Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Biol Sci ; 20(5): 1669-1687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481813

RESUMO

Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.


Assuntos
Injúria Renal Aguda , Fator 1 de Crescimento de Fibroblastos , Humanos , Camundongos , Animais , Fator 1 de Crescimento de Fibroblastos/genética , Quinases Ciclina-Dependentes/genética , Rim , Injúria Renal Aguda/induzido quimicamente , Instabilidade Genômica
2.
Acta Pharmacol Sin ; 45(5): 1032-1043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38286833

RESUMO

It is well established that the synthesis of extracellular matrix (ECM) in mesangial cells is a major determinant of diabetic kidney disease (DKD). Elucidating the major players in ECM synthesis may be helpful to provide promising candidates for protecting against DKD progression. tRF3-IleAAT is a tRNA-derived fragment (tRF) produced by nucleases at tRNA-specific sites, which is differentially expressed in the sera of patients with diabetes mellitus and DKD. In this study we investigated the potential roles of tRFs in DKD. Db/db mice at 12 weeks were adapted as a DKD model. The mice displayed marked renal dysfunction accompanied by significantly reduced expression of tRF3-IleAAT and increased ferroptosis and ECM synthesis in the kidney tissues. The reduced expression of tRF3-IleAAT was also observed in high glucose-treated mouse glomerular mesangial cells. We administered ferrostatin-1 (1 mg/kg, once every two days, i.p.) to the mice from the age of 12 weeks for 8 weeks, and found that inhibition of the onset of ferroptosis significantly improved renal function, attenuated renal fibrosis and reduced collagen deposition. Overexpression of tRF3-IleAAT by a single injection of AAV carrying tRF3-IleAAT via caudal vein significantly inhibited ferroptosis and ECM synthesis in DKD model mice. Furthermore, we found that the expression of zinc finger protein 281 (ZNF281), a downstream target gene of tRF3-IleAAT, was significantly elevated in DKD models but negatively regulated by tRF3-IleAAT. In high glucose-treated mesangial cells, knockdown of ZNF281 exerted an inhibitory effect on ferroptosis and ECM synthesis. We demonstrated the targeted binding of tRF3-IleAAT to the 3'UTR of ZNF281. In conclusion, tRF3-IleAAT inhibits ferroptosis by targeting ZNF281, resulting in the mitigation of ECM synthesis in DKD models, suggesting that tRF3-IleAAT may be an attractive therapeutic target for DKD.


Assuntos
Nefropatias Diabéticas , Matriz Extracelular , Ferroptose , Animais , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Nefropatias Diabéticas/metabolismo , Matriz Extracelular/metabolismo , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Humanos , Células Mesangiais/metabolismo
3.
Cell Mol Life Sci ; 80(12): 347, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37943391

RESUMO

Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca2+-activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl-, and reducing intracellular Cl- significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Nefropatias Diabéticas/genética , Homeostase , Mitocôndrias , Fibrose
4.
Anal Chem ; 95(48): 17759-17765, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37996077

RESUMO

Multiple independent sets of residual dipolar couplings (RDCs) acquired by relying on different alignment media show the great potential for de novo structure determination of organic compounds. However, this methodology is severely compromised by the limited availability of multialignment media. In this work, an engineering strategy was developed to program the oligopeptide amphiphiles (OPAs) to create different peptide liquid crystal (LC) media for the acquisition of independent sets of RDCs. With no need for de novo design on peptide sequences, the molecular alignment can be simply modulated by varying the length of the hydrophobic tails within OPAs. Relying on these programmed peptide LC media, five independent sets of RDCs were extracted in a highly efficient and accurate manner. Because of the similar bulk composition of OPAs, this approach offers the significant advantage in circumventing the possible incompatibilities of analytes with one or several different alignment media, therefore avoiding the analysis complication. Notably, these peptide LC media show enantiodifferentiating properties, and the enantiodiscriminating capabilities could also be optimized through the programmed strategy. Furthermore, we show that these media are compatible with different polar solvents, allowing the possible de novo structure elucidation of organic compounds with varied polarities and solubilities.

5.
J Control Release ; 362: 565-576, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673305

RESUMO

Tumor recurrence and chronic bacterial infection constitute two major criteria in postsurgical intervention for malignant melanoma. One plausible strategy is the equipment of consolidation therapy after surgery, which relies on adjuvants to eliminate the residual tumor cells and inhibit bacterial growth. Until now, a number of proof-of-concept hybrid nanoadjuvants have been proposed to combat tumor recurrence and postsurgical bacterial infection, which may suffer from the potential bio-unsafety or involve complex design and synthesis. The batch-to-batch inconsistencies in drug composition further delay the clinical trials. To circumvent these issues, herein we develop a programmable strategy to generate lipopeptide nanotherapeutics with identical constitution for tandem intervention of postsurgical bacterial infection and cancer recurrence of melanoma. Increasing the number of hydrophobic linoleic acid within lipopeptides has been found to be a simple and practical strategy to improve the therapeutic outcomes for both tumor cells and bacteria. Self-assembled lipopeptide nanotherapeutics with two linoleic acid molecules possesses excellent antitumor activity and antimicrobial function toward both susceptible strains and drug-resistant bacteria. Arising from the incorporation of unsaturated linoleic acid, the unavoidable hemolysis of cationic peptide drugs was effectively alleviated. In vivo therapeutic abilities of postsurgical infection and tumor recurrence were investigated in BALB/c nude mice bearing a B16-F10 tumor model, with an incomplete surgical resection and in situ infection by methicillin-resistant Staphylococcus aureus (MRSA). Self-assembled lipopeptide nanotherapeutics could effectively inhibit cancer cell growth and bacterial infection, as well as promote wound healing. The easily scalable large-scale production, broad-spectrum antitumor and antibacterial bioactivities as well as fixed component endows lipopeptide nanotherapeutics as promising adjuvants for clinically postsurgical therapy of melanoma.

6.
Acta Pharmacol Sin ; 44(12): 2455-2468, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596398

RESUMO

Renal tubulointerstitial fibrosis (TIF) is considered as the final convergent pathway of diabetic nephropathy (DN) without effective therapies currently. MiRNAs play a key role in fibrotic diseases and become promising therapeutic targets for kidney diseases, while miRNA clusters, formed by the cluster arrangement of miRNAs on chromosomes, can regulate diverse biological functions alone or synergistically. In this study, we developed clustered miR-23a/27a/26a-loaded skeletal muscle satellite cells-derived exosomes (Exos) engineered with RVG peptide, and investigated their therapeutic efficacy in a murine model of DN. Firstly, we showed that miR-23a-3p, miR-26a-5p and miR-27a-3p were markedly decreased in serum samples of DN patients using miRNA sequencing. Meanwhile, we confirmed that miR-23a-3p, miR-26a-5p and miR-27a-3p were primarily located in proximal renal tubules and highly negatively correlated with TIF in db/db mice at 20 weeks of age. We then engineered RVG-miR-23a/27a/26a cluster loaded Exos derived from muscle satellite cells, which not only enhanced the stability of miR-23a/27a/26a cluster, but also efficiently delivered more miR-23a/27a/26a cluster homing to the injured kidney. More importantly, administration of RVG-miR-23a/27a/26a-Exos (100 µg, i.v., once a week for 8 weeks) significantly ameliorated tubular injury and TIF in db/db mice at 20 weeks of age. We revealed that miR-23a/27a/26a-Exos enhanced antifibrotic effects by repressing miRNA cluster-targeting Lpp simultaneously, as well as miR-27a-3p-targeting Zbtb20 and miR-26a-5p-targeting Klhl42, respectively. Knockdown of Lpp by injection of AAV-Lpp-RNAi effectively ameliorated the progression of TIF in DN mice. Taken together, we established a novel kidney-targeting Exo-based delivery system by manipulating the miRNA-23a/27a/26a cluster to ameliorate TIF in DN, thus providing a promising therapeutic strategy for DN.


Assuntos
Nefropatias Diabéticas , Exossomos , MicroRNAs , Células Satélites de Músculo Esquelético , Animais , Humanos , Camundongos , Diabetes Mellitus/terapia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/terapia , Exossomos/metabolismo , Fibrose , MicroRNAs/metabolismo , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Células Satélites de Músculo Esquelético/metabolismo , Complicações do Diabetes/terapia
7.
J Control Release ; 359: 347-358, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277054

RESUMO

Temozolomide (TMZ) is an oral DNA-alkylating drug used in colorectal cancer (CRC) chemotherapy. In this work, we proposed a safe and biomimetic platform for macrophages-targeted delivery of TMZ and O6-benzylguanine (O6-BG). TMZ was loaded in poly (D, l-lactide-coglycolide) (PLGA) nanoparticles, followed by sequential coating with O6-BG-grafted chitosan (BG-CS) layers and yeast shell walls (YSW) via layer-by-layer assembly (LBL) process, forming TMZ@P-BG/YSW biohybrids. Due to the yeast cell membrane-camouflage, TMZ@P-BG/YSW particles exhibited significantly enhanced colloidal stability as well as low premature drug leakage in simulated gastrointestinal conditions. In vitro drug release profiles of TMZ@P-BG/YSW particles revealed noticeable higher TMZ release in simulated tumor acidic environment within 72 h. Meanwhile, O6-BG could down-regulate MGMT expression in CT26 colon carcinoma cells, ultimately facilitating TMZ-induced tumor cell death. After oral delivery of yeast cell membrane-camouflaged particles containing fluorescent tracer (Cy5), TMZ@P-BG/YSW and bare YSW displayed high retention time of 12 h in the colon and small intestine (ileum). Correspondingly, oral gavage administration of TMZ@P-BG/YSW particles afforded favorable tumor-specific retention and superior tumor growth inhibition. Overall, TMZ@P-BG/YSW is validated to be a safe, targetable and effective formulation, paving a new avenue towards highly effective and precise treatment of malignancies.


Assuntos
Nanopartículas , Neoplasias , Dacarbazina/farmacologia , Saccharomyces cerevisiae , O(6)-Metilguanina-DNA Metiltransferase , Temozolomida , Membrana Celular/metabolismo , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
8.
Nanoscale ; 15(17): 7820-7828, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37051680

RESUMO

Residual Dipolar Coupling (RDC), acquired relying on weakly alignment media, is highly valuable for the structural elucidation of organic molecules. Arising from the striking features of no background signals and low critical concentrations, two-dimensional (2D) liquid crystals (LCs) show the clear advantages of acting as alignment media to measure RDCs. So far, creating multisolvent compatible 2D LC media through a simple and versatile method is still formidably challenging. Herein, we report the rapid creation of aligned media based on the Ti3C2Tx MXene, which self-aligned in multiple co-solvents including CH3OH-H2O, DMSO-H2O, DMF-H2O, and acetone-H2O. We demonstrated the applicability of these aligned media for the RDC measurement of small organic molecules with different polarities and solubilities. Notably, Ti3C2Tx MXene LCs without chemical modification enabled RDC measurements on aromatic molecules. The straightforward preparation of Ti3C2Tx media and its compatibility with multiple solvents will push RDC measurement as a routine methodology for structural elucidation. It may also facilitate the investigation of solvation effects on conformational dynamics.

