Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816933

RESUMO

Multiple distinct specialized regions shape the architecture of maize leaves. Among them, the fringe-like and wedge-shaped auricles alter the angle between the leaf and stalk, which is a key trait in crop plant architecture. As planting density increased, a small leaf angle (LA) was typically selected to promote crop light capture efficiency and yield. In the present study, we characterized two paralogous INDETERMINATE DOMAIN (IDD) genes, ZmIDD14 and ZmIDD15, which contain the Cys2-His2 zinc finger domain and function redundantly to regulate auricle development and LA in maize. Loss-of-function mutants showed decreased LA by reducing adaxial sclerenchyma thickness and increasing the colourless cell layers. In addition, the idd14;idd15 double mutant exhibited asymmetrically smaller auricles, which might cause by a failed maintenance of symmetric expression of the key auricle size controlling gene, LIGULELESS(LG1). The transcripts of ZmIDD14 and ZmIDD15 enriched in the ligular region, where LG1 was highly expressed, and both proteins physically interacted with ZmILI1 to promote LG1 transcription. Notably, the idd14;idd15 enhanced the grain yield of hybrids under high planting densities by shaping the plant architecture with a smaller LA. These findings demonstrate the functions of ZmIDD14 and ZmIDD15 in controlling the abaxial/adaxial development of sclerenchyma in the midrib and polar development along the medial-lateral axes of auricles and provide an available tool for high-density and high-yield breeding in maize.

2.
J Genet Genomics ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38531485

RESUMO

How to feed 10 billion human populations is one of the challenges that need to be addressed in the following decades, especially under an unpredicted climate change. Crop breeding, initiating from the phenotype-based selection by local farmers and developing into current biotechnology-based breeding, has played a critical role in securing the global food supply. However, regarding the changing environment and ever-increasing human population, can we breed outstanding crop varieties fast enough to achieve high productivity, good quality, and widespread adaptability? This review outlines the recent achievements in understanding cereal crop breeding, including the current knowledge about crop agronomic traits, newly developed techniques, crop big biological data research, and the possibility of integrating them for intelligence-driven breeding by design, which ushers in a new era of crop breeding practice and shapes the novel architecture of future crops. This review focuses on the major cereal crops, including rice, maize, and wheat, to explain how intelligence-driven breeding by design is becoming a reality.

3.
Plant Cell Environ ; 46(3): 975-990, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36515184

RESUMO

Improving osmotic stress tolerance is critical to help crops to thrive and maintain high yields in adverse environments. Here, we characterized a core subunit of the transport protein particle (TRAPP) complex, ZmBET5L1, in maize using knowledge-driven data mining and genome editing. We found that ZmBET5L1 can interact with TRAPP I complex subunits and act as a tethering factor to mediate vesicle aggregation and targeting from the endoplasmic reticulum to the Golgi apparatus. ZmBET5L1 knock-out increased the primary root elongation rate under 20% polyethylene glycol-simulated osmotic stress and the survival rate under drought stress compared to wild-type seedlings. In addition, we found that ZmBET5L1 moderates PIN1 polar localization and auxin flow to maintain normal root growth. ZmBET5L1 knock-out optimized auxin flow to the lateral side of the root and promoted its growth to generate a robust root, which may be related to improved osmotic stress tolerance. Together, these findings demonstrate that ZmBET5L1 inhibits primary root growth and decreases osmotic stress tolerance by regulating vesicle transport and auxin distribution. This study has improved our understanding of the role of tethering factors in response to abiotic stresses and identified desirable variants for breeding osmotic stress tolerance in maize.


Assuntos
Plântula , Zea mays , Zea mays/fisiologia , Pressão Osmótica , Plântula/genética , Plântula/metabolismo , Estresse Fisiológico , Secas , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Nat Commun ; 12(1): 5832, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611160

RESUMO

Maize ear size and kernel number differ among lines, however, little is known about the molecular basis of ear length and its impact on kernel number. Here, we characterize a quantitative trait locus, qEL7, to identify a maize gene controlling ear length, flower number and fertility. qEL7 encodes 1-aminocyclopropane-1- carboxylate oxidase2 (ACO2), a gene that functions in the final step of ethylene biosynthesis and is expressed in specific domains in developing inflorescences. Confirmation of qEL7 by gene editing of ZmACO2 leads to a reduction in ethylene production in developing ears, and promotes meristem and flower development, resulting in a ~13.4% increase in grain yield per ear in hybrids lines. Our findings suggest that ethylene serves as a key signal in inflorescence development, affecting spikelet number, floral fertility, ear length and kernel number, and also provide a tool to improve grain productivity by optimizing ethylene levels in maize or in other cereals.


Assuntos
Zea mays/metabolismo , Zea mays/fisiologia , Mapeamento Cromossômico , Grão Comestível/genética , Grão Comestível/metabolismo , Etilenos/metabolismo , Meristema/citologia , Meristema/metabolismo , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA