Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6858, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824214

RESUMO

Muntjac deer have experienced drastic karyotype changes during their speciation, making it an ideal model for studying mechanisms and functional consequences of mammalian chromosome evolution. Here we generated chromosome-level genomes for Hydropotes inermis (2n = 70), Muntiacus reevesi (2n = 46), female and male M. crinifrons (2n = 8/9) and a contig-level genome for M. gongshanensis (2n = 8/9). These high-quality genomes combined with Hi-C data allowed us to reveal the evolution of 3D chromatin architectures during mammalian chromosome evolution. We find that the chromosome fusion events of muntjac species did not alter the A/B compartment structure and topologically associated domains near the fusion sites, but new chromatin interactions were gradually established across the fusion sites. The recently borne neo-Y chromosome of M. crinifrons, which underwent male-specific inversions, has dramatically restructured chromatin compartments, recapitulating the early evolution of canonical mammalian Y chromosomes. We also reveal that a complex structure containing unique centromeric satellite, truncated telomeric and palindrome repeats might have mediated muntjacs' recurrent chromosome fusions. These results provide insights into the recurrent chromosome tandem fusion in muntjacs, early evolution of mammalian sex chromosomes, and reveal how chromosome rearrangements can reshape the 3D chromatin regulatory conformations during species evolution.


Assuntos
Aberrações Cromossômicas/veterinária , Cromossomos de Mamíferos/genética , Cervo Muntjac/genética , Animais , Cromatina/genética , Aberrações Cromossômicas/estatística & dados numéricos , Mapeamento de Sequências Contíguas , Cervos/classificação , Cervos/genética , Demografia , Evolução Molecular , Feminino , Genoma/genética , Masculino , Cervo Muntjac/classificação , Filogenia , Cromossomos Sexuais/genética , Sintenia
2.
Sci Adv ; 7(12)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33731352

RESUMO

The suite of adaptations associated with the extreme stature of the giraffe has long interested biologists and physiologists. By generating a high-quality chromosome-level giraffe genome and a comprehensive comparison with other ruminant genomes, we identified a robust catalog of giraffe-specific mutations. These are primarily related to cardiovascular, bone growth, vision, hearing, and circadian functions. Among them, the giraffe FGFRL1 gene is an outlier with seven unique amino acid substitutions not found in any other ruminant. Gene-edited mice with the giraffe-type FGFRL1 show exceptional hypertension resistance and higher bone mineral density, both of which are tightly connected with giraffe adaptations to high stature. Our results facilitate a deeper understanding of the molecular mechanism underpinning distinct giraffe traits, and may provide insights into the study of hypertension in humans.


Assuntos
Girafas , Hipertensão , Aclimatação , Adaptação Fisiológica , Animais , Genoma , Girafas/genética , Hipertensão/genética , Camundongos
4.
Science ; 364(6446)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31221828

RESUMO

The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants.


Assuntos
Genoma , Ruminantes/classificação , Ruminantes/genética , Animais , Evolução Molecular , Filogenia , Análise de Sequência de DNA
5.
Science ; 364(6446)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31221830

RESUMO

Ruminants are the only extant mammalian group possessing bony (osseous) headgear. We obtained 221 transcriptomes from bovids and cervids and sequenced three genomes representing the only two pecoran lineages that convergently lack headgear. Comparative analyses reveal that bovid horns and cervid antlers share similar gene expression profiles and a common cellular basis developed from neural crest stem cells. The rapid regenerative properties of antler tissue involve exploitation of oncogenetic pathways, and at the same time some tumor suppressor genes are under strong selection in deer. These results provide insights into the evolutionary origin of ruminant headgear as well as mammalian organ regeneration and oncogenesis.


Assuntos
Chifres de Veado/fisiologia , Regeneração/genética , Ruminantes/genética , Ruminantes/fisiologia , Animais , Chifres de Veado/metabolismo , Evolução Biológica , Carcinogênese/genética , Genes Supressores de Tumor , Neoplasias/genética , Neoplasias/veterinária , Organogênese/genética , Seleção Genética , Transcriptoma
6.
Gigascience ; 7(2)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29267854

RESUMO

Background: Milu, also known as Père David's deer (Elaphurus davidianus), was widely distributed in East Asia but recently experienced a severe bottleneck. Only 18 survived by the end of the 19th century, and the current population of 4500 individuals was propagated from just 11 kept by the 11th British Duke of Bedford. This species is known for its distinguishable appearance, the driving force behind which is still a mystery. To aid efforts to explore these phenomena, we constructed a draft genome of the species. Findings: In total, we generated 321.86 gigabases (Gb) of raw DNA sequence from whole-genome sequencing of a male milu deer using an Illumina HiSeq 2000 platform. Assembly yielded a final genome with a scaffold N50 size of 3.03 megabases (Mb) and a total length of 2.52 Gb. Moreover, we identified 20 125 protein-coding genes and 988.1 Mb of repetitive sequences. In addition, homology-based searches detected 280 rRNA, 1335 miRNA, 1441 snRNA, and 893 tRNA sequences in the milu genome. The divergence time between E. davidianus and Bos taurus was estimated to be about 28.20 million years ago (Mya). We identified 167 species-specific genes and 293 expanded gene families in the milu lineage. Conclusions: We report the first reference genome of milu, which will provide a valuable resource for studying the species' demographic history of severe bottleneck and the genetic mechanism(s) of special phenotypic evolution.


Assuntos
Evolução Biológica , Mapeamento Cromossômico/métodos , Cervos/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Bovinos , Cervos/classificação , Masculino , MicroRNAs/classificação , MicroRNAs/genética , Fases de Leitura Aberta , Filogenia , Proteínas/classificação , Proteínas/genética , RNA Ribossômico/classificação , RNA Ribossômico/genética , RNA Nuclear Pequeno/classificação , RNA Nuclear Pequeno/genética , RNA de Transferência/classificação , RNA de Transferência/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA