Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
J Allergy Clin Immunol ; 152(1): 304-306, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37149806
3.
Br J Pharmacol ; 180(16): 2102-2119, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36869838

RESUMO

BACKGROUND AND PURPOSE: The causal relationship between altered host microbiome composition, especially the respiratory tract microbiome, and the occurrence of pulmonary hypertension (PH) has not yet been studied. An increased abundance of airway streptococci is seen in patients with PH compared with healthy individuals. This study aimed to determine the causal link between elevated airway exposure to Streptococcus and PH. EXPERIMENTAL APPROACH: The dose-, time- and bacterium-specific effects of Streptococcus salivarius (S. salivarius), a selective streptococci, on PH pathogenesis were investigated in a rat model established by intratracheal instillation. KEY RESULTS: Exposure to S. salivarius successfully induced typical PH characteristics, such as elevated right ventricular systolic pressure (RVSP), right ventricular hypertrophy (Fulton's index) and pulmonary vascular remodelling, in a dose- and time-dependent manner. Moreover, the S. salivarius-induced characteristics were absent in either the inactivated S. salivarius (inactivated bacteria control) treatment group or the Bacillus subtilis (active bacteria control) treatment group. Notably, S. salivarius-induced PH is characterized by elevated inflammatory infiltration in the lungs, in a pattern different from the classic hypoxia-induced PH model. Moreover, in comparison with the SU5416/hypoxia-induced PH model (SuHx-PH), S. salivarius-induced PH causes similar histological changes (pulmonary vascular remodelling) but less severe haemodynamic changes (RVSP, Fulton's index). S. salivarius-induced PH is also associated with altered gut microbiome composition, suggesting potential communication of the lung-gut axis. CONCLUSION AND IMPLICATIONS: This study provides the first evidence that the delivery of S. salivarius in the respiratory tract could cause experimental PH in rats.


Assuntos
Hipertensão Pulmonar , Streptococcus salivarius , Ratos , Animais , Remodelação Vascular , Ratos Sprague-Dawley , Pulmão/patologia , Hipóxia
4.
Hypertension ; 80(1): 214-226, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36353996

RESUMO

BACKGROUND: Pulmonary hypertension (PH) associated with congenital heart disease (CHD) is the most common type of PH in pediatric patients. The airway microbiome profile in CHD-PH patients remains rarely studied. METHODS: A total of 158 children were recruited for collection of oropharyngeal swabs to sequence the 16S ribosomal RNA (16S rRNA) V3-V4 region of respiratory microbiome, to establish a correlation between these bacterial groups and echocardiography indicators in CHD-PH patients. RESULTS: Bacterial α- and ß-diversity of the airway microbiome indicated a significantly lower richness in the CHD-PH group and compositional differences associated with the specific taxa and their relative abundances in the upper respiratory tract. Principal coordinate analysis showed that the pharynx microbiota composition in the CHD-PH group varied from that in the CHD or control group. The linear discriminant analysis effect size also highlighted an increased presence of Streptococcus and Rothia in pediatric CHD-PH patients. Comparison of microbial composition between pediatric and adult PH patients showed significant differences and separation of microbiota. The correlation between bacterial abundance and transthoracic echocardiography indexes in CHD-associated PH indicated that different groups of microbiomes may be related to different PH grades. CONCLUSIONS: In summary, our study reported the systematic definition and divergent profile of the upper respiratory tract microbiota in pediatric PH patients, CHD and reference subjects, as well as between pediatric and adult PH patients.


