Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Gene ; 876: 147515, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37247796

RESUMO

Ovarian cancer (OC) is a malignant gynecologic tumor with high morbidity and mortality. As a newly discovered mode of programmed cell death, ferroptosis has been involved in various pathological processes of kinds of tumors in recent years. Aldehyde dehydrogenase 3 family member A2 (ALDH3A2) catalyzes the oxidation of long-chain aliphatic aldehydes to fatty acid. ALDH3A2 has been shown to be associated with ferroptosis in acute myeloid leukemia (AML), but the mechanism remains unclear. In this study, we analyzed the TCGA and GTEx databases and showed that high ALDH3A2 expression predicted poor prognosis in ovarian cancer. Further studies found that knockout or overexpression of ALDH3A2 correspondingly increased or attenuated the ferroptosis sensitivity of ovarian cancer cells. And sequencing revealed that ALDH3A2 knockout led to the activation of lipid metabolic, GSH metabolic, phospholipid metabolic, and aldehyde metabolic pathways, suggesting that ALDH3A2 induced changes in the sensitivity of ovarian cancer cells to ferroptosis by affecting these metabolic processes. Our results provide a new promising therapeutic strategy for the treatment of OC.


Assuntos
Ferroptose , Neoplasias Ovarianas , Humanos , Feminino , Apoptose , Aldeídos
2.
Sci Rep ; 13(1): 8335, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221238

RESUMO

UQCRFS1 has been reported to be highly expressed in gastric and breast cancer, but the mechanism remains unclear. The prognosis and biological functions of UQCRFS1 in ovarian cancer (OC) have not been evaluated. The expression of UQCRFS1 in EOC was detected by GEPIA and HPA websites, and the prognosis value was investigated by Kaplan-Meier analysis. Then the correlation between the UQCRFS1 gene and tumor-related signature were analyzed by Spearman correlation analysis and rank sum test. Subsequently, the expression of the UQCRFS1 gene in four ovarian cancer cell lines was detected. A2780 and OVCAR8 with the highest expression of UQCRFS1 were selected in the following biological experiments. Cell proliferation was detected by CCK8 assay, cell cycle and apoptosis were determined by flow cytometry, reactive oxygen species (ROS) production was detected by DCFH-DA, DNA damage gene mRNA expression was analyzed by RT-PCR, and AKT/mTOR pathway protein expression were also examined by western blot after siRNA transfection. We found that UQCRFS1 was high-expression in EOC and associated with poor prognosis. Spearman correlation analysis revealed that the high expression of UQCRFS1 is associated with the cell cycle, apoptosis, oxidative phosphorylation, and DNA damage. Further studies found that knockdown of UQCRFS1 cells reduced cell proliferation, cell cycle arrest at the G1 phase, increased proportion of apoptosis, ROS production, and expression of DNA damage genes, inhibited ATK/mTOR pathway. The study suggested that UQCRFS1 may be a candidated target for diagnosis and treatments in OC.


Assuntos
Proteínas Ferro-Enxofre , Neoplasias Ovarianas , Humanos , Feminino , Prognóstico , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio , Biomarcadores
3.
Front Microbiol ; 14: 1085176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756351

RESUMO

The diatom Skeletonema costatum and the haptophyte Phaeocystis globosa often form blooms in the coastal waters of the South China Sea. Skeletonema costatum commonly dominates in nutrient enrichment coastal waters, whereas P. globosa starts flourishing after the diatom blooms when phosphorus (P) is limited. Therefore, P limitation was proposed to be a critical factor affecting diatom-haptophyte transition. To elucidate the tolerance to P limitation in P. globosa compared with S. costatum, the effect of P limitation on their photosystem II (PSII) performance was investigated and their photosynthesis acclimation strategies in response to P limitation were evaluated. P limitation did not affect the growth of P. globosa over 7 days but decreased it for S. costatum. Correspondingly, the PSII activity of S. costatum was significantly inhibited by P limitation. The decline in PSII activity in S. costatum under P limitation was associated with the impairment of the oxygen-evolving complex (the donor side of PSII), the hindrance of electron transport from QA - to QB (the acceptor side of PSII), and the inhibition of electron transport to photosystem I (PSI). The 100% decrease in D1 protein level of S. costatum after P limitation for 6 days and PsbO protein level after 2 days of P limitation were attributed to its enhanced photoinhibition. In contrast, P. globosa maintained its photosynthetic activity with minor impairment of the function of PSII. With accelerated PSII repair and highly increased non-photochemical quenching (NPQ), P. globosa can avoid serious PSII damage under P limitation. On the contrary, S. costatum decreased its D1 restoration under P limitation, and the maximum NPQ value in S. costatum was only one-sixth of that in P. globosa. The present work provides extensive evidence that a close interaction exists between the tolerance to P limitation and photosynthetic responses of S. costatum and P. globosa.

4.
Plant Cell ; 33(2): 358-380, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33793852

RESUMO

Phycobilisomes (PBSs), the principal cyanobacterial antenna, are among the most efficient macromolecular structures in nature, and are used for both light harvesting and directed energy transfer to the photosynthetic reaction center. However, under unfavorable conditions, excess excitation energy needs to be rapidly dissipated to avoid photodamage. The orange carotenoid protein (OCP) senses light intensity and induces thermal energy dissipation under stress conditions. Hence, its expression must be tightly controlled; however, the molecular mechanism of this regulation remains to be elucidated. Here, we describe the discovery of a posttranscriptional regulatory mechanism in Synechocystis sp. PCC 6803 in which the expression of the operon encoding the allophycocyanin subunits of the PBS is directly and in an inverse fashion linked to the expression of OCP. This regulation is mediated by ApcZ, a small regulatory RNA that is derived from the 3'-end of the tetracistronic apcABC-apcZ operon. ApcZ inhibits ocp translation under stress-free conditions. Under most stress conditions, apc operon transcription decreases and ocp translation increases. Thus, a key operon involved in the collection of light energy is functionally connected to the expression of a protein involved in energy dissipation. Our findings support the view that regulatory RNA networks in bacteria evolve through the functionalization of mRNA 3'-UTRs.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Luz , RNA Bacteriano/metabolismo , Synechocystis/metabolismo , Synechocystis/efeitos da radiação , Proteínas de Bactérias/metabolismo , Sequência de Bases , Modelos Biológicos , Mutação/genética , Óperon/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Synechocystis/genética
5.
Plant Cell ; 31(4): 911-931, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30852554

RESUMO

Photosynthetic organisms must sense and respond to fluctuating environmental conditions in order to perform efficient photosynthesis and to avoid the formation of dangerous reactive oxygen species. The excitation energy arriving at each photosystem permanently changes due to variations in the intensity and spectral properties of the absorbed light. Cyanobacteria, like plants and algae, have developed a mechanism, named "state transitions," that balances photosystem activities. Here, we characterize the role of the cytochrome b 6 f complex and phosphorylation reactions in cyanobacterial state transitions using Synechococcus elongatus PCC 7942 and Synechocystis PCC 6803 as model organisms. First, large photosystem II (PSII) fluorescence quenching was observed in State II, a result that does not appear to be related to energy transfer from PSII to PSI (spillover). This membrane-associated process was inhibited by betaine, Suc, and high concentrations of phosphate. Then, using different chemicals affecting the plastoquinone pool redox state and cytochrome b 6 f activity, we demonstrate that this complex is not involved in state transitions in S. elongatus or Synechocystis PCC6803. Finally, by constructing and characterizing 21 protein kinase and phosphatase mutants and using chemical inhibitors, we demonstrate that phosphorylation reactions are not essential for cyanobacterial state transitions. Thus, signal transduction is completely different in cyanobacterial and plant (green alga) state transitions.


Assuntos
Cianobactérias/metabolismo , Complexo Citocromos b6f/metabolismo , Fosforilação , Fotossíntese/fisiologia , Synechococcus/metabolismo , Synechocystis/metabolismo
6.
Adv Exp Med Biol ; 1080: 75-96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30091092

RESUMO

As the oldest oxygenic photoautotrophic prokaryotes, cyanobacteria have outstanding advantages as the chassis cell in the research field of synthetic biology. Cognition of photosynthetic mechanism, including the photoresponse mechanism under high-light (HL) conditions, is important for optimization of the cyanobacteria photoautotrophic chassis for synthesizing biomaterials as "microbial cell factories." Cyanobacteria are well-established model organisms for the study of oxygenic photosynthesis and have evolved various acclimatory responses to HL conditions to protect the photosynthetic apparatus from photodamage. Here, we reviewed the latest progress in the mechanism of HL acclimation in cyanobacteria. The subsequent acclimatory responses and the corresponding molecular mechanisms are included: (1) acclimatory responses of PSII and PSI; (2) the degradation of phycobilisome; (3) induction of the photoprotective mechanisms such as state transitions, OCP-dependent non-photochemical quenching, and the induction of HLIP family; and (4) the regulation mechanisms of the gene expression under HL.


Assuntos
Aclimatação/fisiologia , Cianobactérias , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Cianobactérias/genética , Cianobactérias/metabolismo , Complexo de Proteína do Fotossistema I/biossíntese , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/biossíntese , Complexo de Proteína do Fotossistema II/genética
7.
Front Microbiol ; 9: 786, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740417

RESUMO

Pili are found on the surface of many bacteria and play important roles in cell motility, pathogenesis, biofilm formation, and sensing and reacting to environmental changes. Cell motility in the model cyanobacterium Synechocystis sp. PCC 6803 relies on expression of the putative pilA9-pilA10-pilA11-slr2018 operon. In this study, we identified the antisense RNA PilR encoded in the noncoding strand of the prepilin-encoding gene pilA11. Analysis of overexpressor [PilR(+)] and suppressor [PilR(-)] mutant strains revealed that PilR is a direct negative regulator of PilA11 protein. Although overexpression of PilR did not affect cell growth, it greatly reduced levels of pilA11 mRNA and protein and decreased both the thickness and number of pili, resulting in limited cell motility and small, distinct colonies. Suppression of PilR had the opposite effect. A hypothetical model on the regulation of pilA9-pilA10-pilA11-slr2018 operon expression by PilR was proposed. These results add a layer of complexity to the mechanisms controlling pilA11 gene expression and cell motility, and provide novel insights into how sRNA and the intergenic region secondary structures can work together to discoordinatly regulate target gene in an operon in cyanobacterium.

8.
Front Microbiol ; 9: 3250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30666245

RESUMO

Nitrogen is an essential nutrient element. Ammonium nitrogen, one of the most common nitrogen sources, is found in various habitats, especially wastewater. However, excessive amounts of ammonium nitrogen can be toxic to phytoplankton, higher plants, fish, and other animals, and microorganisms. In this study, we explored the tolerance of green algae to ammonium nitrogen using 10 Chlorella strains. High concentrations of ammonium nitrogen directly inhibited the growth of Chlorella, but the degree of inhibition varied by strain. With the EC50 of 1.6 and 0.4 g L-1, FACHB-1563 and FACHB-1216, respectively had the highest and lowest tolerance to ammonium nitrogen among all strains tested, suggesting that FACHB-1563 could potentially be used to remove excess ammonium nitrogen from wastewater in bioremediation efforts. Two strains with the highest and lowest tolerance to ammonium nitrogen were selected to further explore the inhibitory effect of ammonium nitrogen on Chlorella. Analysis of chlorophyll fluorescence, oxygen evolution, and photosynthesis proteins via immunoblot showed that photosystem II (PSII) had been damaged when exposed to high levels of ammonium nitrogen, with the oxygen-evolving complex as the primary site, and electron transport from Q A - to QB was subsequently inhibited by this treatment. A working model of ammonium nitrogen competition between N assimilation and PSII damage is proposed to elucidate that the assimilation rate of ammonium nitrogen by algae strains determines the tolerance of cells to ammonium nitrogen toxicity.

9.
Biotechnol Biofuels ; 10: 153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28630648

RESUMO

Microalgae are a promising feedstock for biofuel production. Microalgal metabolic pathways are heavily influenced by environmental factors. For instance, lipid metabolism can be induced by nitrogen-limiting conditions. However, the underlying mechanisms of lipid biosynthesis are unclear. In this study, we analyzed the global metabolic profiles of three genetically closely related Chlorella strains (C1, C2, and C3) with significant differences in lipid productivity to identify the contributions of key metabolic pathways to lipid metabolism. We found that nitrogen obtained from amino acid catabolism was assimilated via the glutamate-glutamine pathway and then stored as amino acids and intermediate molecules (particularly proline, alanine, arginine, succinate, and gamma-aminobutyrate) via the corresponding metabolic pathways, which led to carbon-nitrogen disequilibrium. Excess carbon obtained from photosynthesis or glycolysis was re-distributed into carbon-containing compounds, such as glucose-6-phosphate, fructose-6-phosphate, phosphoenolpyruvate, lactate, citrate, 3-hydroxybutyrate, and leucine, and then diverted into lipid metabolism for the production of storage lipids via the gamma-aminobutyrate pathway, glycolysis, and the tricarboxylic acid cycle. These results were substantiated in the model green alga Chlamydomonas reinhardtii by analyzing various mutants deficient in glutamate synthase/NADH-dependent, glutamate synthase/Fd-dependent, glutamine synthetase, aspartate aminotransferase, alanine aminotransferase, pyruvate kinase, and citrate synthase. Our study suggests that not only carbon but also nitrogen assimilation and distribution pathways contribute to lipid biosynthesis. Furthermore, these findings may facilitate genetic engineering efforts to enhance microalgal biofuel production.

10.
Front Microbiol ; 8: 231, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261186

RESUMO

Small regulatory RNAs (sRNAs) function as transcriptional and post-transcriptional regulators of gene expression in organisms from all domains of life. Cyanobacteria are thought to have developed a complex RNA-based regulatory mechanism. In the current study, by genome-wide analysis of differentially expressed small RNAs in Synechocystis sp. PCC 6803 under high light conditions, we discovered an asRNA (RblR) that is 113nt in length and completely complementary to its target gene rbcL, which encodes the large chain of RuBisCO, the enzyme that catalyzes carbon fixation. Further analysis of the RblR(+)/(-) mutants revealed that RblR acts as a positive regulator of rbcL under various stress conditions; Suppressing RblR adversely affects carbon assimilation and thus the yield, and those phenotypes of both the wild type and the overexpressor could be downgraded to the suppressor level by carbonate depletion, indicated a regulatory role of RblR in CO2 assimilation. In addition, a real-time expression platform in Escherichia coli was setup and which confirmed that RblR promoted the translation of the rbcL mRNA into the RbcL protein. The present study is the first report of a regulatory RNA that targets RbcL in Synechocystis sp. PCC 6803, and provides strong evidence that RblR regulates photosynthesis by positively modulating rbcL expression in Synechocystis.

11.
Mol Plant ; 10(1): 143-154, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27777125

RESUMO

Iron stress-induced protein A (IsiA), a major chlorophyll-binding protein in the thylakoid membrane, is significantly induced under iron deficiency conditions. Using immunoblot analysis and 77 K fluorescence spectroscopy combined with sucrose gradient fractionation, we monitored dynamic changes of IsiA-containing complexes in Synechocystis sp. PCC 6803 during exposure to long-term iron deficiency. Within 3 days of exposure to iron deficiency conditions, the initially induced free IsiA proteins preferentially conjugated to PS I trimer to form IsiA18-PS I trimers, which serve as light energy collectors for efficiently transmitting energy to PS I. With prolonged iron deficiency, IsiA proteins assembled either into IsiA aggregates or into two other types of IsiA-PS I supercomplexes, namely IsiA-PS I high fluorescence supercomplex (IHFS) and IsiA-PS I low fluorescence supercomplex (ILFS). Further analysis revealed a role for IsiA as an energy dissipater in the IHFS and as an energy collector in the ILFS. The trimeric structure of PS I mediated by PsaL was found to be indispensable for the formation of IHFS/ILFS. Dynamic changes in IsiA-containing complexes in cyanobacteria during long-term iron deficiency may represent an adaptation to iron limitation stress for flexible light energy distribution, which balances electron transfer between PS I and PS II, thus minimizing photooxidative damage.


Assuntos
Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Synechocystis/metabolismo , Immunoblotting , Espectrometria de Fluorescência
12.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27864175

RESUMO

Nitrite, a common form of inorganic nitrogen (N), can be used as a nitrogen source through N assimilation. However, high levels of nitrite depress photosynthesis in various organisms. In this study, we investigated which components of the photosynthetic electron transfer chain are targeted by nitrite stress in Synechocystis sp. strain PCC 6803 cells. Measurements of whole-chain and photosystem II (PSII)-mediated electron transport activities revealed that high levels of nitrite primarily impair electron flow in PSII. Changes in PSII activity in response to nitrite stress occurred in two distinct phases. During the first phase, which occurred in the first 3 h of nitrite treatment, electron transfer from the primary quinone acceptor (QA) to the secondary quinone acceptor (QB) was retarded, as indicated by chlorophyll (Chl) a fluorescence induction, S-state distribution, and QA- reoxidation tests. In the second phase, which occurred after 6 h of nitrite exposure, the reaction center was inactivated and the donor side of photosystem II was inhibited, as revealed by changes in Chl fluorescence parameters and thermoluminescence and by immunoblot analysis. Our data suggest that nitrite stress is highly damaging to PSII and disrupts PSII activity by a stepwise mechanism in which the acceptor side is the initial target. IMPORTANCE In our previous studies, an alga-based technology was proposed to fix the large amounts of nitrite that are released from NOX-rich flue gases and proved to be a promising industrial strategy for flue gas NOX bioremediation (W. Chen et al., Environ Sci Technol 50:1620-1627, 2016, https://doi.org/10.1021/acs.est.5b04696; X. Zhang et al., Environ Sci Technol 48:10497-10504, 2014, https://doi.org/10.1021/es5013824). However, the toxic effects of high concentrations of nitrite on algal cells remain obscure. The analysis of growth rates, photochemistry, and protein profiles in our study provides important evidence that the inhibition by nitrite occurs in two phases: in the first phase, electron transfer between QA- and QB is retarded, whereas in the second, the donor side of PSII is affected. This is an excellent example of investigating the "early" inhibitory effects (i.e., within the first 6 h) on the PSII electron transfer chain in vivo This paper provides novel insights into the mechanisms of nitrite inhibition of photosynthesis in an oxygenic phototrophic cyanobacterium.


Assuntos
Nitritos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/fisiologia , Transporte de Elétrons , Estresse Fisiológico , Synechocystis/genética
13.
Mol Microbiol ; 102(4): 738-751, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27555564

RESUMO

Thylakoid formation1 protein (Thf1) is a multifunctional protein that is conserved in all photosynthetic organisms. In this study, we used the model cyanobacterium Synechococcus sp. PCC7942 (hereafter Synechococcus) to show that the level of Thf1 is altered in response to various stress conditions. Although this protein has been reported to be involved in thylakoid formation, the thylakoid membrane in the thf1 deletion strain (ΔThf1) was not affected. Compared with the WT, ΔThf1 showed reduced PS II activity, with increased levels of D1 under high light (HL) conditions, which was resulted from blocked D1 degradation by the FtsH protease and thus inhibits PS II repair. PS I was found to be more seriously affected than PS II in ΔThf1, even under low light conditions, suggesting that PS I damage could be the primary effect of thf1 deletion in Synechococcus. Further analysis revealed that the ΔThf1 mutant had a lower PS I subunit content and lower PS I stability under HL conditions. Further sucrose gradient fractionation of the membrane protein complexes and crosslinking and immunoblot analysis indicated that Thf1 interacts with PS I. Together, our results reveal that Thf1 interacts with PS I and thereby stabilizes PS I in Synechococcus.


Assuntos
Complexo de Proteína do Fotossistema I/metabolismo , Synechococcus/metabolismo , Proteínas das Membranas dos Tilacoides/metabolismo , Sequência de Aminoácidos , Luz , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo
14.
Plant Cell Physiol ; 56(10): 1997-2013, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26315596

RESUMO

Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a model cyanobacterium and has been used extensively for studies concerned with photosynthesis and environmental adaptation. Although dozens of protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted, only a few substrate proteins are known in Synechocystis. In this study, we report 194 in vivo phosphorylation sites from 149 proteins in Synechocystis, which were identified using a combination of peptide pre-fractionation, TiO(2) enrichment and liquid chromatograpy-tandem mass spectrometry (LC-MS/MS) analysis. These phosphorylated proteins are implicated in diverse biological processes, such as photosynthesis. Among all identified phosphoproteins involved in photosynthesis, the ß subunits of phycocyanins (CpcBs) were found to be phosphorylated on Ser22, Ser49, Thr94 and Ser154. Four non-phosphorylated mutants were constructed by using site-directed mutagenesis. The in vivo characterization of the cpcB mutants showed a slower growth under high light irradiance and displayed fluorescence quenching to a lower level and less efficient energy transfer inside the phycobilisome (PBS). Notably, the non-phosphorylated mutants exhibited a slower state transition than the wild type. The current results demonstrated that the phosphorylation status of CpcBs affects the energy transfer and state transition of photosynthesis in Synechocystis. This study provides novel insights into the molecular mechanisms of protein phosphorylation in the regulation of photosynthesis in cyanobacteria and may facilitate the elucidation of the entire regulatory network by linking kinases to their physiological substrates.


Assuntos
Ficocianina/metabolismo , Synechocystis/metabolismo , Fosforilação/fisiologia , Fotossíntese/fisiologia , Ficocianina/química
15.
Sci Rep ; 5: 9480, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25820628

RESUMO

Synechocystis sp. PCC 6803 is a model cyanobacterium extensively used to study photosynthesis. Here we reveal a novel high light-inducible carotenoid-binding protein complex (HLCC) in the thylakoid membranes of Synechocystis PCC 6803 cells exposed to high intensity light. Zeaxanthin and myxoxanthophyll accounted for 29.8% and 54.8%, respectively, of the carotenoids bound to the complex. Using Blue-Native PAGE followed by 2D SDS-PAGE and mass spectrometry, we showed that the HLCC consisted of Slr1128, IsiA, PsaD, and HliA/B. We confirmed these findings by SEAD fluorescence cross-linking and anti-PsaD immuno-coprecipitation analyses. The expression of genes encoding the protein components of the HLCC was enhanced by high light illumination and artificial oxidative stress. Deletion of these proteins resulted in impaired state transition and increased sensitivity to oxidative and/or high light stress, as indicated by increased membrane peroxidation. Therefore, the HLCC protects thylakoid membranes from extensive photooxidative damage, likely via a mechanism involving state transition.


Assuntos
Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Complexos Multiproteicos/metabolismo , Fotossíntese , Synechocystis/fisiologia , Tilacoides/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Ferro/metabolismo , Luz , Mutação , Oxirredução , Estresse Oxidativo , Ligação Proteica , Synechocystis/efeitos da radiação
16.
PLoS One ; 9(7): e101781, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24992190

RESUMO

Congenital cataract (CC) is the primary cause of treatable childhood blindness. Population-based assessments of prevalence and surgery age of CC, which are critical for improving management strategies, have been unavailable in China until now. We conducted a hospital-based, cross-sectional study of the hospital charts of CC patients younger than 18 years old from January 2005 to December 2010 at Zhongshan Ophthalmic Center (ZOC) in Guangzhou, China. Residence, gender, age at surgery, hospitalization time, and the presence of other ocular abnormalities were extracted and statistically analyzed in different subgroups. The search identified 1314 patients diagnosed with CC from a total of 136154 hospitalizations, which accounted for 2.39% of all the cataract in-patients and 1.06% of the total in-patients over the six-year study period. Of the identified CC patients, 9.2% had ≥ 2 hospitalizations due to the necessity of additional surgeries, with a total ratio of boys to girls of 1.75 ∶ 1. Based on a subgroup analysis according to age, patients 2-6 years old constituted the highest proportion (29.22%) of all hospitalized CC patients, and those 13-18 years old constituted the lowest proportion (13.47%) of the total number. The average age at surgery was 27.62 ± 23.36 months, but CC patients ≤ 6 years old (especially ≤ 6 months old) became increasingly prevalent throughout the 6-year study period. A total of 276 cases (20.93%) of CC were associated with one or more other ocular abnormalities, the highest incidence rates were observed for exotropia (6.24%), nystagmus (6.16%), and refractive error (3.65%). In conclusion, CC patients accounted for 2.39% of all cataract in-patients in a review of 6 years of hospitalization charts from ZOC. The age at the time of surgery decreased over the 6-year study period, which probably reflects the continuing improvement of public awareness of children's eye care in China.


Assuntos
Extração de Catarata , Catarata/congênito , Catarata/epidemiologia , Adolescente , Catarata/complicações , Extração de Catarata/estatística & dados numéricos , Extração de Catarata/tendências , Criança , Pré-Escolar , China/epidemiologia , Estudos Transversais , Exotropia/epidemiologia , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Nistagmo Congênito/epidemiologia , Prevalência , Erros de Refração/epidemiologia
17.
PLoS One ; 8(7): e69867, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922832

RESUMO

Monitoring intraocular pressure (IOP) is essential for pediatric cataract treatment but always difficult due to lack of cooperation in young children. We present the baseline characteristics and the first-year results of a long-term prospective cohort study, which are aimed to determine the relationship of the incidence of ocular hypertension (OH) in children after cataract surgery during the first-year period and the risk of developing late-onset glaucoma. Children were included with the following criteria: they were ≤10 years old and scheduled to undergo cataract surgery with/without intraocular lens implantation; they were compliant with our follow-up protocol, which included monitoring IOP using a Tono-Pen under sedation or anesthesia. Incidence of OH, peak OH value, OH onset time and OH duration within a 12-month period following surgery were measured. In brief, 206 patients (379 eyes) were included and OH developed in 66 of 379 (17.4%) eyes. The mean follow-up period was 14.0±3.2 months (median, 12 months; range, 10-16 months). Moreover, 33 of 196 (16.8%) aphakic eyes and 33 of 183 (18.0%) IOL eyes were diagnosed with OH. The peak OH onset times were at 1-week (34/66, 51.5%) and 1-month (14/66, 21.2%) appointments postsurgery. The peak IOP value in the OH eyes was 29.9±7.5 mmHg (median, 29 mmHg; range, 21-48 mmHg). The duration of OH was 30.9±31.2 days (median, 30 days; range, 3-150 days). OH recurred in 13 eyes with a history of OH diagnosed within 1 month postsurgery (13/54, 24.1%), which needed temporary or long term use of antiglaucoma medications. In conclusion, the incidence of OH in children after cataract surgery was 17.4% during the first-year period. Children who have suffered elevated IOP in the first year after cataract surgery should be followed closely to determine if there is an increased risk of developing late-onset glaucoma.


Assuntos
Extração de Catarata/efeitos adversos , Hipertensão Ocular/fisiopatologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino
18.
BMC Ophthalmol ; 13(1): 25, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23802511

RESUMO

BACKGROUND: Eye diseases with increasing mortality are common health problems that affect people of all ages and demographic backgrounds. In this study, we study the publication characteristics in international ophthalmic journals of the US, the UK, Germany, Australia, Japan, and China. METHODS: Articles published in 53 ophthalmic journals from 2000 to 2011 were retrieved from the PubMed database. We recorded the number of articles published each year, analyzed the publication type, and evaluated the accumulated and average impact factors (IFs), and the distribution of articles in ophthalmic journals in relation to IFs. The characteristics of publication outputs from China and other top-ranking countries were compared. RESULTS: The total number of articles increased significantly during the past 12 years, with an increase of 51.0%. The growth in the annual number of articles from the US, the UK, Australia, and China showed a significantly positive trend. Publications from the US exceeded those from any other country and had the highest IFs, largest number of total citations of articles, and the most articles published in leading ophthalmic journals. During the past 12 years, China contributed 3.5% of the total publications, and the number of Chinese articles showed a more than 6-fold increase (from 99 to 605, R2 =0.947, P<0.001). The numbers of IFs and citations of articles originating in China were mostly lower than for other top-ranking counties. CONCLUSIONS: Research on ophthalmic journals has maintained an upward growing trend from 2000 to 2011. Chinese ophthalmology research has developed rapidly, but the gap still exists between China and other top-ranking countries for the advanced level of research.


Assuntos
Oftalmologia , Publicações/tendências , Austrália , China , Europa (Continente) , Humanos , Japão
19.
Eye Sci ; 28(2): 95-102, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24396964

RESUMO

Congenital cataract is the main cause of blindness in children, with significantly varying treatment effects. The development of axial length is an important factor that affects the prognosis of these children. However, when compared with the eyes of normal children, the mechanism of growth of the axial length is so complicated that the reported findings differ significantly in terms of the measuring apparatus, assessment methods, and statistical outcome, making the rule of axial length development still unclear. In this paper, we first review the process of axial length development in normal healthy children and compare different hypotheses about certain factors that could affect the development of axial length. The results of some current research about the characteristics of axial length development in congenital cataract children are then reviewed. Lastly, the advantages and disadvantages of current axial length measurements methods are compared and analyzed. The purpose of this review is to improve our understanding of the complexity and importance of axial length development and to suggest better use of axial length monitoring measurements in congenital cataract children for pediatric ophthalmologists, with the hope of offering assistance that will enhance long-term therapeutic effects for these children.


Assuntos
Comprimento Axial do Olho/crescimento & desenvolvimento , Catarata/congênito , Cegueira/etiologia , Catarata/fisiopatologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Prognóstico
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 28(9): 960-3, 2012 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-22980662

RESUMO

AIM: To generate monoclonal antibodies (mAbs) against mucin 16 using purified recombinant protein of human mucin 16 N terminus with His tag (His-mucin 16N) as the antigen. METHODS: Mucin 16 N terminus was cloned into a prokaryotic expression vector pET-32. His-mucin 16N was then expressed in E.coli and purified by the affinity chromotography. Cell fusion was performed after the BALB/c mice were immunized with the purified His-mucin 16N protein. We screened hybridoma cell strains producing mAbs against mucin 16. The specificity and titer of the antibodies were characterized with ELISA, Western blotting, immunofluorescent and immunohistochemical staining. RESULTS: The recombinant protein of His-mucin 16N was expressed and purified. A few hybridoma cell strains which could secrete specific mAbs against mucin 16 were obtained, and one anti-mucin 16 mAb with good specificity and high titer was selected and purified. The isotype of this anti-mucin 16 mAb was determined as IgG1, which indicated that this anti-mucin 16 mAb could be used for ELISA, Western blotting, immunofluorescent and immunohistochemical staining. The endogenous expression of mucin 16 in various cancer cell lines or tissues was also examined with this anti-mucin 16 antibody by Western blotting and other immunoassays. CONCLUSION: The recombinant protein of His-mucin 16N was expressed and purified successfully, with which we prepared anti-mucin 16 mAb with good specificity and high titer.


Assuntos
Anticorpos Monoclonais/biossíntese , Antígeno Ca-125/genética , Proteínas de Membrana/genética , Proteínas Recombinantes/biossíntese , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Western Blotting , Antígeno Ca-125/biossíntese , Antígeno Ca-125/imunologia , Antígeno Ca-125/isolamento & purificação , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/imunologia , Proteínas de Membrana/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA