harmful effects of bisphenol A (BPA) on learning and memory may involve hippocampal oxidative damage; however, the underlying mechanism remains unclear. Antioxidants that antagonize BPA-induced neuronal oxidative damage lack research. This study aimed to develop an in vitro model using the HT-22 mouse hippocampal neuronal cell line to investigate the neurotoxic mechanism of BPA and the protective effect of alpha-lipoic acid (ALA) on nuclear factor erythroid 2-related factor 2 (Nrf2) inhibition. The results showed that ALA reduced BPA-induced reactive oxygen species and neuronal nitric oxide synthase (nNOS) levels; however, inhibiting Nrf2 weakened the protective effects of ALA. BPA reduced mitochondrial complex I/III activity and ATP levels, but ALA ameliorated this damage. ALA improved the BPA-induced downregulation of the kelch-like ECH-associated protein 1 (keap1)/Nrf2 system, synaptic-related proteins, and the protein kinase C (PKC)/extracellular signal-regulated kinase (ERK)/cAMP response element binding protein (CREB) pathway; however, the protective effects of ALA were weakened when Nrf2 was inhibited. Our results suggest that BPA causes oxidative damage to HT-22 cells by damaging mitochondrial function, nNOS, and the keap1/Nrf2 system, thereby impairing synaptic-related proteins and the PKC/ERK/CREB pathway. ALA counters BPA-induced damage via Nrf2, which may be a significant target for the protective action of ALA.
Assuntos
Ácido Tióctico , Camundongos , Animais , Ácido Tióctico/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína Quinase C/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologiaRESUMO
PURPOSE: To explore the effects of prepubertal obesity induced by high-fat diet during lactation and post-weaning on puberty onset and the neuroendocrine changes before puberty onset in a female mouse model, which may explain obesity in children starting early puberty. METHODS: A total of 72 female mice were assigned to the high fat diet group (HFD) and the control diet group (CONT) during lactation and post-weaning. The bodily indexes; pathological changes; and protein and gene expression levels in the hypothalamus were examined on postnatal days (P) 15, 28, and 45, respectively. RESULTS: The average vaginal opening time in HFD mice occurred significantly earlier than that in CONT mice (p < 0.05). On P15, no significant difference in the MKRN3, kisspeptin, GPR54 and GnRH level between HFD and CONT mice was noted (p > 0.05). Whereas on P28 and 45, compared to CONT mice, GnRH expression in HFD mice was significantly increased (p < 0.05); kisspeptin and GPR54 expression in HFD mice was also significantly increased (p < 0.05); but the MKRN3 level in HFD mice was significantly lower than that in CONT mice (p < 0.05). On P15, 28, and 45, compared with CONT mice, miR-30b expression in HFD mice increased (p < 0.05). Compared to P15, miR-30b, KiSS-1, GPR54 and GnRH mRNA level increased significantly, however MKRN3 decreased significantly in HFD mice on P28 and 45 (p < 0.01). CONCLUSIONS: Prepubertal obesity induced by high-fat diet during lactation and post-weaning may advance the time of pubertal initiation in female mice. The increased expression of miR-30b, kisspeptin, GPR54 and GnRH, decreased the expression of MKRN3 may explain the early onset of puberty in obese female mice.
Assuntos
MicroRNAs , Obesidade Infantil , Humanos , Criança , Animais , Camundongos , Feminino , Dieta Hiperlipídica/efeitos adversos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Puberdade , Hormônio Liberador de Gonadotropina/metabolismo , Lactação , MicroRNAs/genética , MicroRNAs/farmacologia , Ubiquitina-Proteína Ligases/farmacologiaRESUMO
Maternal fructose exposure during pregnancy and lactation has been shown to contribute to hypertension in offspring, with long-term effects on hypothalamus development. However, the underlying mechanisms remain unclear. In this study, we used the tail-cuff method to evaluate the effects of maternal fructose drinking exposure on offspring blood pressure levels at postpartum day 21 (PND21) and postpartum day 60 (PND60). We employed Oxford Nanopore Technologies (ONT) full-length RNA sequencing to investigate the developmental programming of the PND60 offspring's hypothalamus and confirmed the presence of the AT1R/TLR4 pathway using western blot and immunofluorescence. Our findings demonstrated that maternal fructose exposure significantly increased blood pressure in PND60 offspring but not in PND21 offspring. Additionally, we observed transcriptome-wide alterations in the hypothalamus of PND60 offspring following maternal fructose exposure. Overall, our study provides evidence that maternal fructose exposure during pregnancy and lactation may alter the transcriptome-wide of offspring hypothalamus and activate the AT1R/TLR4 pathway, leading to hypertension. These findings may have important implications for the prevention and treatment of hypertension-related diseases in offspring exposed to excessive fructose during pregnancy and lactation.
Assuntos
Hipertensão , Efeitos Tardios da Exposição Pré-Natal , Ratos , Gravidez , Animais , Feminino , Humanos , Transcriptoma , Receptor 4 Toll-Like/genética , Ratos Sprague-Dawley , Frutose/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Hipertensão/etiologia , Hipertensão/prevenção & controle , Exposição Materna/efeitos adversos , LactaçãoRESUMO
Bisphenol A (BPA) has been demonstrated to cause ovarian toxicity including disruption of steroidogenesis and inhibition of follicle growth. Still, human evidence is lacking on its analogs such as bisphenol F (BPF) and bisphenol S (BPS). In this study, we aimed to investigate the associations between exposure to BPA, BPF, and BPS with ovarian reserve in women of childbearing age. We recruited 111 women from an infertility clinic in Shenyang, North China between September 2020 and February 2021. Anti-müllerian hormone (AMH), follicle-stimulating hormone (FSH), and estradiol (E2) were measured as indicators of ovarian reserve. Urinary BPA, BPF, and BPS concentrations were quantified by ultra-high-performance liquid chromatography-triple quadruple mass spectrometry (UHPLC-MS/MS). Linear and logistic regression models were applied to assess the associations between urinary BPA, BPF, and BPS levels and indicators of ovarian reserve and DOR, respectively. Restricted cubic spline (RCS) models were further utilized to explore potential non-linear associations. Our results showed that urinary BPS concentrations were negatively associated with AMH (ß = - 0.287, 95 %CI: - 0.505, - 0.070, P = 0.010) and this inverse relationship was further confirmed in the RCS model. In addition, higher levels of BPA and BPS exposure were associated with increased DOR risk (BPA: OR = 7.112, 95 %CI: 1.247, 40.588, P = 0.027; BPS: OR = 6.851, 95 %CI: 1.241, 37.818, P = 0.027). No significant associations of BPF exposure with ovarian reserve. Our findings implied that higher BPA and BPS exposure may be related to decreased ovarian reserve.
Assuntos
Reserva Ovariana , Espectrometria de Massas em Tandem , Humanos , Feminino , Clínicas de Fertilização , Compostos Benzidrílicos/toxicidade , ChinaRESUMO
OBJECTIVE: To determine the mechanism of oxidative stress mediated by N6-methyladenosine (m6A) methylation contributing to high fat diet-induced reproductive dysfunction. RESULTS: In vivo, compared with those in the Control group, the sperm count and sperm motility decrease significantly; the testosterone, luteinizing hormone levels, hyaluronidase, acrosomal enzyme levels, and total antioxidant capacity decrease significantly; malondialdehyde increases significantly in the DIO and DIO-R groups. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase 1 (SOD1), and NAD(P)H quinone dehydrogenase 1 (NQO1) decreases significantly in the DIO and DIO-R groups; m6A levels in testis tissue in the DIO and DIO-R groups increase; the enrichment of m6A-modified Nrf2 mRNA in testis in the DIO group and DIO-R group increases significantly. Also the m6A regulatory proteins increase significantly in the DIO group and DIO-R group. In vitro, compared to palmitic acid treated cells, the reactive oxygen species (ROS) level significantly decreases in STM2457, S-Adenosylhomocysteine treated cells and YTHDC2, YTHDF2 gene silence cells; however, Nrf2 expression increases in all treated cells. In addition, m6A expression decreases. CONCLUSIONS: Oxidative stress mediates by methylation of m6A may contribute to high fat diet-induced male reproductive dysfunction.
Assuntos
Dieta Hiperlipídica , Fator 2 Relacionado a NF-E2 , Masculino , Humanos , Dieta Hiperlipídica/efeitos adversos , Metilação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Motilidade dos Espermatozoides , Sêmen/metabolismo , Estresse OxidativoRESUMO
Increased fructose intake is a global issue, especially in mothers. Maternal fructose exposure during gestation and lactation can affect learning and memory in offspring; however, the detailed mechanism is still unknown. The hippocampus is a mind locale liable for learning and memory. Here, we established a maternal high-fructose diet model by administering 13% and 40% fructose water, applied the Morris Water Maze test on postnatal day 60 offspring, and performed full-length RNA sequencing using the Oxford Nanopore Technologies platform to explore the changes in gene expression in the hippocampus. The results showed that learning and memory in offspring were negatively affected. Compared with the control group, 369 differentially expressed transcripts (DETs) were identified in the 13% fructose group, and 501 DETs were identified in the 40% fructose group. Gene Ontology enriched term and Kyoto Encyclopedia of Genes and Genomes enriched pathway analyses identified several terms and pathways related to brain development and cognitive function. Furthermore, we confirmed that the Wnt/ß-catenin signaling pathway was down-regulated and neuron degeneration was enhanced. In summary, our results indicate that maternal fructose exposure during gestation and lactation can impair learning and memory in offspring and affect brain function at the transcriptome level.
Assuntos
Frutose , Hipocampo , Deficiências da Aprendizagem , Exposição Materna , Transtornos da Memória , Efeitos Tardios da Exposição Pré-Natal , Feminino , Humanos , Gravidez , Frutose/efeitos adversos , Frutose/metabolismo , Hipocampo/metabolismo , Lactação , Exposição Materna/efeitos adversos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transcriptoma , Deficiências da Aprendizagem/induzido quimicamenteRESUMO
The electrochemical formation of liquid sulfur at room temperature on the basal plane of MoS2 has attracted much attention due to the high areal capacity and rapid kinetics of lithium-liquid sulfur chemistry. However, the liquid sulfur is converted to the solid phase once it contacts the solid sulfur crystals generated from the edge of MoS2. Thus, stable liquid sulfur cannot be formed on the entire MoS2 surface. Herein, we report entire liquid sulfur generation on hydrogen-annealed MoS2 (H2-MoS2), even under harsh conditions of large overpotentials and low working temperatures. The origins of the solely liquid sulfur formation are revealed to be the weakened interactions between H2-MoS2 and sulfur molecules and the decreased electrical polarization on the edges of the H2-MoS2. Progressive nucleation and droplet-merging growth behaviors are observed during the sulfur formation on H2-MoS2, signifying high areal capacities by releasing active H2-MoS2 surfaces. To demonstrate the universality of this strategy, other transition-metal dichalcogenides (TMDs) annealed in hydrogen also exhibit similar sulfur growth behaviors. Furthermore, the H2 annealing treatment can induce sulfur vacancies on the basal plane and partial oxidation on the edge of TMDs, which facilitates liquid sulfur formation. Finally, liquid sulfur can be generated on H2-MoS2 flakes at an ultralow temperature of -50 °C, which provides a possible development of low-temperature lithium-sulfur batteries. This work demonstrates the potential of a pure liquid sulfur-lithium electrochemical system using functionalized two-dimensional materials.