9.
Acta Biomater ; 154: 359-373, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191775

RESUMO

The nonselective membrane disruption of antimicrobial peptides (AMPs) helps in combating the antibacterial resistance. But their overall positive charges lead to undesirable hemolysis and toxicity toward normal living cells, as well as the rapid clearance from blood circulation. In consequence, developing smart AMPs to optimize the antimicrobial outcomes is highly urgent. Relying on the local acidity of microbial infection sites, in this work, we designed an acidity-triggered charge reversal nanotherapeutics with adaptable geometrical morphology for bacterial targeting and optimized therapy. C16-A3K4-CONH2 was proposed and the ε-amino groups in lysine residues were acylated by dimethylmaleic amide (DMA), enabling the generated C16-A3K4(DMA)-CONH2 to self-assemble into negatively charged spherical nanostructure, which relieved the protein adsorption and prolonged blood circulation in vivo. After the access of C16-A3K4(DMA)-CONH2 into the microbial infection sites, acid-sensitive ß-carboxylic amide would hydrolyze to regenerate the positive C16-A3K4-CONH2 to destabilize the negatively charged bacterial membrane. In the meanwhile, attractively, the self-assembled spherical nanoparticle transformed to rod-like nanostructure, which was in favor of the efficient binding with bacterial membranes due to the larger contact area. Our results showed that the acid-activated AMP nanotherapeutics exhibited strong and broad-spectrum antimicrobial activities against Yeast, Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and methicillin-resistant Staphylococcus aureus (MRSA). Moreover, the biocompatible lipopeptide nanotherapeutics dramatically improved the dermapostasis caused by bacterial infection. The strategy of merging pathology-activated therapeutic function and morphological adaptation to augment therapeutic outcomes shows the great potential for bacterial inhibition. STATEMENT OF SIGNIFICANCE: The overall positive charges of antimicrobial peptides (AMPs) lead to undesirable hemolysis and nonselective toxicity, as well as the rapid clearance from blood circulation. Infection-activated lipopeptide nanotherapeutics with adaptable geometrical morphology were developed to address these issues. The self-assembled lipopeptide was pre-decorated to reverse the positive charge to reduce the hemolysis and nonselective cytotoxicity. After accessing the acidic infection sites, the nanotherapeutics recovered the positive charge to destabilize negatively charged bacterial membranes. Meanwhile, the morphology of self-assembled nanotherapeutics transformed from spherical nanoparticles to rod-like nanostructures in the lesion site, facilitating the improved association with bacterial membranes to boost the therapeutic efficiency. These results provide new design rationale for AMPs developed for bacterial inhibition.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Humanos , Lipopeptídeos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Bactérias , Hemólise , Amidas , Antibacterianos/farmacologia , Antibacterianos/química
10.
Theranostics ; 12(10): 4753-4766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832084

RESUMO

Rationale: Cisplatin nephrotoxicity is an important cause of acute kidney injury (AKI), limiting cisplatin application in cancer therapy. Growing evidence has suggested that genome instability, telomeric dysfunction, and DNA damage were involved in the tubular epithelial cells (TECs) damage in cisplatin-induced AKI (cAKI). However, the exact mechanism is largely unknown. Methods: We subjected miR-155-/- mice and wild-type controls, as well as HK-2 cells, to cAKI models. We assessed kidney function and injury with standard techniques. The cell apoptosis and DNA damage of TECs were evaluated both in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. Results: The expression level of miR-155 was upregulated in cAKI. Inhibition of miR-155 expression protected cisplatin-induced AKI both in vivo and in vitro. Compared with wild-type mice, miR-155-/- mice had reduced mortality, improved renal function and pathological damage after cisplatin intervention. Moreover, inhibition of miR-155 expression attenuated TECs apoptosis and DNA damage. These protective effects were caused by increasing expression of telomeric repeat binding factor 1 (TRF1) and cyclin-dependent kinase 12 (CDK12), thereby limiting the telomeric dysfunction and the genomic DNA damage in cAKI. Conclusion: We demonstrated that miR-155 deficiency could significantly attenuate pathological damage and mortality in cAKI through inhibition of TECs apoptosis, genome instability, and telomeric dysfunction, which is possibly regulated by the increasing expression of TRF1 and CDK12. This study will provide a new molecular strategy for the prevention of cAKI.


Assuntos
Injúria Renal Aguda , Dano ao DNA , MicroRNAs , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Cisplatino/toxicidade , Células Epiteliais/efeitos dos fármacos , Instabilidade Genômica , Genômica , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Telômero/metabolismo
11.
Chem Commun (Camb) ; 58(42): 6227-6230, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35510582

RESUMO

The short lifetime of singlet oxygen reduces its accumulation in the endoplasmic reticulum, which limits the output of photodynamic therapy. A nanodevice with functions of singlet oxygen production, storage and release can improve the lifetime of singlet oxygen for enhancing phototherapeutic efficacy.


Assuntos
Fotoquimioterapia , Oxigênio Singlete , Fármacos Fotossensibilizantes/farmacologia
12.
ACS Nano ; 16(4): 5454-5462, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35311253

RESUMO

The formation of lyotropic liquid crystals (LCs) in two-dimensional (2D) colloidal dispersions enables the production of mesoscopic/macroscopic ordered materials from nanoscale building blocks. In contrast to graphene oxide (GO) LCs, the practical applications of MXene LCs are less exploited. This study bridges the gap by utilizing a simple and versatile fabrication method to prepare Ti3C2Tx MXene LC that can be applied as a background-free alignment medium for the residual dipolar coupling (RDC) measurement of organic molecules. Ti3C2Tx LC displays the size- and concentration-dependent alignment degree. Ti3C2Tx nanoflakes with an average size of around 600 nm can provide the quadrupolar 2H splitting of 71 Hz at a concentration of 50 mg/mL and show excellent fluidity at such a high concentration. Compared with other alignment media, Ti3C2Tx LC exhibits the features of no-background and narrow line broadening, which actualizes the acquirement of clean and high-quality NMR spectra for the accurate RDC extraction. Notably, the alignment of LCs is determined to be maintainable in the redispersed solution after freeze-drying, providing the great convenience for the preparation of alignment Ti3C2Tx media, long-term sample preservation, and quantitative evaluation of alignment degree. Meanwhile, the alignment LC media for RDC measurement can be established in other MXenes such as Ti2CTx and Ti3CNTx. Collectively, our findings demonstrate the potential of creating various alignment media from the fascinating MXene family.

13.
ACS Appl Mater Interfaces ; 14(1): 159-171, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34929082

RESUMO

An "antibiotic-free strategy" provides a viable option to address bacterial infections, especially for the "superbug" challenge. However, the undesirable antibacterial activity of antibiotic-free agents hinders their practical applications. In this study, we developed a combination antibacterial strategy of coupling peptide-drug therapy with chemodynamic therapy (CDT) to achieve the effective bacterial inhibition. An amphiphilic oligopeptide (LAOOH-OPA) containing a therapeutic unit of D(KLAK)2 peptide and a hydrophobic linoleic acid hydroperoxide (LAHP) was designed. The positively charged D(KLAK)2 peptide with an α-helical conformation enabled rapid binding with microbial cells via electrostatic interaction and subsequent membrane insertion to deactivate the bacterial membrane. When triggered by Fe2+, moreover, LAHP could generate singlet oxygen (1O2) to elicit lipid bilayer leakage for enhanced bacteria inhibition. In vitro assays demonstrated that the combination strategy possessed excellent antimicrobial activity not only merely toward susceptible strains (Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli) but also toward methicillin-resistant Staphylococcus aureus (MRSA). On the mouse skin abscess model induced by S. aureus, self-assembled LAOOH-OPA exhibited a more significant bacteria reduction (1.4 log10 reduction) in the bioburden compared to that of the standard vancomycin (0.9 log10 reduction) without apparent systemic side effects. This combination antibacterial strategy shows great potential for effective bacterial inhibition.


Assuntos
Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Ácidos Linoleicos/uso terapêutico , Peróxidos Lipídicos/uso terapêutico , Nanopartículas/uso terapêutico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Animais , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/toxicidade , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Feminino , Ácidos Linoleicos/toxicidade , Peróxidos Lipídicos/toxicidade , Camundongos Endogâmicos BALB C , Nanopartículas/toxicidade , Oxigênio Singlete/metabolismo , Staphylococcus aureus/efeitos dos fármacos
14.
ACS Biomater Sci Eng ; 7(7): 3361-3369, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34180219

RESUMO

Recently, smart nanomaterials from peptide self-assembly have received extensive attention in the field of biological and medical applications. Through rationally designing the molecular structure, we constructed a borono-peptide that self-assembled into well-defined nanofibers. Relying on the specific recognition between the vicinal diol compound and boronic acid, a novel alizarin red S (ARS)-borono-peptide (BP) spherical nanoindicator was fabricated, accompanying with the emission of strong fluorescent signal. The fluorescent nanoindicator displayed an intense response to copper(II) ions and underwent the fluorescent "turn-off" due to the strong binding-induced displacement. Originating from the high selectivity toward copper(II) ions, good biocompatibility and cancer cell targeting, the nanoindicator offered the opportunity to image copper(II) ions in cancer cells via fluorescent change.


Assuntos
Cobre , Corantes Fluorescentes , Antraquinonas , Humanos , Íons , Peptídeos
15.
Chem Commun (Camb) ; 57(50): 6181-6184, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34047742

RESUMO

Herein, we have developed a solvent-tailored ordered self-assembly strategy to create anisotropic nanomaterials. A trace amount of water has been found to be a predominant factor to direct peptide self-assembly into an anisotropic meso-matrix in DMSO. The obtained meso-matrix was applied to measure the anisotropic RDC parameter of organic molecules for structural elucidation.


Assuntos
Dimetil Sulfóxido/química , Oligopeptídeos/síntese química , Tensoativos/síntese química , Anisotropia , Estrutura Molecular , Oligopeptídeos/química , Solventes/química , Tensoativos/química
16.
Biomed Environ Sci ; 34(2): 163-169, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33685575

RESUMO

OBJECTIVE: This study aims to investigate the correlation of an ultrasonic scoring system with intraoperative blood loss (IBL) in placenta accreta spectrum (PAS) disorders. METHODS: A retrospective cohort study was conducted between January 2015 and November 2019. Clinical data for patients with PAS have been obtained from medical records. Generalized additive models were used to explore the nonlinear relationships between ultrasonic scores and IBL. Logistic regressions were used to determine the differences in the risk of IBL ≥ 1,500 mL among groups with different ultrasonic scores. RESULTS: A total of 332 patients participated in the analysis. Generalized additive models showed a significant positive correlation between score and blood loss. The amount of IBL was increased due to the rise in the ultrasonic score. All cases were divided into three groups according to the scores (low score group: ≤ 6 points, n = 147; median score group: 7-9 points, n = 126; and high score group: ≥ 10 points, n = 59). Compared with the low score group, the high score group showed a higher risk of IBL ≥ 1,500 mL [odds ratio, 15.09; 95% confidence interval (3.85, 59.19); P ≤ 0.001] after a multivariable adjustment. CONCLUSIONS: The risk of blood loss equal to or greater than 1,500 mL increases further when ultrasonic score greater than or equal to 10 points, the preparation for transfusion and referral mechanism should be considered.


Assuntos
Perda Sanguínea Cirúrgica/estatística & dados numéricos , Placenta Acreta/diagnóstico por imagem , Ultrassonografia Pré-Natal/estatística & dados numéricos , Adulto , Perda Sanguínea Cirúrgica/prevenção & controle , Feminino , Idade Gestacional , Humanos , Modelos Logísticos , Placenta Acreta/cirurgia , Valor Preditivo dos Testes , Gravidez , Estudos Retrospectivos , Risco
17.
Angew Chem Int Ed Engl ; 59(39): 17097-17103, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32573888

RESUMO

Residual dipolar coupling (RDC), a robust anisotropic NMR parameter for structural elucidation of organic molecules, is only accessible in an anisotropic environment. Herein, we introduce a novel alignment medium based on the molecular self-assembly of oligopeptide amphiphile (OPA). This medium is compatible with different intermediate and polar solvent systems, such as CD3 OD, [D6 ]DMSO, and D2 O. The preparation of the OPA-based medium is simple and rapid, while only very weak background signals were observed from OPAs. Furthermore, we show that the purity of OPA has only a minor influence on the quality of the RDC data. These advantages allow RDC measurements of organic molecules with different polarities and solubilities with high efficiency and accuracy.

18.
Glob Chall ; 4(2): 1900068, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32042445

RESUMO

Hyaluronic acid (HA)-based hydrogels have been receiving increasing attention for wound management. However, pure HA hydrogels usually exhibit weak mechanical strength and poor anti-infection. Herein, a hybrid HA-based hydrogel (PDA-HA) comprised of polydopamine (PDA) and thiolated hyaluronic acid (HA-SH) is developed based on the Michael addition reaction. The introduction of PDA into HA hydrogel can decrease the critical gel concentration, improve the cell affinity and tissue adhesion, as well as endow the hydrogel with efficient free-radical scavenging ability. Combining the merits of good biocompatibility and moist environment from HA hydrogel with excellent tissue adhesiveness and free radical scavenging capability from PDA, this cross-linked PDA-HA hybrid hydrogel exhibits great potential for creating antimicrobial wound medical dressings.

19.
Biomaterials ; 232: 119738, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31901695

RESUMO

In recent years, research trend has gradually removed from a concentration on monotherapy to combination therapy for fighting cancer. Combination photo-chemotherapy, including photodynamic-chemotherapy, photothermal-chemotherapy, as well as photodynamic-photothermal-chemotherapy, has demonstrated the priorities to elevate cancer therapeutic efficacies and diminish undesired side effects through different mechanisms in cancer treatment. In this review, we summarize the most recent progress in designing mesoporous silica-based nanoplatforms for combination delivery of multiple therapeutic agents, and discuss the treatment outcome in cancer by combining photodynamic therapy (PDT) and/or photothermal therapy (PTT) with chemotherapy. Furthermore, we highlight the drawbacks and challenges of employing mesoporous silica-based combinational formulations for effective cancer photo-chemotherapy, which might provide new guidelines for development of photo-chemo combination cancer treatments.


Assuntos
Neoplasias , Fotoquimioterapia , Terapia Combinada , Quimioterapia Combinada , Humanos , Neoplasias/tratamento farmacológico , Dióxido de Silício/uso terapêutico
20.
ACS Appl Bio Mater ; 3(12): 8989-8996, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019575

RESUMO

Despite the rapid progress in peptide liquid crystals (LCs) due to their prominent properties, our investigation on flexible peptide-based LCs is incomplete, mainly resulted from their unclear formation mechanisms and unexploited applications in organic solvents. Here, we develop a lyotropic LC based on a flexible oligopeptide amphiphile, which aggregates into aligned cylinder-like nanostructures in dimethyl sulfoxide (DMSO). The formation mechanism of lyotropic LC in DMSO was probed by the experimental investigation and molecular dynamics simulation, indicating that the hydrogen bonding and hydrophobic and electrostatic interactions contribute to the formation of ordered nanostructures in the organic solvent. Arising from the orientational order and suitable fluidity, we exploit the application of lyotropic LC as an aligned medium to measure the residual dipolar couplings of bioactive molecules. This study not only offers the understanding of the mechanism to create LC systems without rigid aromatic groups but also expands the applications of ordered bottom-up nanomaterials in organic solvents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA