RESUMO
This article reviews of the original research published by Wu et al in the World Journal of Gastroenterology, delving into the pivotal role of the gut microbiota in the pathogenesis of Crohn's disease (CD). Insights were gained from fecal microbiota transplantation (FMT) in mouse models, revealing the intricate interplay between the gut microbiota, mesenteric adipose tissue (MAT), and creeping fat. The study uncovered the characteristics of inflammation and fibrosis in the MAT and intestinal tissues of patients with CD; moreover, through the FMT mouse model, it observed the impact of samples from healthy patients and those with CD on symptoms. The pathogenesis of CD is complex, and its etiology remains unclear; however, it is widely believed that gut microbiota dysbiosis plays a significant role. Recently, with the development and application of next-generation sequencing technology, research on the role of fungi in the pathogenesis and chronicity of CD has deepened. This editorial serves as a supplement to the research by Wu et al who discussed advances related to the study of fungi in CD.
Assuntos
Doença de Crohn , Modelos Animais de Doenças , Disbiose , Transplante de Microbiota Fecal , Fungos , Microbioma Gastrointestinal , Doença de Crohn/microbiologia , Doença de Crohn/imunologia , Humanos , Animais , Disbiose/microbiologia , Fungos/patogenicidade , Intestinos/microbiologia , Camundongos , Tecido Adiposo/microbiologia , Mesentério/microbiologiaRESUMO
Cylindrical vector beams (CVBs), characterized by their spatially non-uniform but rotationally symmetric polarization distributions, have garnered considerable attention due to their unique properties. In this Letter, we demonstrate the generation of cylindrical vector beams directly from a Yb-doped Mamyshev oscillator (MO). Both the radially and azimuthally polarized vector beams are achieved with a pulse duration of 3.6â ps and a pulse energy of 8.2â nJ at the repetition rate of 15.25â MHz. We also find that the filtered linearly polarized beam from the output CVBs can be homogeneously dechirped to 114â fs using the external grating pairs, indicating the potential intracavity pulse compression capability for the output CVBs. Simultaneously, ultrafast scalar Gaussian beams can also be obtained from another arm. These results can give insights into the experimental design and realization of high-energy and high-power structured (CVB or vortex) ultrashort lasers.
RESUMO
This editorial takes a deeper look at the insights provided by Soresi and Giannitrapani, which examined the therapeutic potential of glucagon-like peptide-1 receptor agonists (GLP-1RAs) for metabolic dysfunction-associated fatty liver disease. We provide supplementary insights to their research, highlighting the broader systemic implications of GLP-1RAs, synthesizing the current understanding of their mechanisms and the trajectory of research in this field. GLP-1RAs are revolutionizing the treatment of type 2 diabetes mellitus and beyond. Beyond glycemic control, GLP-1RAs demonstrate cardiovascular and renal protective effects, offering potential in managing diabetic kidney disease al-ongside renin-angiotensin-aldosterone system inhibitors. Their role in bone metabolism hints at benefits for diabetic osteoporosis, while the neuroprotective properties of GLP-1RAs show promise in Alzheimer's disease treatment by modulating neuronal insulin signaling. Additionally, they improve hormonal and metabolic profiles in polycystic ovary syndrome. This editorial highlights the multifaceted mechanisms of GLP-1RAs, emphasizing the need for ongoing research to fully realize their therapeutic potential across a range of multisystemic diseases.
Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Controle Glicêmico , Hipoglicemiantes , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Controle Glicêmico/métodos , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Agonistas do Receptor do Peptídeo 1 Semelhante ao GlucagonRESUMO
The tetraspanin family of membrane proteins is essential for controlling different biological processes such as cell migration, penetration, adhesion, growth, apoptosis, angiogenesis and metastasis. The present review summarized the current knowledge regarding the expression and roles of tetraspanins in different types of cancer of the digestive system, including gastric, liver, colorectal, pancreatic, esophageal and oral cancer. Depending on the type and context of cancer, tetraspanins can act as either tumor promoters or suppressors. In the present review, the importance of tetraspanins in serving as biomarkers and targets for different types of digestive systemrelated cancer was emphasized. Additionally, the molecular mechanisms underlying the involvement of tetraspanins in cancer progression and metastasis were explored. Furthermore, the current challenges are addressed and future research directions for advancing investigations related to tetraspanins in the context of digestive system malignancies are proposed.
Assuntos
Neoplasias do Sistema Digestório , Tetraspaninas , Humanos , Tetraspaninas/metabolismo , Tetraspaninas/genética , Neoplasias do Sistema Digestório/metabolismo , Neoplasias do Sistema Digestório/genética , Neoplasias do Sistema Digestório/patologia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , AnimaisRESUMO
Non-coding RNAs have emerged as important regulators of gene expression and contributors to many diseases. LncRNA Morrbid, a long non-coding RNA, has been widely studied in recent years. Current literature reports that lncRNA Morrbid is involved in various diseases such as tumors, cardiovascular diseases, inflammatory diseases and metabolic disorder. However, controversial conclusions exist in current studies. As a potential therapeutic target, it is necessary to comprehensively review the current evidence. In this work, we carefully review the literature on Morrbid and discuss each of the hot topics related to lncRNA Morrbid.
RESUMO
Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.
Assuntos
Hormônios Esteroides Gonadais , Músculo Liso Vascular , Miócitos de Músculo Liso , Humanos , Hormônios Esteroides Gonadais/fisiologia , Hormônios Esteroides Gonadais/farmacologia , Miócitos de Músculo Liso/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Animais , Fenótipo , Transdução de Sinais/fisiologiaRESUMO
A rapid, sensitive and easy-to-implement approach is proposed for the detection of pathogenic nucleic acids based on phase-based plasmonic spectroscopy of metallic gratings. The plasmonic sensors were fabricated using interference lithography and functionalized with single-stranded DNA probes to specific target SARS-CoV-2. The biosensor achieved the detection of 40 fM viral nucleic acids within 5 min; furthermore, a detection capability of 1 aM (0.6 copies/µL) was acquired when combining with the recombinase polymerase amplification. Additionally, the multiplexed sensing system was demonstrated to simultaneously detect three genomic sequences on a single sensor chip, thereby enhancing diagnostic accuracy and enabling high-throughput detection.
RESUMO
Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.
Assuntos
Cardiomiopatias Diabéticas , Fatores de Crescimento de Fibroblastos , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/metabolismo , Humanos , Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologiaRESUMO
Methylglyoxal (MGO), a reactive dicarbonyl metabolite of glucose, plays a prominent role in the pathogenesis of diabetes and vascular complications. Our previous studies have shown that MGO is associated with increased oxidative stress, inflammatory responses and apoptotic cell death in endothelial cells (ECs). Pyroptosis is a novel form of inflammatory caspase-1-dependent programmed cell death that is closely associated with the activation of the NOD-like receptor 3 (NLRP3) inflammasome. Recent studies have shown that sulforaphane (SFN) can inhibit pyroptosis, but the effects and underlying mechanisms by which SFN affects MGO-induced pyroptosis in endothelial cells have not been determined. Here, we found that SFN prevented MGO-induced pyroptosis by suppressing oxidative stress and inflammation in vitro and in vivo. Our results revealed that SFN dose-dependently prevented MGO-induced HUVEC pyroptosis, inhibited pyroptosis-associated biochemical changes, and attenuated MGO-induced morphological alterations in mitochondria. SFN pretreatment significantly suppressed MGO-induced ROS production and the inflammatory response by inhibiting the NLRP3 inflammasome (NLRP3, ASC, and caspase-1) signaling pathway by activating Nrf2/HO-1 signaling. Similar results were obtained in vivo, and we demonstrated that SFN prevented MGO-induced oxidative damage, inflammation and pyroptosis by reversing the MGO-induced downregulation of the NLRP3 signaling pathway through the upregulation of Nrf2. Additionally, an Nrf2 inhibitor (ML385) noticeably attenuated the protective effects of SFN on MGO-induced pyroptosis and ROS generation by inhibiting the Nrf2/HO-1 signaling pathway, and a ROS scavenger (NAC) and a permeability transition pore inhibitor (CsA) completely reversed these effects. Moreover, NLRP3 inhibitor (MCC950) and caspase-1 inhibitor (VX765) further reduced pyroptosis in endothelial cells that were pretreated with SFN. Collectively, these findings broaden our understanding of the mechanism by which SFN inhibits pyroptosis induced by MGO and suggests important implications for the potential use of SFN in the treatment of vascular diseases.
Assuntos
Glucose , Células Endoteliais da Veia Umbilical Humana , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Piroptose , Aldeído Pirúvico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/farmacologia , Humanos , Estresse Oxidativo/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Animais , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Glucose/metabolismo , Isotiocianatos/farmacologia , Camundongos , Sulfóxidos/farmacologia , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Masculino , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacosRESUMO
Objectives: This study aims to assess the predictive capability of synthetic MRI in assessing neurodevelopmental outcomes for extremely preterm neonates with low-grade Germinal Matrix-Intraventricular Hemorrhage (GMH-IVH). The study also investigates the potential enhancement of predictive performance by combining relaxation times from different brain regions. Materials and methods: In this prospective study, 80 extremely preterm neonates with GMH-IVH underwent synthetic MRI around 38 weeks, between January 2020 and June 2022. Neurodevelopmental assessments at 18 months of corrected age categorized the infants into two groups: those without disability (n = 40) and those with disability (n = 40), with cognitive and motor outcome scores recorded. T1, T2 relaxation times, and Proton Density (PD) values were measured in different brain regions. Logistic regression analysis was utilized to correlate MRI values with neurodevelopmental outcome scores. Synthetic MRI metrics linked to disability were identified, and combined models with independent predictors were established. The predictability of synthetic MRI metrics in different brain regions and their combinations were evaluated and compared with internal validation using bootstrap resampling. Results: Elevated T1 and T2 relaxation times in the frontal white matter (FWM) and caudate were significantly associated with disability (p < 0.05). The T1-FWM, T1-Caudate, T2-FWM, and T2-Caudate models exhibited overall predictive performance with AUC values of 0.751, 0.695, 0.856, and 0.872, respectively. Combining these models into T1-FWM + T1-Caudate + T2-FWM + T2-Caudate resulted in an improved AUC of 0.955, surpassing individual models (p < 0.05). Bootstrap resampling confirmed the validity of the models. Conclusion: Synthetic MRI proves effective in early predicting adverse outcomes in extremely preterm infants with GMH-IVH. The combination of T1-FWM + T1-Caudate + T2-FWM + T2-Caudate further enhances predictive accuracy, offering valuable insights for early intervention strategies.
RESUMO
INTRODUCTION: Gut microbes and their metabolites play crucial roles in the pathogenesis of diabetic kidney disease (DKD). However, which one and how specific gut-derived metabolites affect the progression of DKD remain largely unknown. OBJECTIVES: This study aimed to investigate the potential roles of indole-3-propionic acid (IPA), a microbial metabolite of tryptophan, in DKD. METHODS: Metagenomic sequencing was performed to analyze the microbiome structure in DKD. Metabolomics screening and validation were conducted to identify characteristic metabolites associated with DKD. The protective effect of IPA on DKD glomerular endothelial cells (GECs) was assessed through in vivo and in vitro experiments. Further validation via western blot, immunoprecipitation, gene knockout, and site-directed mutation elucidated the mechanism of IPA on mitochondrial injury. RESULTS: Alterations in gut microbial community structure and dysregulated tryptophan metabolism were evident in DKD mice. Serum IPA levels were significantly reduced in DKD patients and correlated with fasting blood glucose, HbA1c, urine albumin-to-creatinine ratio (UACR), and estimated glomerular filtration rate (eGFR). IPA supplementation ameliorated albuminuria, bolstered the integrity of the glomerular filtration barrier, and mitigated mitochondrial impairments in GECs. Mechanistically, IPA hindered SIRT1 phosphorylation-mediated ubiquitin-proteasome degradation, restoring SIRT1's role in promoting PGC-1α deacetylation and nuclear translocation, thereby upregulating genes associated with mitochondrial biosynthesis and antioxidant defense. CONCLUSION: Our findings underscore the potential of the microbial metabolite IPA to attenuate DKD progression, offering novel insights and potential therapeutic strategies for its management.
RESUMO
The abundant expression of circular RNAs (circRNAs) in the central nervous system and their contribution to the pathogenesis of depression suggest that circRNAs are promising therapeutic targets for depression. This study explored the role and mechanism of circKat6b in esketamine's antidepressant effect. We found that intravenous administration of esketamine (5 mg/kg) treatment decreased the circKat6b expression in the astrocytes of hippocampus induced by a chronic unpredictable mild stress (CUMS) mouse model, while the overexpression of circKat6b in the hippocampus significantly attenuated the antidepressant effects of esketamine in depressed mice. RNA-sequencing, RT-PCR, and western blot experiments showed that the stat1 and p-stat1 expression were significantly upregulated in mouse astrocytes overexpressing circKat6b. In the CUMS mouse model, overexpression of circKat6b in the hippocampus significantly reversed the downregulation of p-stat1 protein expression caused by esketamine. Our findings demonstrated that a novel mechanism of the antidepressant like effect of esketamine may be achieved by reducing the expression of circKat6b in the astrocyte of the hippocampus of depressed mice.
RESUMO
BACKGROUND: This study investigated the characteristics of Monson's sphere in Chinese young adult females with individual normal occlusion to provide a reference for oral rehabilitation in prosthodontic and orthodontic treatments. METHODS: Points at the dental cusps and incisal edges were selected from 51 digital mandibular dental models of Chinese young adult females (aged 18-22 years) with individual normal occlusion. Monson's spheres were fitted to the selected points based on the least-squares principle and the radii were calculated. The deviation of each selected point from its relative spherical surface was also calculated. The radii and deviations of these points were examined using conventional descriptive statistics and distributions of the most deviated points inside and outside the spheres were analyzed. RESULTS: The mean radius of Monson's sphere in Chinese young adult females was 79.60 ± 14.13 mm. The deviation of each selected point from its relative sphere surface was 0.38 ± 0.30 mm. The maximum deviations inside and outside the sphere were 0.93 ± 0.25 mm and 0.95 ± 0.30 mm, respectively. The most deviated points outside the spheres were mainly distributed at the distolingual cusps of the mandibular second permanent molars (31.37%), while those inside the spheres were mainly distributed at the mesiolingual cusps of the mandibular first permanent molars (45.10%). CONCLUSIONS: The radius of Monson's sphere in Chinese young adult females was smaller than the classic four-inch value suggested by Monson. Deviation was observed from all selected points to their Monson's sphere surface, with the most deviated points distributed primarily in the molar region.
Assuntos
Mandíbula , Modelos Dentários , Humanos , Feminino , Adulto Jovem , Adolescente , Mandíbula/anatomia & histologia , Oclusão Dentária , Imageamento Tridimensional/métodos , China , População do Leste AsiáticoRESUMO
Long non-coding RNA RP11-64B16.4 (myocardial infarction protection-related lncRNA [MIPRL]) is among the most abundant and the most upregulated lncRNAs in ischemic human hearts. However, its role in ischemic heart disease is unknown. We found MIPRL was conserved between human and mouse and its expression was increased in mouse hearts after acute myocardial infarction (AMI) and in cultured human and mouse cardiomyocytes after hypoxia. The infarcted size, cardiac cell apoptosis, cardiac dysfunction, and cardiac fibrosis were aggravated in MIPRL knockout mice after AMI. The above adverse results could be reversed by re-expression of MIPRL via adenovirus expressing MIPRL. Both in vitro and in vivo, we identified that heat shock protein beta-8 (HSPB8) was a target gene of MIPRL, which was involved in MIPRL-mediated anti-apoptotic effects on cardiomyocytes. We further discovered that MIPRL could combine with the messenger RNA (mRNA) of HSPB8 and increase its expression in cardiomyocytes by enhancing the stability of HSPB8 mRNA. In summary, we have found for the first time that the ischemia-enhanced lncRNA MIPRL protects against AMI via its target gene HSPB8. MIPRL might be a novel promising therapeutic target for ischemic heart diseases such as AMI.
RESUMO
Diffusion Kurtosis Imaging (DKI)-derived metrics are recognized as indicators of maturation in neonates with low-grade germinal matrix and intraventricular hemorrhage (GMH-IVH). However, it is not yet known if these factors are associated with neurodevelopmental outcomes. The objective of this study was to acquire DKI-derived metrics in neonates with low-grade GMH-IVH, and to demonstrate their association with later neurodevelopmental outcomes. In this prospective study, neonates with low-grade GMH-IVH and control neonates were recruited, and DKI were performed between January 2020 and March 2021. These neonates underwent the Bayley Scales of Infant Development test at 18 months of age. Mean kurtosis (MK), radial kurtosis (RK) and gray matter values were measured. Spearman correlation analyses were conducted for the measured values and neurodevelopmental outcome scores. Forty controls (18 males, average gestational age (GA) 30 weeks ± 1.3, corrected GA at MRI scan 38 weeks ± 1) and thirty neonates with low-grade GMH-IVH (13 males, average GA 30 weeks ± 1.5, corrected GA at MRI scan 38 weeks ± 1). Neonates with low-grade GMH-IVH exhibited lower MK and RK values in the PLIC and the thalamus (P < 0.05). The MK value in the thalamus was associated with Mental Development Index (MDI) (r = 0.810, 95% CI 0.695-0.13; P < 0.001) and Psychomotor Development Index (PDI) (r = 0.852, 95% CI 0.722-0.912; P < 0.001) scores. RK value in the caudate nucleus significantly and positively correlated with MDI (r = 0.496, 95% CI 0.657-0.933; P < 0.001) and PDI (r = 0.545, 95% CI 0.712-0.942; P < 0.001) scores. The area under the curve (AUC) were used to assess diagnostic performance of MK and RK in thalamus (AUC = 0.866, 0.787) and caudate nucleus (AUC = 0.833, 0.671) for predicting neurodevelopmental outcomes. As quantitative neuroimaging markers, MK in thalamus and RK in caudate nucleus may help predict neurodevelopmental outcomes in neonates with low-grade GMH-IVH.
Assuntos
Imagem de Tensor de Difusão , Humanos , Masculino , Recém-Nascido , Feminino , Imagem de Tensor de Difusão/métodos , Estudos Prospectivos , Hemorragia Cerebral/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/etiologia , Lactente , Hemorragia Cerebral Intraventricular/diagnóstico por imagem , Idade Gestacional , Desenvolvimento Infantil , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologiaRESUMO
Cyclin D1 has been recognized as an oncogene due to its abnormal upregulation in different types of cancers. Here, we demonstrated that cyclin D1 is SUMOylated, and we identified Itch as a specific E3 ligase recognizing SUMOylated cyclin D1 and mediating SUMO-induced ubiquitination and proteasome degradation of cyclin D1. We generated cyclin D1 mutant mice with mutations in the SUMOylation site, phosphorylation site, or both sites of cyclin D1, and found that double mutant mice developed a Mantle cell lymphoma (MCL)-like phenotype. We showed that arsenic trioxide (ATO) enhances cyclin D1 SUMOylation-mediated degradation through inhibition of cyclin D1 deSUMOylation enzymes, leading to MCL cell apoptosis. Treatment of severe combined immunodeficiency (SCID) mice grafted with MCL cells with ATO resulted in a significant reduction in tumor growth. In this study, we provide novel insights into the mechanisms of MCL tumor development and cyclin D1 regulation and discover a new strategy for MCL treatment.
RESUMO
The mechanism by which aging induces aortic aneurysm and dissection (AAD) remains unclear. A total of 430 participants were recruited for the screening of differentially expressed plasma microRNAs (miRNAs). We found that miR-1204 is significantly increased in both the plasma and aorta of elder patients with AAD and is positively correlated with age. Cell senescence induces the expression of miR-1204 through p53 interaction with plasmacytoma variant translocation 1, and miR-1204 induces vascular smooth muscle cell (VSMC) senescence to form a positive feedback loop. Furthermore, miR-1204 aggravates angiotensin II-induced AAD formation, and inhibition of miR-1204 attenuates ß-aminopropionitrile monofumarate-induced AAD development in mice. Mechanistically, miR-1204 directly targets myosin light chain kinase (MYLK), leading to the acquisition of a senescence-associated secretory phenotype (SASP) by VSMCs and loss of their contractile phenotype. MYLK overexpression reverses miR-1204-induced VSMC senescence, SASP and contractile phenotypic changes, and the decrease of transforming growth factor-ß signaling pathway. Our findings suggest that aging aggravates AAD via the miR-1204-MYLK signaling axis.
Assuntos
Envelhecimento , Aneurisma Aórtico , Dissecção Aórtica , Senescência Celular , MicroRNAs , Músculo Liso Vascular , Quinase de Cadeia Leve de Miosina , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Envelhecimento/genética , Envelhecimento/metabolismo , Angiotensina II/metabolismo , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/genética , Aneurisma Aórtico/patologia , Dissecção Aórtica/metabolismo , Dissecção Aórtica/genética , Dissecção Aórtica/patologia , Proteínas de Ligação ao Cálcio , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genéticaRESUMO
Ischemic heart disease (IHD) is a leading cause of disability and death worldwide, with immune regulation playing a crucial role in its pathogenesis. Various immune cells are involved, and as one of the key immune cells residing in the heart, macrophages play an indispensable role in the inflammatory and reparative processes during cardiac ischemia. Exosomes, extracellular vesicles containing lipids, nucleic acids, proteins, and other bioactive molecules, have emerged as important mediators in the regulatory functions of macrophages and hold promise as a novel therapeutic target for IHD. This review summarizes the regulatory mechanisms of different subsets of macrophages and their secreted exosomes during cardiac ischemia over the past five years. It also discusses the current status of clinical research utilizing macrophages and their exosomes, as well as strategies to enhance their therapeutic efficacy through biotechnology. The aim is to provide valuable insights for the treatment of IHD.
Assuntos
Exossomos , Macrófagos , Isquemia Miocárdica , Exossomos/metabolismo , Exossomos/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Isquemia Miocárdica/imunologia , Isquemia Miocárdica/metabolismo , AnimaisRESUMO
The objective of this study was to investigate age-related changes in cashmere production and the population of active secondary hair follicles in cashmere goats across different age groups as well as to explore the association between secondary hair follicle activity and oxidative stress. A total of 104 adult Inner Mongolian ewe goats, aged between 2 and 7 years old, were randomly selected as experimental subjects. Skin samples were collected in August 2020 and cashmere samples were collected in April 2021. The cashmere fiber yield, staple length, and diameter showed age-related variations in cashmere goats aged 2 to 7 years (p < 0.05). Cashmere production was higher in goats aged 2-4 years compared to those aged 5-7 years (p < 0.05). There were no significant differences in the population of primary and secondary hair follicles among goats aged 2 to 7 years. However, the population of active secondary hair follicles varied significantly with age, with the younger group (aged 2-4 years) having a higher population than those aged 5-7 years (p < 0.05). A moderate negative correlation was observed between cashmere fiber diameter and the population of active secondary hair follicles (p < 0.05). Age-related variations in skin antioxidant capacity and oxidative damage were observed among cashmere goats aged 2 to 7 years old (p < 0.05). Goats aged 2 to 4 years exhibited higher antioxidant capacity and lower oxidative damage (p < 0.05). Interestingly, the skin's antioxidant capacity and oxidative damage exhibited significant positive and negative correlations with the population of active secondary hair follicles (p < 0.05). This study presents a novel approach to enhance the activity of secondary hair follicles and improve cashmere production performance through the regulation of oxidative stress.