RESUMO
Exercise is considered as a favorable measure to prevent and treat childhood obesity. However, the underlying mechanisms of exercise-induced beneficial effects and the difference between obese and non-obese individuals are largely unclear. Recently, miR-27a is recognized as a central upstream regulator of proliferator-activated receptor γ (PPAR-γ) in contributing to various physiological and pathological processes. This study aims to explore the possible cause of exercise affecting white adipose tissue (WAT) browning and reversing skeletal muscle insulin resistance in obese/non-obese immature bodies. For simulating the process of childhood obesity, juvenile mice were fed with a basal diet or high-fat diet (HFD) and took 1 or 2 h swimming exercise simultaneously for 10 weeks. The obese animal model was induced by the HFD. We found that exercise hindered HFD-induced body fat development in growing mice. Exercise modified glucolipid metabolism parameters differently in the obese/non-obese groups, and the changes of the 2 h exercise mice were not consistent with the 1 h exercise mice. The level of serum exosomal miR-27a in the non-exercise obese group was increased obviously, which was reduced in the exercise obese groups. Results from bioinformatics analysis and dual-luciferase reporter assay showed that miR-27a targeted PPAR-γ. Exercise stimulated WAT browning; however, the response of obese WAT lagged behind normal WAT. In the HFD-fed mice, 2 h exercise activated the IRS-1/Akt/GLUT-4 signaling pathway in the skeletal muscles. In summary, our findings confirmed that exercise-induced beneficial effects are associated with exercise duration, and the response of obese and non-obese bodies is different. Exosomal miR-27a might be a crucial node for the process of exercise-induced browning of WAT and improving skeletal muscle insulin sensitivity.
RESUMO
BACKGROUND: COVID-19 poses a severe threat to global human health, especially the USA, Brazil, and India cases continue to increase dynamically, which has a far-reaching impact on people's health, social activities, and the local economic situation. METHODS: The study proposed the ARIMA, SARIMA and Prophet models to predict daily new cases and cumulative confirmed cases in the USA, Brazil and India over the next 30 days based on the COVID-19 new confirmed cases and cumulative confirmed cases data set(May 1, 2020, and November 30, 2021) published by the official WHO, Three models were implemented in the R 4.1.1 software with forecast and prophet package. The performance of different models was evaluated by using root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE). RESULTS: Through the fitting and prediction of daily new case data, we reveal that the Prophet model has more advantages in the prediction of the COVID-19 of the USA, which could compose data components and capture periodic characteristics when the data changes significantly, while SARIMA is more likely to appear over-fitting in the USA. And the SARIMA model captured a seven-day period hidden in daily COVID-19 new cases from 3 countries. While in the prediction of new cumulative cases, the ARIMA model has a better ability to fit and predict the data with a positive growth trend in different countries(Brazil and India). CONCLUSIONS: This study can shed light on understanding the outbreak trends and give an insight into the epidemiological control of these regions. Further, the prediction of the Prophet model showed sufficient accuracy in the daily COVID-19 new cases of the USA. The ARIMA model is suitable for predicting Brazil and India, which can help take precautions and policy formulation for this epidemic in other countries.
Assuntos
COVID-19 , COVID-19/epidemiologia , Previsões , Humanos , Índia/epidemiologia , Aprendizado de Máquina , Modelos EstatísticosRESUMO
BACKGROUND: Childhood obesity increases the risk of elevated blood pressure (BP) in children. Body mass index (BMI), waist circumference (WC) and waist-to-height ratio (WHtR) are traditional obesity indices, but the extent to which these indices are associated with elevated BP in childhood remains debatable. Moreover, the familial dietary environment plays an important role in obesity, so it is necessary to determine the most relevant dietary factors for childhood obesity to prevent elevated BP. Our study aimed to identify the obesity indices that are most closely associated with elevated BP and then to determine the independent familial dietary factors for those obesity indices. METHOD: A total of 605 children aged 2 to 6 years, as well as their parents, were involved in this study. The weight, height, WC and BP of the children were measured. Information on familial environments was obtained by questionnaires completed by the parents. BMI, WC and WHtR were standardized into z scores, and categorical variables of these three obesity indices were defined as BMI Category, WC Category and WHtR Category. Logistic regression was used to analyse the associations between all obesity indices and elevated BP. Multivariate linear regression and logistic regression were used to determine the independent factors for obesity indices. RESULTS: The obesity indices that were most closely associated with elevated BP were WC and WC Category. Parental BMI, birth weight, eating wheat as a staple food, appetite, eating speed, snacking while watching TV, parental encouragement to eat a diverse assortment of foods and drinking milk were independently associated with WC in both males and females. The risk of abdominal obesity increased 1.375 times in males and 1.631 times in females if appetite increased one level. If eating speed increased one level, the risk of abdominal obesity increased 1.165 times in males and 0.905 times in females. Females who drank milk more than 6 times per week had a 0.546 times lower risk of abdominal obesity. CONCLUSION: WC was an anthropometric parameter more closely associated with elevated BP. In addition to genetics, some familial dietary factors involving eating preference, eating habits and parental feeding practice were independently associated with WC and abdominal obesity in preschool children.
Assuntos
Obesidade Infantil , Pressão Sanguínea/fisiologia , Criança , Pré-Escolar , Estudos Transversais , Comportamento Alimentar , Feminino , Humanos , Masculino , Obesidade Infantil/epidemiologia , Circunferência da CinturaRESUMO
Work function strongly impacts the surficial charge distribution, especially for metal-support electrocatalysts when a built-in electric field (BEF) is constructed. Therefore, studying the correlation between work function and BEF is crucial for understanding the intrinsic reaction mechanism. Herein, we present a Pt@CoOx electrocatalyst with a large work function difference (ΔΦ) and strong BEF, which shows outstanding hydrogen evolution activity in a neutral medium with a 4.5-fold mass activity higher than 20 % Pt/C. Both experimental and theoretical results confirm the interfacial charge redistribution induced by the strong BEF, thus subtly optimizing hydrogen and hydroxide adsorption energy. This work not only provides fresh insights into the neutral hydrogen evolution mechanism but also proposes new design principles toward efficient electrocatalysts for hydrogen production in a neutral medium.
RESUMO
Exposure to arsenic (As), an environmental toxicant, causes damages to the central nervous system (CNS) structure and function. Emerging epidemiological studies support that exposure to As, especially during the critical periods of the CNS development, may act as an environmental risk factor of autism spectrum disorders (ASD), which is characterized by behavioral changes, including abnormal social behaviors, restricted interests and repetitive behaviors. However, direct evidence supporting the cause-effect relationship between As exposure and the risk of ASD is still missing. Thus, we aimed to investigate whether As exposure during pregnancy and lactation led to autism-like behaviors in offspring mice in the present study. We established a mice model of exposure to As via drinking water during pregnancy and lactation and conducted a battery of behavioral tests to evaluate social behaviors, repetitive behaviors, anxiety behaviors and learning and memory ability in offspring mice. We found that perinatal exposure to As caused autism-like behaviors in male offspring, which demonstrated by abnormal social behaviors and repetitive behaviors. Anxiety-like behaviors, and learning and memory impairments, known as concomitant behavioral phenotypes in mice with autism-like behaviors, were also observed. Decreases of synaptic density, especially in cortex, hippocampus and cerebellum, are extensively observed in both ASD patients and animal models of ASD. Thus, immunofluorescence staining and western blotting were used to observe the expression of PSD-95 and SYP, well-known markers for presynaptic and postsynaptic membranes, to assess the synaptic density in offspring cortex, hippocampus and cerebellum. We found perinatal exposure to As decreased the expression of PSD-95 and SYP in these brain regions. This indicated that perinatal exposure to As caused decreases of synaptic density, a typical autism-like cellular alteration in brains, which may contribute to autism-like behaviors in offspring.
Assuntos
Arsênio , Transtorno Autístico , Água Potável , Efeitos Tardios da Exposição Pré-Natal , Animais , Arsênio/toxicidade , Transtorno Autístico/induzido quimicamente , Comportamento Animal , Modelos Animais de Doenças , Feminino , Humanos , Lactação , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamenteRESUMO
BACKGROUNDS: The uncertainty of the pandemic of Coronavirus Disease 2019 (COVID-19) brought about tremendous psychological harm for pregnant women, causing their high rates of prenatal anxiety. The impacts of COVID-19 pandemic and symptoms of pregnant status are highly linked with prenatal anxiety. Whereas, self-efficacy and support from family and friends could attenuate the development of prenatal anxiety. Thus, the purpose of the study is to evaluate the prevalence of prenatal anxiety and its influence factors among pregnant women during the pandemic of COVID-19 in Shenyang, China. METHODS: A cross-sectional study with face-to-face interview between April 24, 2020 and May 3, 2020 during the COVID-19 pandemic was applied among pregnant women in Shenyang Women's and Children's Hospital. Chi-square tests were calculated to determine the differences in prenatal anxiety among categorical variables. Multivariable logistic regression was employed to investigate the risk factors of prenatal anxiety. RESULTS: The percentage of prenatal anxiety (GAD-7 score ≥ 7) among pregnant women during the pandemic of COVID-19 was 34/304 (11.18%). Logistic regression indicated that vomiting (OR 4.454, 95% CI 1.113-17.821) and feeling susceptible to SARS-CoV-2 infection (OR 2.966, 95% CI 1.151-7.642) increased the odds of prenatal anxiety. Satisfaction with medical care (OR 0.303, 95% CI 0.113-0.813) and self-efficacy (OR 0.253, 95% CI 0.100-0.639) decreased the odds of prenatal anxiety. High monthly income (OR 0.246, 95% CI 0.078 ~ 0.780) reduced the chances of suffering from prenatal anxiety. CONCLUSION: The pregnant women in China exerted a higher prevalence of prenatal anxiety during the COVID-19 pandemic than that without COVID-19 pandemic. Effective management on symptoms of pregnant status should be delivered to relieve prenatal anxiety for the pregnant women. Furthermore, interventions on self-efficacy enhancement and high-quality medical prenatal care should be provided to prevent from the susceptibility of SARS-CoV-2 infection and reduce prenatal anxiety.
Assuntos
COVID-19 , Ansiedade/epidemiologia , Criança , Estudos Transversais , Feminino , Humanos , Pandemias , Gravidez , Gestantes , SARS-CoV-2 , Smartphone , Inquéritos e QuestionáriosRESUMO
Here, a new strategy that combines accessible active sites and multiphase synergy in a simple process is developed for constructing bifunctional electrocatalysts toward overall water splitting. By using metal-organic framework (MOF) nanosheets hydrothermally grown on pre-oxidized nickel foam (denoted by Co2(OH)2(BDC)/NiO/NF) as a precursor, two novel heterogeneous nanosheet arrays including a cobalt phosphide nanoparticle embedded carbon nanotube nanosheet array supported by phosphorized nickel foam (denoted by CoP-CNT/Ni2P/NF) and a cobalt phosphide nanorod decorated carbon nanosheet array supported by oxidized nickel foam (denoted by CoP-C/NiO/NF) are prepared. Both were confirmed to be highly efficient for hydrogen and oxygen evolution reactions. In particular, CoP-C/NiO/NF exhibits higher catalytic activity toward the hydrogen evolution reaction (η100 = -131 mV), promoted by the synergy of oxidized nickel foam. CoP-CNT/Ni2P/NF performs better in the oxygen evolution reaction (η50 = 301 mV), benefiting mainly from its improved electrochemically active surface area. The two catalysts match well in overall water splitting with satisfactory activity (η10 = 1.57 V) and stability when directly applied in a two-electrode cell. This method will bring new inspiration to maximize the electrocatalytic efficiency of MOF-derived catalysts for energy conversion applications in the future.
RESUMO
BACKGROUND: Gestational diabetes can alter the trajectory of fetal development, but there are few studies on the effects of abnormal lipid metabolism on physical development of infants. We aimed to explore the prevalence of maternal dyslipidemia, its influencing factors and effects on the physical development of fetuses and infants, as well as the role of leptin in this process. METHODS: Questionnaire surveys and main outcome measures were administered among 338 pairs of pregnant women and newborns. RESULTS: The detection rate of maternal dyslipidemia was 31.5%. The median levels of TG (triglyceride) and TG/HDL (high-density lipoprotein) ratio were higher in large-for-gestational-age (LGA) newborns. Birth weight was positively related to infants' height and weight at six months and one year old (p < 0.05). Leptin was positively related to TG levels of pregnant women and newborns' birth weight (p < 0.05). Logistic regression analysis showed that having greater than or equal to four meals a day (OR = 6.552, 95%CI = 1.014-42.338) and liking to eat lightly flavored food during pregnancy (OR = 1.887, 95%CI = 1.048-3.395) were independent risk factors of maternal dyslipidemia. CONCLUSIONS: The prevalence of dyslipidemia was relatively high in pregnant women and was affected by dietary behaviors. Abnormal lipid levels during pregnancy could affect weight and length at birth, which might be associated with increasing leptin levels in cord blood, and then the weight of infants would be influenced by birth weight.
Assuntos
Desenvolvimento Infantil , Dieta , Dislipidemias , Desenvolvimento Fetal , Recém-Nascido/crescimento & desenvolvimento , Complicações na Gravidez , Adulto , Peso ao Nascer , HDL-Colesterol/sangue , Estudos de Coortes , Dislipidemias/epidemiologia , Comportamento Alimentar , Feminino , Sangue Fetal/química , Humanos , Leptina/sangue , Gravidez , Complicações na Gravidez/epidemiologia , Terceiro Trimestre da Gravidez , Triglicerídeos/sangueRESUMO
PURPOSE: The purpose of this survey was to explore the prevalence of reduced visual acuity and its associated factors among school students in Shenyang in 2016. METHODS: This was a cross-sectional study using data from the Ministry of Education' Student Physical Fitness (MESPF) monitoring in 2016. A total of 13,642 students aged 9-18 years were surveyed in Shenyang. The unaided distance visual acuity was measured, and questionnaire on lifestyle behaviors that may affect visual acuity was investigated among students. The prevalence of reduced visual acuity and its associated factors were analyzed. RESULTS: The average prevalence of reduced visual acuity among students aged 9-18 years was 65.8%, and severe reduced visual acuity was main (42.9%), and there were statistical effect of age, gender, and region on the prevalence of reduced visual acuity. Binary and multi variable logistic regression results revealed that students sleeping <8 h, homework hours ⩾1 h, and parental myopia had an increased risk of reduced visual acuity. CONCLUSIONS: Sleep time <8 h and homework time ⩾1 h may be associated with reduced visual acuity among students in Shenyang. Therefore, it is benefit for student to get enough sleep and decreasing studying time in order to prevent and reduce poor vision.
RESUMO
In previous studies we found that bisphenol A (BPA) aggravated OVA-induced lung inflammation. The aim of this research was to determine whether BPA exposure alone also induced inflammatory response in the lungs, which mechanism was associated with TLR4/NF-κB signaling pathway and the activation of mTOR-mediated autophagy. Female C57BL/6 mice aged 4 weeks were randomly divided into three groups (10/group): control group, 0.1 and 0.2 µg mL-1 BPA groups. BPA induced the pathological changes in the lung and increased the levels of cytokines and inflammatory cells, as well as affected autophagy related proteins expression. In addition, the RAW264.7 cell culture experiment was conducted in order to confirm the role of autophagy. We found that BPA can enhance autophagy flux by enhancing autophagosome formation. It was further confirmed the details of the mechanism of action with chloroquine (CQ, a compound that inhibits the fusion of autophagosomes and lysosomes) intervention. The inhibition of autophagy led to down-regulation of expression levels associated with inflammation. This research results indicated that BPA induced inflammatory response in vitro and in vivo, and its mechanism may be related to TLR4/NF-κB signaling pathway and the activation of mTOR-mediated autophagy. After autophagy was suppressed, the inflammatory response also weakened. Our findings provide a new perspective into the mechanisms underlying inflammatory responses induced by the environmental exposure. These findings indicate that therapeutic strategies targeting autophagy may provide a new method for the treatment of inflammatory diseases.