Assuntos
Cardiopatias Congênitas , Hipertensão Pulmonar , Humanos , Criança , Hipertensão Pulmonar/etiologia , RNA Ribossômico 16S/genética , Cardiopatias Congênitas/complicações
5.
Microbiol Res ; 265: 127205, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36202007

RESUMO

Previous studies have suggested that dysbiosis of the gut microbiota is associated with the development of pulmonary hypertension (PH). In this study, we established a left pulmonary artery ligation (LPAL)-induced PH rat model due to high flow and hemodynamic stress and investigated the association between gut microbiota composition and host metabolome signatures (in both gut and lung tissues) by using multiomics and correlation analysis. The results showed that LPAL successfully induced PH, characterized by increased right ventricular systolic pressure, right ventricular hypertrophy and pulmonary vascular remodelling. Moreover, gut pathological abnormalities were observed in association with dramatic alterations in the gut microbiome and metabolome as well as the lung metabolome. The increased bacterial genus Sporobacter and decreased genera Eubacterium, Eubacteriaceae, Deltaproteobacteria and Desulfovibrio featured the altered gut microbiome in LPAL-PH versus SHAM rats. Moreover, imbalanced abundance of protective metabolites (e.g., butyrate, propionate) and pathogenic metabolites (e.g., proinflammatory mediators) were seen in the gut metabolome of LPAL-PH versus SHAM rats. In addition, the altered gut microbiome strongly correlated with the altered metabolome patterns in both the gut and lung of LPAL-PH rats. In conclusion, this study revealed significant gut dysbiosis in LPAL-PH rats, characterized by altered gut microbiota composition, in association with specific changes in gut and lung metabolome profiles. These findings enriched our understanding of the unique signature of the gut microbiome and the close association of the "gut-lung axis" in LPAL-PH induced by long-term high flow, leading to novel therapeutic, diagnostic or management paradigms for this subtype of PH.


Assuntos
Hipertensão Pulmonar , Microbiota , Animais , Ratos , Butiratos , Disbiose/microbiologia , Pulmão/metabolismo , Metaboloma , Propionatos
6.
Thromb Res ; 218: 52-63, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988445

RESUMO

INTRODUCTION: Piezo1 is an important mechanosensitive channel implicated in vascular remodeling. However, the role of Piezo1 in different types of vascular cells during the development of pulmonary hypertension (PH) induced by high shear stress is largely unknown. MATERIALS AND METHODS: We used a rat PH model established by left pulmonary artery ligation (LPAL, for 2-5 weeks), which mimics the high flow and hemodynamic stress, to study Piezo1 contribution to pulmonary vascular remodeling. RESULTS: Right ventricular systolic pressure (RVSP), a surrogate measure for pulmonary arterial systolic pressure, and right ventricular wall thickness, a measure for right ventricular hypertrophy, were significantly increased in LPAL rats compared with Sham-control (SHAM) rats. Rats in LPAL-5w groups developed remarkable pulmonary vascular remodeling, while phenylephrine-induced contraction and acetylcholine-induced relaxation were both significantly inhibited in these rats. Upregulation of Piezo1, in association with increase in cytosolic Ca2+ concentration ([Ca2+]cyt), was observed in pulmonary arterial smooth muscle cells (PASMCs) from LPAL-2w and LPAL-5w rats in comparison to the SHAM controls. Piezo1 upregulation in PASMCs from LPAL rats was directly related to Yes-associated protein (YAP)/ TEA domain transcription factor 4 (TEAD4). Piezo1 expression was also upregulated in the whole-lung tissue of LPAL rats. The endothelial upregulation of Piezo1 was related to transcriptional regulation by RELA (p65) and lung inflammation. CONCLUSION: The upregulation of Piezo1 in both PASMCs and ECs coordinates with each other via different cell signaling pathways to cause pulmonary vascular remodeling in LPAL-PH rats, providing novel insights into the cell-type specific pathogenic roles of Piezo1 in shear stress-associated experimental PH.


Assuntos
Hipertensão Pulmonar , Proteínas de Membrana , Animais , Ratos , Acetilcolina/metabolismo , Proliferação de Células , Hipertensão Pulmonar/etiologia , Proteínas de Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Fenilefrina/metabolismo , Artéria Pulmonar/patologia , Fator de Transcrição 4/metabolismo , Regulação para Cima , Remodelação Vascular , Proteínas de Sinalização YAP
7.
Pulm Circ ; 12(2): e12081, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35514785

RESUMO

The aim of this study is to provide evidence for the influencing factors of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) virus mutation by determining the impact of geographical and meteorological factors on SARS-CoV-2 transmission, and the different impacts of SARS-CoV-2 variant strains. From January 20 to March 10, 2020, we collected a number of daily confirmed new cases and meteorological factors in all cities and regions in China and Italy affected by the Alpha "variants of concern" (VOC). We also collected the daily confirmed cases of the Delta VOC infection in China and Italy from May 21 to November 30, 2021. The relationships between daily meteorological data and daily verified new cases of SARS-CoV-2 transmission were then investigated using a general additive model (GAM) with a log link function and Poisson family. The results revealed that latitude was substantially connected with daily confirmed new instances of the Alpha VOC, while there was no such correlation with Delta VOC transmission. When visibility is greater than 7 m, the propagation of the Alpha and Delta VOCs in Italy and China can be controlled. Furthermore, greater temperatures and increased wind speed reduce the transmission of the Alpha and Delta VOCs. In conclusion, geographical and meteorological factors play an important role in SARS-CoV-2 transmissibility and should be considered in virus mitigation strategies.

8.
Biochem Pharmacol ; 199: 114986, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276216

RESUMO

BACKGROUND: Recent studies have demonstrated the beneficial effects of STS in treating pulmonary hypertension by inhibiting the pulmonary vascular remodeling and suppressing the abnormally elevated proliferation and migration of PASMCs. However, the roles of STS on pulmonary vascular endothelium remain largely known. METHODS: In this study, we investigated the effects and mechanisms of STS on pulmonary vascular endothelial dysfunction by using a chronic hypoxia-induced pulmonary hypertension (HPH) rat model, as well as in primarily cultured rat PMVECs and human ESC-ECs cell models. RESULTS: Firstly, a 21-day treatment of STS significantly prevents the disease development of HPH by normalizing the right ventricular systolic pressure and right ventricular hypertrophy, improving the cardiac output. Then, STS treatment markedly inhibits the hypoxia-induced medial wall thickening of the distal intrapulmonary arteries. Notably, STS significantly inhibits the hypoxia-induced apoptosis in both the pulmonary endothelium of HPH rats and primarily cultured PMVECs, through the stabilization of BMPR2 protein and protection of the diminished BMP9-BMPR2-Smad1/5/9 signaling pathway. In mechanism, STS treatment retrieves the hypoxic downregulation of BMPR2 by stabilizing the BMPR2 protein, inhibiting the BMPR2 protein degradation via lysosome system, and promoting the plasma membrane localization of BMPR2, all of which together reinforcing the BMP9-induced signaling transduction in both PMVECs and human ESC-ECs. However, these effects are absent in hESC-ECs expressing heterozygous dysfunctional BMPR2 protein (BMPR2+/R899X). CONCLUSION: STS may exert anti-apoptotic roles, at least partially, via induction of the BMP9-BMPR2-Smad1/5/9 signaling transduction in pulmonary endothelium and PMVECs.


Assuntos
Células-Tronco Embrionárias Humanas , Hipertensão Pulmonar , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Fenantrenos , Artéria Pulmonar , Ratos , Transdução de Sinais , Proteína Smad1/genética , Proteína Smad1/metabolismo
9.
Br J Pharmacol ; 179(5): 1065-1081, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34599843

RESUMO

BACKGROUND AND PURPOSE: Recent studies reported therapeutic effects of monotherapy with either tumour suppressor p53 (p53) agonist or hypoxia-inducible factor 2α (HIF-2α) antagonist for pulmonary hypertension (PH). This study investigated whether a combined treatment of p53 agonist, Nutlin3a, and HIF-2α antagonist, PT2385, would be more effective than monotherapy, based on the cell type-divergent regulation of p53 in pulmonary arterial smooth muscle cells (PASMC) and endothelial cells (PAEC) in patients and animals with PH. EXPERIMENTAL APPROACH: The SU5416/hypoxia-induced PH (SuHx-PH) rat model was used, along with cultured human PASMC and PAEC. Western blot, RT-PCR, siRNA and immunohistochemical methods were used along with echocardiography and studies with isolated pulmonary arteries. KEY RESULTS: Hypoxia-induced proliferation of PASMC is associated with decreased p53, whereas hypoxia-induced PAEC apoptosis is associated with increased p53, via a HIF-2α-dependent mechanism. Combined treatment with Nutlin3a and PT2385 is more effective by simultaneously inhibiting the hypoxia-induced PASMC proliferation and PAEC apoptosis, overcoming the side-effects of monotherapy. These are (i) Nutlin3a exacerbates hypoxia-induced PAEC apoptosis by inducing p53 in PAEC and (ii) PT2385 inhibits PAEC apoptosis because HIF-2α is predominantly expressed in PAEC but lacks direct effects on the hypoxia-induced PASMC proliferation. In rats, combination treatment is more effective than monotherapy in reversing established SuHx-PH, especially in protecting pulmonary arterial vasculature, by normalizing smooth muscle thickening, protecting against endothelial damage and improving function. CONCLUSION AND IMPLICATIONS: Combination treatment confers greater therapeutic efficacy against PH through a selective modulation of p53 and HIF-2α in PASMC and PAEC.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Hipertensão Pulmonar , Proteína Supressora de Tumor p53 , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Hipertensão Pulmonar/patologia , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Miócitos de Músculo Liso , Artéria Pulmonar , Ratos , Proteína Supressora de Tumor p53/agonistas
10.
Heliyon ; 8(12): e12476, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36619462

RESUMO

Scedosporium apiospermum is a ubiquitous organism present in the environment and is rarely identified in rhinosinusitis. We report a case of invasive rhinosinusitis with Scedosporium apiospermum which made a definite diagnosis by metagenomic next-generation sequencing (mNGS) from a biopsy sample. The resection of the Scedosporium apiospermum pathological mass was performed with low-temperature plasma radiofrequency ablation. Six months of continuous oral voriconazole treatment was followed. The patient was asymptomatic with no signs of recurrence during the next 1-year follow-up.

13.
Br J Pharmacol ; 178(1): 217-235, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33140842

RESUMO

BACKGROUND AND PURPOSE: Pulmonary veno-occlusive disease (PVOD) is a rare disease characterized by the obstruction of small pulmonary veins leading to pulmonary hypertension. However, the mechanisms underlying pulmonary vessel occlusion remain largely unclear. EXPERIMENTAL APPROACH: A mitomycin C (MMC)-induced PVOD rat model was used as in vivo animal model, and primarily cultured rat pulmonary microvascular endothelial cells (PMVECs) were used as in vitro cell model. KEY RESULTS: Our data suggested an endothelial-to-mesenchymal transition (EndoMT) may be present in the pulmonary microvessels isolated from either PVOD patients or MMC-induced PVOD rats. In comparison to the control vessels, vessels from both PVOD patients and PVOD rats had co-localized staining of specific endothelial marker von Willebrand factor (vWF) and mesenchymal marker α-smooth muscle actin (α-SMA), suggesting the presence of cells that co-express endothelial and mesenchymal markers. In both the lung tissues of MMC-induced PVOD rats and MMC-treated rat PMVECs there were decreased levels of endothelial markers (e.g. VE-cadherin and CD31) and increased mesenchymal markers (e.g. vimentin, fibronectin and α-SMA) were detected indicating EndoMT. Moreover, MMC-induced activation of the TGFß/Smad3/Snail axis, while blocking this pathway with either selective Smad3 inhibitor (SIS3) or small interfering RNA (siRNA) against Smad3, dramatically abolished the MMC-induced EndoMT. Notably, treatment with SIS3 remarkably prevented the pathogenesis of MMC-induced PVOD in rats. CONCLUSIONS AND IMPLICATIONS: Our data indicated that targeted inhibition of Smad3 leads to a potential, novel strategy for PVOD therapy, likely by inhibiting the EndoMT in pulmonary microvasculature.


Assuntos
Hipertensão Pulmonar , Pneumopatia Veno-Oclusiva , Animais , Células Endoteliais , Endotélio , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Mitomicina , Ratos , Proteína Smad3
14.
Br J Pharmacol ; 178(1): 203-216, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080042

RESUMO

BACKGROUND AND PURPOSE: Pulmonary hypertension related to pulmonary fibrosis is classed as WHO Group III, one of the most common groups which lacks effective treatment options. In this study, we aimed to uncover the underlying mechanisms, particularly the involvement of the BMP9/BMPR2/SMAD signalling pathway, in this subtype of pulmonary hypertension. EXPERIMENTAL APPROACH: Male Sprague Dawley rats were used to establish a model of pulmonary hypertension with pulmonary fibrosis, induced by bleomycin. Haemodynamic and lung functions were measured, along with histological and immunohistochemical examinations. Primary cultures of rat pulmonary microvascular endothelial cells (PMVECs) were analysed with western blots, apoptosis assays and immunohistochemistry. KEY RESULTS: Early (7 days) after bleomycin treatment of rats, pulmonary arterial thickening and severe loss of pulmonary arterial endothelium were observed, followed (14 days) by increased right ventricular systolic pressure and right ventricular hypertrophy. Marked down-regulation of the BMP9/BMPR2/SMAD signalling pathway was markedly down-regulated in lung tissues from bleomycin-treated rats (throughout the 7- to 35-day treatment period) and bleomycin-treated rat PMVECs, along with excessive cell apoptosis and loss of pulmonary arterial endothelium. Treatment with recombinant human bone morphogenetic protein 9 (rhBMP9) attenuated these aspects of bleomycin-induced pulmonary hypertension, by restoring disrupted BMP9/BMPR2/SMAD signalling. CONCLUSION AND IMPLICATIONS: In bleomycin-treated rats, early and persisting suppression of the BMP9/BMPR2/SMAD signalling pathway triggered severe loss of pulmonary arterial endothelium and subsequent pulmonary arterial vascular remodelling, contributing to the development of pulmonary hypertension. Therapeutic approaches reinforcing BMP9/BMPR2/SMAD signalling might be ideal strategies for this subtype of pulmonary hypertension. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Células Endoteliais , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Artéria Pulmonar , Fibrose Pulmonar/induzido quimicamente , Ratos , Ratos Sprague-Dawley
15.
Hypertension ; 76(5): 1589-1599, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32921193

RESUMO

Alteration in microbiota composition of respiratory tract has been reported in the progression of many chronic lung diseases, yet, the correlation and causal link between respiratory tract microbiota and the disease development of pulmonary hypertension (PH) remain largely unknown. This study aims to define and compare the respiratory microbiota composition in pharyngeal swab samples between patients with PH and reference subjects. A total of 118 patients with PH and 79 reference subjects were recruited, and the pharyngeal swab samples were collected to sequence the 16S ribosomal RNA (16S rRNA) V3-V4 region of respiratory microbiome. The relative abundances in patients with PH were profoundly different from reference subjects. The Ace and Sobs indexes indicated that the microbiota richness of pharynx value is significantly higher; while the community diversity value is markedly lower in patients with PH, comparing to those of the reference subjects. The microbiota on pharynx showed a different profile between the 2 groups by principal component analysis. The linear discriminant analysis effect size also revealed a significantly higher proportion of Streptococcus, Lautropia, and Ralstonia in patients with PH than reference subjects. The linear discriminant analysis effect size output, which represents the microbial gene functions, suggest genes related to bacterial invasion of epithelial cells, bacterial toxins were enhanced, while genes related to energy metabolism, protein digestion and absorption, and cell division pathways were attenuated in patients with PH versus reference subjects. In summary, our study reports the first systematic definition and divergent profile of the upper respiratory tract microbiota between patients with PH and reference subjects.


Assuntos
Hipertensão Pulmonar/microbiologia , Microbiota/genética , Sistema Respiratório/microbiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
16.
Waste Manag ; 116: 9-21, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32781409

RESUMO

Tire scrap is a solid waste that can be potentially used as the feedstock for the production of liquid fuels via the thermochemical process such as catalytic pyrolysis. Nevertheless, it remains challenging to develop the efficient while cost-effective catalyst for the catalytic pyrolysis of tire. In this study, the pyrolysis of tire scrap at 500 °C with the biochar produced from the gasification of poplar wood at 850 °C were conducted. The biochar catalyst significantly affected the evolution of the volatiles and the char properties, while had a slight impact on the yields of the gas, tar and char products. The biochar catalyst catalyzes the cracking of limonene, a major liquid product in tar, to form significantly more propane in gases and alkanes or alkenes in the tar. In addition, the interaction between the biochar with the oxygen-containing organics promoted the re-condensation reaction, which increased the oxygen content in the char, but the biochar catalyst did not influence the evolution of the aromatics. Additionally, the catalytic pyrolysis also makes the biochar catalyst more oxygen-deficient and more resistant towards oxidation. Concluding all the results showed that biochar, which were produced from the gasification of poplar wood can be a potential catalyst for the pyrolysis of tire.


Assuntos
Carvão Vegetal , Pirólise , Catálise , Gases
17.
Exp Physiol ; 105(11): 1950-1959, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32851703

RESUMO

NEW FINDINGS: What is the central question of this study? What is the role of breast cancer type 1 interacting protein C-terminal helicase 1 (BRIP1) polymorphism in chronic obstructive pulmonary disease (COPD)? What is the main finding and its importance? Variant rs10744996C>A of BRIP1 increases the susceptibility of the Mongolian population to COPD. The expression of BRIP1 was significantly reduced in cigarette smoke extract-treated airway epithelial cells. ABSTRACT: Cigarette smoke is a major environmental pollutant that can induce DNA damage in humans. The development and progression of chronic obstructive pulmonary disease (COPD) are known to be related to the impairment of DNA repair. Breast cancer type 1 interacting protein C-terminal helicase 1 (BRIP1) plays an important role in DNA interstrand crosslink repair and double-strand break repair. However, the role of BRIP1 polymorphisms in COPD has not been previously described. In this study, whole genome sequencing was used to identify mutations, and single nucleotide polymorphism (SNP) genotyping was used to verify the selected SNPs. In addition the BRIP1 expression levels in 16HBE and A549 airway epithelial cells treated with or without cigarette smoke extract (CSE) were measured using western blotting and RT-qPCR. Rs10744996C>A in the 3'-untranslated region (3'UTR) of BRIP1 was then genotyped in 1296 COPD cases and 988 healthy control subjects from a Mongolian population in northern China. Significant differences in the distribution of rs10744996C>A variants between COPD and control groups (P = 0.001) were identified. Rs10744996C>A was found to be associated with significantly increased COPD risk (adjusted odds ratio = 1.60, 95% CI = 1.30-1.98, P < 0.0001). Additionally, rs10744996A genotype was found to interact with a family history of cancer and a history of x-ray exposure (P = 0.028 and 0.009, respectively). BRIP1 expression levels in 16HBE and A549 cells treated with CSE were significantly lower compared to the control treated cells. The rs10744996C>A variant of BRIP1 increased the COPD susceptibility of the Mongolian population cohort. BRIP1 mRNA and protein expression levels were significantly reduced in conjunction with CSE-induced DNA damage in 16HBE and A549 cells.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Doença Pulmonar Obstrutiva Crônica , RNA Helicases/genética , Células A549 , China , Células Epiteliais/metabolismo , Humanos , Doença Pulmonar Obstrutiva Crônica/etnologia , Doença Pulmonar Obstrutiva Crônica/genética , RNA Mensageiro/metabolismo , Fumaça/efeitos adversos
18.
J Hazard Mater ; 399: 123075, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32544769

RESUMO

Polyethylene is a major contributor of plastic waste, which can be converted into liquid fuel via catalytic pyrolysis. In this study, the pyrolysis of light or heavy density polyethylene (LDPE and HDPE) and their mixture with the biochar produced from gasification of poplar wood as catalyst was investigated. The results showed that, during the co-pyrolysis of LDPE and HDPE in absence or presence of biochar catalyst, cross-interaction of reaction intermediates originated from the degradation of LDPE and HDPE substantially promoted the formation of gaseous products and the evolution of heavy organics with π-conjugated structures in the tar. During the pyrolysis of HDPE, more heavy tar while less wax was produced, while it was contrary during the pyrolysis of LDPE. In the catalytic pyrolysis of LDPE, the volatiles could be effectively cracked over the biochar catalyst, forming more gases, while in the catalytic pyrolysis of HDPE, instead of catalyzing the cracking of the heavy components, the biochar catalyzed the polymerisation reactions. The properties of the biochar catalyst in terms of crystallinity, surface functionality, and internal structures also changed remarkably due to the transfer of oxygen-containing species from the polyethylene to biochar and the interaction of biochar with volatiles in the pyrolysis.


Assuntos
Polietileno , Pirólise , Catálise , Carvão Vegetal
19.
Bioresour Technol ; 304: 123002, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32078904

RESUMO

This study studied the change of functionalities in the biochar formed in pyrolysis of poplar wood in a wide range of temperature. The in situ Diffuse Reflectance Infrared Fourier transform spectroscopy characterization indicated that aldehydes and ketones functionalities formation initiated at 100 °C, dominated at 300 to 500 °C. Carboxyl group was less stable than carbonyls. Cellulose crystal in poplar decomposed slightly at 300 °C and significantly at 350 °C. The temperature from 250 to 350 °C significantly affected biochar yields, while the drastic fusion of the ring structures in biochar occurred from 550 to 650 °C, making biochar more aliphatic while less more aromatic. High pyrolysis temperature also created more defective structures in the biochar and favored the absorption of the CO2 generated during the pyrolysis. The results provide the reference information for understanding the structural configuration and evolution of the functionalities during in pyrolysis of poplar biomass.


Assuntos
Populus , Pirólise , Carvão Vegetal , Temperatura Alta , Temperatura
20.
Am J Respir Cell Mol Biol ; 62(1): 49-60, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211918

RESUMO

For decades, stem cell therapies for pulmonary hypertension (PH) have progressed from laboratory hypothesis to clinical practice. Promising preclinical investigations have laid both a theoretical and practical foundation for clinical application of mesenchymal stem cells (MSCs) for PH therapy. However, the underlying mechanisms are still poorly understood. We sought to study the effects and mechanisms of MSCs on the treatment of PH. For in vivo experiments, the transplanted GFP+ MSCs were traced at different time points in the lung tissue of a chronic hypoxia-induced PH (CHPH) rat model. The effects of MSCs on PH pathogenesis were evaluated in both CHPH and sugen hypoxia-induced PH models. For in vitro experiments, primary pulmonary microvascular endothelial cells were cultured and treated with the MSC conditioned medium. The specific markers of endothelial-to-mesenchymal transition (EndMT) and cell migration properties were measured. MSCs decreased pulmonary arterial pressure and ameliorated the collagen deposition, and reduced the thickening and muscularization in both CHPH and sugen hypoxia-induced PH rat models. Then, MSCs significantly attenuated the hypoxia-induced EndMT in both the lungs of PH models and primary cultured rat pulmonary microvascular endothelial cells, as reflected by increased mesenchymal cell markers (fibronectin 1 and vimentin) and decreased endothelial cell markers (vascular endothelial cadherin and platelet endothelial cell adhesion molecule-1). Moreover, MSCs also markedly inhibited the protein expression and degradation of hypoxia-inducible factor-2α, which is known to trigger EndMT progression. Our data suggest that MSCs successfully prevent PH by ameliorating pulmonary vascular remodeling, inflammation, and EndMT. Transplantation of MSCs could potentially be a powerful therapeutic approach against PH.


Assuntos
Células Endoteliais/patologia , Transição Epitelial-Mesenquimal/fisiologia , Hipertensão Pulmonar/patologia , Pulmão/metabolismo , Células-Tronco Mesenquimais/patologia , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Fibroblastos/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Músculo Liso/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA