Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Curr Pharm Des ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963117

RESUMO

INTRODUCTION: Eucommia ulmoides is a unique monophyletic and tertiary relict in China and is listed as a national second-class precious protected tree species. Eucommia ulmoides, recognized as a traditional Chinese medicine, can tonify the liver and kidneys and strengthen bones and muscles. Modern pharmacological research has proved that Eucommia ulmoides has multiple osteoprotective effects, including prohibiting the occurrence of osteoporosis and arthritis and enhancing the healing of bone fractures and bone defects. AIM: To check its osteotropic effects, which may provide ideas for its potential use for the development of novel drugs to treat osteoporosis, this study evaluated the effect of total flavonoids from Eucommia ulmoides leaves (TFEL) on the acquisition of Peak Bone Mass (PBM) in young female rats. MATERIALS AND METHODS: TFEL was isolated, and its purity was confirmed by using a UV spectrophotometer. TFEL with a purity of 85.09% was administered to 6-week-old female rats by oral gavage at a low (50), mid (100), or high (200 mg/kg/d) dose, and the control group was administrated only with the same volume of water. After 13 weeks of treatment, the rats were sacrificed, and serum, different organs, and limb bones (femurs and tibias) were harvested, and the bone turnover markers, organ index, Bone Mineral Density (BMD), biomechanical property, and microstructure parameters were assayed. Furthermore, molecular targets were screened, and network pharmacology analyses were conducted to reveal the potential mechanisms of action of TFEL. RESULTS: Oral administration of TFEL for 13 weeks decreased the serum level of bone resorption marker TRACP-5b. As revealed by micro-computer tomography analysis, it elevated BMD even at a low dose (50 mg/kg/d) and improved the microstructural parameters, which were also confirmed by H&E histological staining. However, TFEL showed no effects on body weights, organ index, and micromorphology in the uterus. In our network pharmacology study, an intersection analysis screened out 64 shared targets, with quercetin, kaempferol, naringenin, and apigenin regulating the greatest number of targets associated with osteoporosis. Flavonoids in Eucommia ulmoides inhibited the occurrence of osteoporosis potentially through targeting signaling pathways for calcium, VEGF, IL-17, and NF-κB. Furthermore, AKT1, EGFR, PTGS2, VEGFA, and CALM were found to be potentially important target genes for the osteoprotective effects of flavonoids in Eucommia ulmoides. CONCLUSION: The above results suggested that TFEL can be used to elevate the peak bone mass in adolescence in female individuals, which may prevent the occurrence of postmenopausal osteoporosis, and the good safety of TFEL also suggests that it can be used as a food additive for daily life to improve the bone health.

2.
Biomed Eng Online ; 23(1): 62, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918766

RESUMO

Diabetic retinopathy (DR) is an eye disease that causes blindness and vision loss in diabetic. Risk factors for DR include high blood glucose levels and some environmental factors. The pathogenesis is based on inflammation caused by interferon and other nuclear proteins. This review article provides an overview of DR and discusses the role of nuclear proteins in the pathogenesis of the disease. Some core proteins such as MAPK, transcription co-factors, transcription co-activators, and others are part of this review. In addition, some current advanced treatment resulting from the role of nuclear proteins will be analyzes, including epigenetic modifications, the use of methylation, acetylation, and histone modifications. Stem cell technology and the use of nanobiotechnology are proposed as promising approaches for a more effective treatment of DR.


Assuntos
Retinopatia Diabética , Proteínas Nucleares , Retinopatia Diabética/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Animais , Epigênese Genética
3.
Int J Biol Macromol ; 266(Pt 1): 131169, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554899

RESUMO

Autogenous bone transplantation is a prevalent clinical method for addressing bone defects. However, the limited availability of donor bone and the morbidity associated with bone harvesting have propelled the search for suitable bone substitutes. Bio-inspired scaffolds, particularly those fabricated using electron beam melting (EBM) deposition technology, have emerged as a significant advancement in this field. These 3D-printed titanium alloy scaffolds are celebrated for their outstanding biocompatibility and favorable elastic modulus. Thermosensitive chitosan hydrogel, which transitions from liquid to solid at body temperature, serves as a popular carrier in bone tissue engineering. Icariin (ICA), known for its efficacy in promoting osteoblast differentiation from bone marrow mesenchymal stem cells (BMSCs), plays a crucial role in this context. We developed a system combining a 3D-printed titanium alloy with a thermosensitive chitosan hydrogel, capable of local bone regeneration and integration through ICA delivery. Our in vitro findings reveal that this system can gradually release ICA, demonstrating excellent biocompatibility while fostering BMSC proliferation and osteogenic differentiation. Immunohistochemistry and Micro-CT analyses further confirm the effectiveness of the system in accelerating in vivo bone regeneration and enhancing osseointegration. This composite system lays a significant theoretical foundation for advancing local bone regeneration and integration.


Assuntos
Ligas , Diferenciação Celular , Quitosana , Flavonoides , Hidrogéis , Células-Tronco Mesenquimais , Osseointegração , Osteogênese , Impressão Tridimensional , Alicerces Teciduais , Titânio , Quitosana/química , Quitosana/farmacologia , Titânio/química , Osseointegração/efeitos dos fármacos , Ligas/química , Ligas/farmacologia , Alicerces Teciduais/química , Animais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual/métodos
4.
Front Pediatr ; 11: 1103386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936890

RESUMO

Introduction: Caries are at the forefront of childhood diseases. Although childhood caries is usually not life-threatening, it can affect children's dental-maxillofacial development and mental health and place significant financial and psychological burdens on parents. As the focus of childhood dental caries shifts to early diagnosis and prevention rather than restorative dentistry alone, screening children at a high risk of dental caries is urgent. Appropriate caries prevention measures and treatment sequences can effectively reduce the occurrence and development of dental caries in children. Case: We report the case of a 7-year-old boy presenting with a high risk of dental caries involving multiple primary teeth and premature eruption of the permanent teeth. We shifted the caries status of the child from high to moderate likelihood. At the 9-month post-treatment follow-up, the patient had no new dental caries, and the length and width of the dental arch were effectively maintained. Conclusion: Oral health education, dental plaque removal in a regular basis, and fluoride application contribute to caries management.

5.
J Funct Biomater ; 14(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37623649

RESUMO

Due to their superior antibacterial properties, biocompatibility and high conductivity, nanomaterials have shown a broad prospect in the biomedical field and have been widely used in the prevention and treatment of oral diseases. Also due to their small particle sizes and biodegradability, nanomaterials can provide solutions for tissue engineering, especially for oral tissue rehabilitation and regeneration. At present, research on nanomaterials in the field of dentistry focuses on the biological effects of various types of nanomaterials on different oral diseases and tissue engineering applications. In the current review, we have summarized the biological effects of nanoparticles on oral diseases, their potential action mechanisms and influencing factors. We have focused on the opportunities and challenges to various nanomaterial therapy strategies, with specific emphasis on overcoming the challenges through the development of biocompatible and smart nanomaterials. This review will provide references for potential clinical applications of novel nanomaterials in the field of oral medicine for the prevention, diagnosis and treatment of oral diseases.

6.
Mol Carcinog ; 62(5): 652-664, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36752346

RESUMO

Hydrogen sulfide (H2 S) has been widely recognized as one of gasotransmitters. Endogenous H2 S plays a crucial role in the progression of cancer. However, the effect of endogenous H2 S on the development of nasopharyngeal carcinoma (NPC) is still unknown. In this study, aminooxyacetic acid (AOAA, an inhibitor of cystathionine-ß-synthase), dl-propargylglycine (PAG, an inhibitor of cystathionine-γ-lyase), and l-aspartic acid (l-Asp, an inhibitor of 3-mercaptopyruvate sulfurtransferase) were adopted to detect the role of endogenous H2 S in NPC growth. The results indicated that the combine (PAG + AOAA + l-Asp) group had higher inhibitory effect on the growth of NPC cells than the PAG, AOAA, and l-Asp groups. There were similar trends in the levels of apoptosis and reactive oxygen species (ROS). In addition, the combine group exhibited lower levels of phospho (p)-extracellular signal-regulated protein kinase but higher expressions of p-p38 and p-c-Jun N-terminal kinase than those in the AOAA, PAG, and l-Asp groups. Furthermore, the combine group exerted more potent inhibitory effect on NPC xenograft tumor growth without obvious toxicity. In summary, suppression of endogenous H2 S generation could dramatically inhibit NPC growth via the ROS/mitogen-activated protein kinase pathway. Endogenous H2 S may be a novel therapeutic target in human NPC cells. Effective inhibitors for H2 S-producing enzymes could be designed and developed for NPC treatment.


Assuntos
Sulfeto de Hidrogênio , Neoplasias Nasofaríngeas , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Cistationina , Carcinoma Nasofaríngeo , Espécies Reativas de Oxigênio , Sulfetos/farmacologia , Neoplasias Nasofaríngeas/tratamento farmacológico
7.
Caries Res ; 57(2): 119-132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649690

RESUMO

Circulating nitrate is actively absorbed by salivary glands and secreted into the oral cavity, where it is reduced to nitrite by oral nitrate-reducing bacteria. This process has previously been considered harmful because nitrate and nitrite can promote the formation of potentially carcinogenic N-nitrosamines. However, recent studies have shown that nitrate may have other physiological functions, and it can serve as a precursor for the systemic production of nitric oxide (NO) and perform NO-like functions, such as promoting vasodilation, regulating metabolic diseases, alleviating senescence, and protecting the digestive system. Inside the oral cavity, NO is likely to inhibit sensitive species as part of the nonspecific oral immune system. Exogenous administration of nitrate can maintain a balance in the pH of saliva. Oral nitrate-reducing bacteria can control the progression of caries by metabolizing lactic acid and reducing its accumulation, which is beneficial to the homeostasis of the oral microecology. In the current manuscript, we reviewed nitrate-reducing bacteria and their nitrate-metabolizing functions during the development of caries. Furthermore, we listed the effects of probiotics and dietary modification, which may be a promising method to prevent the occurrence of caries. We believe that this review provides novel ideas for the prevention of caries and treatment in clinical settings.


Assuntos
Nitratos , Nitritos , Humanos , Nitratos/metabolismo , Nitritos/metabolismo , Suscetibilidade à Cárie Dentária , Boca/microbiologia , Saliva/microbiologia , Bactérias , Óxido Nítrico/metabolismo
8.
Cell Prolif ; 56(3): e13374, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36478328

RESUMO

The role of hydrogen sulphide (H2 S) in angiogenesis has been widely demonstrated. Vascular endothelial growth factor (VEGF) plays an important role in H2 S-induced angiogenesis. H2 S promotes angiogenesis by upregulating VEGF via pro-angiogenic signal transduction. The involved signalling pathways include the mitogen-activated protein kinase pathway, phosphoinositide-3 kinase pathway, nitric oxide (NO) synthase/NO pathway, signal transducer and activator of transcription 3 (STAT3) pathway, and adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels. H2 S has been shown to contribute to tumour angiogenesis, diabetic wound healing, angiogenesis in cardiac and cerebral ischaemic tissues, and physiological angiogenesis during the menstrual cycle and pregnancy. Furthermore, H2 S can exert an anti-angiogenic effect by inactivating Wnt/ß-catenin signalling or blocking the STAT3 pathway in tumours. Therefore, H2 S plays a double-edged sword role in the process of angiogenesis. The regulation of H2 S production is a promising therapeutic approach for angiogenesis-associated diseases. Novel H2 S donors and/or inhibitors can be developed in the treatment of angiogenesis-dependent diseases.


Assuntos
Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Patológica , Neovascularização Fisiológica , Transdução de Sinais
9.
Elife ; 112022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36326085

RESUMO

The spatiotemporal blood vessel formation and specification at the osteogenic and angiogenic interface of murine cranial bone defect repair were examined utilizing a high-resolution multiphoton-based imaging platform in conjunction with advanced optical techniques that allow interrogation of the oxygen microenvironment and cellular energy metabolism in living animals. Our study demonstrates the dynamic changes of vessel types, that is, arterial, venous, and capillary vessel networks at the superior and dura periosteum of cranial bone defect, suggesting a differential coupling of the vessel type with osteoblast expansion and bone tissue deposition/remodeling during repair. Employing transgenic reporter mouse models that label distinct types of vessels at the site of repair, we further show that oxygen distributions in capillary vessels at the healing site are heterogeneous as well as time- and location-dependent. The endothelial cells coupling to osteoblasts prefer glycolysis and are less sensitive to microenvironmental oxygen changes than osteoblasts. In comparison, osteoblasts utilize relatively more OxPhos and potentially consume more oxygen at the site of repair. Taken together, our study highlights the dynamics and functional significance of blood vessel types at the site of defect repair, opening up opportunities for further delineating the oxygen and metabolic microenvironment at the interface of bone tissue regeneration.


Assuntos
Células Endoteliais , Microscopia , Camundongos , Animais , Osteogênese , Crânio/diagnóstico por imagem , Osteoblastos/metabolismo , Camundongos Transgênicos , Oxigênio/metabolismo , Diferenciação Celular
10.
Oxid Med Cell Longev ; 2022: 1886277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35116090

RESUMO

Oral diseases are among the most common human diseases yet less studied. These diseases affect both the physical, mental, and social health of the patients resulting in poor quality of life. They affect all ages, although severe stages are mostly observed in older individuals. Poor oral hygiene, genetics, and environmental factors contribute enormously to the development and progression of these diseases. Although there are available treatment options for these diseases, the recurrence of the diseases hinders their efficiency. Oral volatile sulfur compounds (VSCs) are highly produced in oral cavity as a result of bacteria activities. Together with bacteria components such as lipopolysaccharides, VSCs participate in the progression of oral diseases by regulating cellular activities and interfering with the immune response. Hydrogen sulfide (H2S) is a gaseous neurotransmitter primarily produced endogenously and is involved in the regulation of cellular activities. The gas is also among the VSCs produced by oral bacteria. In numerous diseases, H2S have been reported to have dual effects depending on the cell, concentration, and donor used. In oral diseases, high production and subsequent utilization of this gas have been reported. Also, this high production is associated with the progression of oral diseases. In this review, we will discuss the production of H2S in oral cavity, its interaction with cellular activities, and most importantly its role in oral diseases.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Doenças da Boca/patologia , Apoptose , Bactérias/isolamento & purificação , Bactérias/metabolismo , Cistationina gama-Liase/metabolismo , Humanos , Boca/enzimologia , Boca/metabolismo , Boca/microbiologia , Doenças da Boca/metabolismo , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Estresse Oxidativo
11.
Front Bioeng Biotechnol ; 9: 662418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820359

RESUMO

Tissue engineering is an emerging discipline that combines engineering and life sciences. It can construct functional biological structures in vivo or in vitro to replace native tissues or organs and minimize serious shortages of donor organs during tissue and organ reconstruction or transplantation. Organ transplantation has achieved success by using the tissue-engineered heart, liver, kidney, and other artificial organs, and the emergence of tissue-engineered bone also provides a new approach for the healing of human bone defects. In recent years, tissue engineering technology has gradually become an important technical method for dentistry research, and its application in stomatology-related research has also obtained impressive achievements. The purpose of this review is to summarize the research advances of tissue engineering and its application in stomatology. These aspects include tooth, periodontal, dental implant, cleft palate, oral and maxillofacial skin or mucosa, and oral and maxillofacial bone tissue engineering. In addition, this article also summarizes the commonly used cells, scaffolds, and growth factors in stomatology and discusses the limitations of tissue engineering in stomatology from the perspective of cells, scaffolds, and clinical applications.

12.
Biomaterials ; 276: 121041, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343857

RESUMO

While extensive research has demonstrated an interdependent role of osteogenesis and angiogenesis in bone tissue engineering, little is known about how functional blood vessel networks are organized to initiate and facilitate bone tissue regeneration. Building upon the success of a biomimetic composite nanofibrous construct capable of supporting donor progenitor cell-dependent regeneration, we examined the angiogenic response and spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of cranial bone defect repair utilizing high resolution multiphoton laser scanning microscopy (MPLSM) in conjunction with intravital imaging. We demonstrate here that the regenerative vasculature can be specified as arterial and venous capillary vessels based upon endothelial surface markers of CD31 and Endomucin (EMCN), with CD31+EMCN- vessels exhibiting higher flowrate and higher oxygen tension (pO2) than CD31+EMCN+ vessels. The donor osteoblast clusters are uniquely coupled to the sprouting CD31+EMCN+ vessels connecting to CD31+EMCN- vessels. Further analyses reveal differential vascular response and vessel type distribution in healing and non-healing defects, associated with changes of gene sets that control sprouting and morphogenesis of blood vessels. Collectively, our study highlights the key role of spatiotemporal vessel type distribution in bone tissue engineering, offering new insights for devising more effective vascularization strategies for bone tissue engineering.


Assuntos
Nanofibras , Osteogênese , Biomimética , Regeneração Óssea , Neovascularização Fisiológica , Crânio , Engenharia Tecidual
13.
Front Bioeng Biotechnol ; 9: 630055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996777

RESUMO

Alzheimer's disease (AD) is a devastating disease of the aging population characterized by the progressive and slow brain decay due to the formation of extracellular plaques in the hippocampus. AD cells encompass tangles of twisted strands of aggregated microtubule binding proteins surrounded by plaques. Delivering corresponding drugs in the brain to deal with these clinical pathologies, we face a naturally built strong, protective barrier between circulating blood and brain cells called the blood-brain barrier (BBB). Nanomedicines provide state-of-the-art alternative approaches to overcome the challenges in drug transport across the BBB. The current review presents the advances in the roles of nanomedicines in both the diagnosis and treatment of AD. We intend to provide an overview of how nanotechnology has revolutionized the approaches used to manage AD and highlight the current key bottlenecks and future perspective in this field. Furthermore, the emerging nanomedicines for managing brain diseases like AD could promote the booming growth of research and their clinical availability.

14.
J Cell Physiol ; 234(10): 18602-18614, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30912146

RESUMO

Homocysteine (Hcy) is detrimental to bone health in a mouse model of diet-induced hyperhomocysteinemia (HHcy). However, little is known about Hcy-mediated osteoblast dysfunction via mitochondrial oxidative damage. Hydrogen sulfide (H2 S) has potent antioxidant, anti-inflammatory, and antiapoptotic effects. In this study, we hypothesized that the H2 S mediated recovery of osteoblast dysfunction by maintaining mitochondrial biogenesis in Hcy-treated osteoblast cultures in vitro. MC3T3-E1 osteoblastic cells were exposed to Hcy treatment in the presence or absence of an H2 S donor (NaHS). Cell viability, osteogenic differentiation, reactive oxygen species (ROS) production were determined. Mitochondrial DNA copy number, adenosine triphosphate (ATP) production, and oxygen consumption were also measured. Our results demonstrated that administration of Hcy increases the intracellular Hcy level and decreases intracellular H2 S level and expression of the cystathionine ß-synthase/Cystathionine γ-lyase system, thereby inhibiting osteogenic differentiation. Pretreatment with NaHS attenuated Hcy-induced mitochondrial toxicity (production of total ROS and mito-ROS, ratio of mitochondrial fission (DRP-1)/fusion (Mfn-2)) and restored ATP production and mitochondrial DNA copy numbers as well as oxygen consumption in the osteoblast as compared with the control, indicating its protective effects against Hcy-induced mitochondrial toxicity. In addition, NaHS also decreased the release of cytochrome c from the mitochondria to the cytosol, which induces cell apoptosis. Finally, flow cytometry confirmed that NaHS can rescue cells from apoptosis induced by Hcy. Our studies strongly suggest that NaHS has beneficial effects on mitochondrial toxicity, and could be developed as a potential therapeutic agent against HHcy-induced mitochondrial dysfunction in cultured osteoblasts in vitro.


Assuntos
Homocisteína/farmacologia , Sulfeto de Hidrogênio/farmacologia , Mitocôndrias/patologia , Osteoblastos/patologia , Animais , Apoptose/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
15.
Biomaterials ; 182: 279-288, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30142527

RESUMO

Periosteum plays an indispensable role in bone repair and reconstruction. To recapitulate the remarkable regenerative capacity of periosteum, a biomimetic tissue-engineered periosteum (TEP) was constructed via layer-by-layer bottom-up strategy utilizing polycaprolactone (PCL), collagen, and nano-hydroxyapatite composite nanofiber sheets seeded with bone marrow stromal cells (BMSCs). When combined with a structural bone allograft to repair a 4 mm segmental bone defect created in the mouse femur, TEP restored donor-site periosteal bone formation, reversing the poor biomechanics of bone allograft healing at 6 weeks post-implantation. Further histologic analyses showed that TEP recapitulated the entire periosteal bone repair process, as evidenced by donor-dependent formation of bone and cartilage, induction of distinct CD31high type H endothelium, reconstitution of bone marrow and remodeling of bone allografts. Compared to nanofiber sheets without BMSC seeding, TEP eliminated the fibrotic tissue capsule elicited by nanofiber sheets, leading to a marked improvement of osseointegration at the compromised periosteal site. Taken together, our study demonstrated a novel layer-by-layer engineering platform for construction of a versatile biomimetic periosteum, enabling further assembly of a multi-component and multifunctional periosteum replacement for bone defect repair and reconstruction.


Assuntos
Regeneração Óssea , Substitutos Ósseos/química , Células-Tronco Mesenquimais/citologia , Nanofibras/química , Periósteo/fisiologia , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/química , Biomimética , Colágeno/química , Fêmur/citologia , Fêmur/lesões , Fêmur/fisiologia , Fêmur/ultraestrutura , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nanofibras/ultraestrutura , Periósteo/citologia , Poliésteres/química , Engenharia Tecidual/métodos
16.
Biomed Pharmacother ; 102: 1015-1024, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29710518

RESUMO

Prenylation of bioactive natural compounds has been postulated to be able to enhance the utilization rate and affinity of the compounds with cell membranes, thus promote their bioactivities. Coumestrol, isolated from Medicago sativa, has been known as a phytoestrogen which has bone health benefits. In our previous work, psoralidin, a prenylated coumestrol, was proved to have a higher ability than coumestrol to promote bone formation and to attenuate resorption in vitro. However, it remains to be investigated whether psoralidin will have stronger bone health benefits than coumestrol. In the current study, psoralidin was isolated from Psoralea corylifolia L. and the osteotropic activities of coumestrol and psoralidin were compared in ovariectomized (OVX) rats. Both coumestrol and psoralidin were found to suppress OVX-induced bone loss in vivo, as shown by improved total bone mineral content (t-BMC) or density (t-BMD) and mineral apposition rate, bone biomechanical properties, microstructure and trabecular bone formation, enhanced osteogenic differentiation but suppressed adipogenic differentiation of bone marrow stromal cells (BMSCs), and activation of PI3K/Akt axis and downstream factors such as GSK3ß/ß-catenin and Nrf-2/HO-1. However, psoralidin was shown to have higher activities than coumestrol in the above measurements/indices. Our findings demonstrate that psoralidin, as a novel anti-osteoporosis candidate, could suppress bone loss in OVX rats and have better osteoprotective effects than coumestrol, which may be related to the presence of the isopentenyl group in psoralidin.


Assuntos
Benzofuranos/farmacologia , Cumarínicos/farmacologia , Cumestrol/química , Cumestrol/farmacologia , Osteogênese/efeitos dos fármacos , Pentanos/química , Fosfatidilinositol 3-Quinases/metabolismo , Substâncias Protetoras/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adipogenia/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Benzofuranos/química , Biomarcadores/sangue , Biomarcadores/urina , Fenômenos Biomecânicos/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Calcificação Fisiológica , Cumarínicos/química , Estradiol/farmacologia , Feminino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Minerais/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/enzimologia , Ovariectomia , Oxirredução , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Útero/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
17.
Biomed Pharmacother ; 92: 1073-1084, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28618652

RESUMO

Bone homeostasis requires a balance between the bone formation of osteoblasts and bone resorption of osteoclasts to maintain ideal bone mass and bone quality. An imbalance in bone remodeling processes results in bone metabolic disorders such as osteoporosis. Hydrogen sulfide (H2S), a gasotransmitter, has attracted the focus of many researchers due to its multiple physiological functions. It has been implicated in anti-inflammatory, vasodilatory, angiogenic, cytoprotective, anti-oxidative and anti-apoptotic mechanisms. H2S has also been shown to exert osteoprotective activity through its anti-inflammatory and anti-oxidative effects. However, the underlying molecular mechanisms by which H2S mitigates bone diseases are not completely understood. Experimental evidence suggests that H2S may regulate signaling pathways by directly influencing a gene in the cascade or interacting with some other gasotransmitter (carbon monoxide or nitric oxide) or both. MicroRNAs (miRNAs) are short non-coding RNAs which regulate gene expression by targeting, binding and suppressing mRNAs; thus controlling cell fate. Certainly, bone remodeling is also regulated by miRNAs expression and has been reported in many studies. MicroRNAs also regulate H2S biosynthesis. The inter-regulation of microRNAs and H2S opens a new possibility for exploring the H2S-microRNA crosstalk in bone diseases. However, the relationship between miRNAs, bone development, and H2S is still not well explained. This review focuses on miRNAs and their roles in regulating bone remodeling and possible mechanisms behind H2S mediated bone loss inhibition, H2S-miRNAs crosstalk in relation to the pathophysiology of bone remodeling, and future perspectives for miRNA-H2S as a therapeutic agent for bone diseases.


Assuntos
Doenças Ósseas/metabolismo , Remodelação Óssea , Osso e Ossos/metabolismo , Sulfeto de Hidrogênio/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Animais , Doenças Ósseas/genética , Doenças Ósseas/fisiopatologia , Doenças Ósseas/terapia , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiopatologia , Regulação da Expressão Gênica , Terapia Genética/métodos , Humanos , Sulfeto de Hidrogênio/uso terapêutico , MicroRNAs/genética , MicroRNAs/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
18.
Eur J Pharmacol ; 801: 62-71, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28283388

RESUMO

Traditional Chinese medicines (TCM) have been proven to prevent osteoporosis, but their clinical applications are not widely recognized due to their complicated ingredients. Psoralidin, a prenylated coumestan, has been reported to prevent bone loss of ovariectomized rats, but detailed mechanisms are still not clear. In current study, we found that both psoralidin and coumestrol promoted osteoblast proliferation and differentiation, as evidenced by improvements in cell proliferation and alkaline phosphatase activity; increased formation of ALP colonies and calcified nodules; enhanced secretion of collagen-I, BMP-2, osteocalcin and osteopontin; and stimulation of the expression of IGF-1, ß-catenin, Runx-2, Osterix, and OPG, as well as the mRNA ratio of OPG/RANKL, while significantly decreasing the expression of RANKL. In addition, both psoralidin and coumestrol inhibited osteoclast formation and osteoclastic bone resorption, as demonstrated by the lower tartrate-resistant acid phosphatase activity and smaller area, with fewer resorption pits formed. Interestingly, psoralidin showed much stronger effects than coumestrol at enhancing osteoblast proliferation/differentiation or inhibiting osteoclast differentiation and bone resorption. Moreover, we found that both psoralidin and coumestrol suppressed COX-2 and ROS production in rat osteoblastic calvarias cells, and psoralidin showed stronger effects than coumestrol. Furthermore, we detected that by blocking estrogen receptors with ICI 182.780 (an estrogen receptor antagonist), the osteoprotective effects of psoralidin and coumestrol were also blocked. Our findings demonstrated that psoralidin and coumestrol exert their bone-protective effects by enhancing bone formation of osteoblasts and inhibiting bone resorption of osteoclasts. These roles might be mediated by their antioxidant activity and transduced through estrogen receptor signaling.


Assuntos
Benzofuranos/farmacologia , Reabsorção Óssea/tratamento farmacológico , Cumarínicos/química , Cumarínicos/farmacologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Prenilação , Fosfatase Alcalina/metabolismo , Animais , Benzofuranos/química , Benzofuranos/uso terapêutico , Reabsorção Óssea/complicações , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cumarínicos/uso terapêutico , Relação Dose-Resposta a Droga , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoporose/complicações , Ratos , Ratos Sprague-Dawley , Crânio/patologia
19.
Brain Res Bull ; 130: 251-256, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28212849

RESUMO

Alcohol is one of the most socially accepted addictive drugs in modern society. Its abuse affects virtually all organ systems with the central nervous system (CNS) being particularly vulnerable to excessive alcohol exposure. Alcohol exposure also causes profound damage to both the adult and developing brain. Excessive alcohol consumption induces numerous pathophysiological stress responses, one of which is the endoplasmic reticulum (ER) stress response. Potential mechanisms that trigger the alcohol induced ER stress response are either directly or indirectly related to alcohol metabolism, which include toxic levels of acetaldehyde and homocysteine, oxidative stress and abnormal epigenetic modifications. Growing evidence suggests that H2S is the most recently recognized gasotransmitter with tremendous physiological protective functions against oxidative stress induced neurotoxicity. In this review we address the alcohol induced oxidative stress mediated ER stress and the role of H2S in its mitigation in the context of alcohol neurotoxicity. Interruption of ER stress triggers is anticipated to have therapeutic benefits for alcohol mediated diseases and disorders.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Estresse do Retículo Endoplasmático , Etanol/toxicidade , Sulfeto de Hidrogênio/metabolismo , Animais , Encéfalo/metabolismo , Etanol/metabolismo , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais
20.
Bone Rep ; 5: 262-273, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28580395

RESUMO

Estrogen deficiency is one of the major causes of osteoporosis in postmenopausal women. Drynariae Rhizoma is a widely used traditional Chinese medicine for the treatment of bone diseases. In this study, we investigated the therapeutic effects of the total Drynariae Rhizoma flavonoids (DRTF) on estrogen deficiency-induced bone loss using an ovariectomized rat model and osteoblast-like MC3T3-E1 cells. Our results indicated that DRTF produced osteo-protective effects on the ovariectomized rats in terms of bone loss reduction, including decreased levels of bone turnover markers, enhanced biomechanical femur strength and trabecular bone microarchitecture deterioration prevention. In vitro experiments revealed that the actions of DRTF on regulating osteoblastic activities were mediated by the estrogen receptor (ER) dependent pathway. Our data also demonstrated that DRTF inhibited osteoclastogenesis via up-regulating osteoprotegrin (OPG), as well as down-regulating receptor activator of NF-κB ligand (RANKL) expression. In conclusion, this study indicated that DRTF treatment effectively suppressed bone mass loss in an ovariectomized rat model, and in vitro evidence suggested that the effects were exerted through actions on both osteoblasts and osteoclasts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA