RESUMO
Rice false smut (RFS) caused by Ustilaginoidea virens is widely distributed in major rice-producing regions. Previous studies have shown that treating RFS with chelerythrine can decrease the germination of fungus spores by 86.7% and induce fungal cell apoptosis. In the present study, the effects of chelerythrine on the metabolism of U. virens explored using metabolomics and analyses of differentially accumulated metabolites and altered metabolic pathways. The top 15 metabolites in random forest analysis were significantly different between groups. In positive ion mode, purine, phenylalanine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, pyrimidine metabolism, and nitrogen metabolism were dominant. Alanine, aspartate, glutamate metabolism, and phenylalanine metabolism were enriched in negative ion mode. Differentially expressed genes and altered metabolic pathways of U. virens were effected by chelerythrine. The findings support future research on the prevention and treatment of RFS by chelerythrine and provide a theoretical basis for targeted drug delivery.
RESUMO
In this study, a novel colorimetric aptasensor was developed for the rapid detection and visual screening of HPV16 L1 proteins using gold nanoparticles (AuNPs) and an RNA aptamer against HPV16 L1 protein (APTHPV16 L1). The AuNP-APTHPV16 L1 conjugates could be aggregated by the addition of a salt in the presence of HPV16 L1 proteins at the ppb level. At the same time, the surface plasma resonance absorption peaks of AuNPs shifted to a short wavelength, and an observable change in color from red to blue occurred. The relative absorbance (Ablank - Asample/Ablank) at 520 nm exhibited a stable response to HPV16 L1 proteins over a concentration range from 9.6 to 201.6 ng mL-1. The visual detection limit of HPV16 L1 proteins was found to be 9.6 ng mL-1. Finally, the proposed colorimetric aptasensor was successfully applied for the rapid and effective detection of HPV16 L1 proteins in clinical samples and vaccine samples. The validity and reliability of the proposed colorimetric aptasensor were verified by the enzyme-linked immunosorbent assay method. The proposed colorimetric aptasensor provided a promising indicator for screening and quantitative detection of HPV16 L1 proteins in clinical samples.