Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Burns Trauma ; 12: tkae020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957662

RESUMO

Burns are an underestimated serious injury negatively impacting survivors physically, psychologically and economically, and thus are a considerable public health burden. Despite significant advancements in burn treatment, many burns still do not heal or develop serious complications/sequelae. The nucleotide-binding oligomerization domain-like receptors (NLRs) family pyrin domain-containing 3 (NLRP3) inflammasome is a critical regulator of wound healing, including burn wound healing. A better understanding of the pathophysiological mechanism underlying the healing of burn wounds may help find optimal therapeutic targets to promote the healing of burn wounds, reduce complications/sequelae following burn, and maximize the restoration of structure and function of burn skin. This review aimed to summarize current understanding of the roles and regulatory mechanisms of the NLRP3 inflammasome in burn wound healing, as well as the preclinical studies of the involvement of NLRP3 inhibitors in burn treatment, highlighting the potential application of NLRP3-targeted therapy in burn wounds.

3.
Nat Commun ; 15(1): 6248, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048583

RESUMO

Stacking two-dimensional (2D) van der Waals (vdW) materials in a layered bulk structure provides an appealing platform for the emergence of exotic physical properties. As a vdW crystal with exceptional plasticity, InSe offers the opportunity to explore various effects arising from the coupling of its peculiar mechanical behaviors and other physical properties. Here, we employ neutron scattering techniques to investigate the correlations of plastic interlayer slip, lattice anharmonicity, and thermal transport in InSe crystals. Not only are the interlayer slip direction and magnitude well captured by shifts in the Bragg reflections, but we also observe a deviation from the expected Debye behaviour in the heat capacity and lattice thermal conductivity. Combining the experimental data with first-principles calculations, we tentatively attribute the observed evidence of strong phonon-phonon interactions to a combination of a large acoustic-optical frequency resonance and a nesting effect. These findings correlate the macroscopic plastic slip and the microscopic lattice dynamics, providing insights into the mechano-thermo coupling and modulation in 2D vdW materials.

4.
Heliyon ; 10(13): e33704, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040376

RESUMO

The efficacy of berberine in managing diabetes through modulation of gut microbiome has been established through fecal sample analyses. However, relying solely on fecal materials constrains our comprehension of berberine's effects on diverse gastrointestinal locations. This study specifically explores the ileocecal region, a segment characterized by higher microbial diversity than fecal samples. Berberine exhibits a robust hypoglycemic impact by significantly reducing glucose levels in blood and urine. Beyond glycemic control, berberine ameliorates various diabetes-related symptoms in serum, including increased insulin and leptin, but decreased NEFA and MDA. Notably, berberine demonstrates liver-protective functions by alleviating oxidative stress and enhancing hepatic glycogen abundance. These outcomes prompted a high-throughput sequencing analysis of the ileocecal microbiome, revealing an augmentation of beneficial bacterial genera (four genera in the Lachnospiraceae family, Erysipelatoclostridium, and Escherichia-Shigella), along with a reduction in harmful bacterial genera (Romboutsia). Additionally, we predicted the impact of the ileocecal microbiome on clinically relevant factors associated with diabetes. These findings elucidate the multi-pathway mechanisms of berberine in treating T2D, underscoring its potential as a natural anti-diabetic agent or functional food, particularly through the modulation of the gut microbiota.

6.
J Transl Med ; 22(1): 451, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741136

RESUMO

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is a high-prevalence autosomal dominant neuromuscular disease characterized by significant clinical and genetic heterogeneity. Genetic diagnosis of FSHD remains a challenge because it cannot be detected by standard sequencing methods and requires a complex diagnosis workflow. METHODS: We developed a comprehensive genetic FSHD detection method based on Oxford Nanopore Technologies (ONT) whole-genome sequencing. Using a case-control design, we applied this procedure to 29 samples and compared the results with those from optical genome mapping (OGM), bisulfite sequencing (BSS), and whole-exome sequencing (WES). RESULTS: Using our ONT-based method, we identified 59 haplotypes (35 4qA and 24 4qB) among the 29 samples (including a mosaic sample), as well as the number of D4Z4 repeat units (RUs). The pathogenetic D4Z4 RU contraction identified by our ONT-based method showed 100% concordance with OGM results. The methylation levels of the most distal D4Z4 RU and the double homeobox 4 gene (DUX4) detected by ONT sequencing are highly consistent with the BSS results and showed excellent diagnostic efficiency. Additionally, our ONT-based method provided an independent methylation profile analysis of two permissive 4qA alleles, reflecting a more accurate scenario than traditional BSS. The ONT-based method detected 17 variations in three FSHD2-related genes from nine samples, showing 100% concordance with WES. CONCLUSIONS: Our ONT-based FSHD detection method is a comprehensive method for identifying pathogenetic D4Z4 RU contractions, methylation level alterations, allele-specific methylation of two 4qA haplotypes, and variations in FSHD2-related genes, which will all greatly improve genetic testing for FSHD.


Assuntos
Metilação de DNA , Distrofia Muscular Facioescapuloumeral , Sequenciamento Completo do Genoma , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/diagnóstico , Humanos , Metilação de DNA/genética , Haplótipos/genética , Masculino , Estudos de Casos e Controles , Proteínas de Homeodomínio/genética , Feminino , Sequenciamento por Nanoporos/métodos , Adulto
7.
J Asian Nat Prod Res ; : 1-15, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794953

RESUMO

Propolis is a natural resinous compound produced by bees, mixed with their saliva and wax, and has a range of biological benefits, including antioxidant and anti-inflammatory effects. This article reviews the in vivo transformation of propolis flavonoids and their potential influence on drug efficacy. Despite propolis is widely used, there is little research on how the active ingredients of propolis change in the body and how they interact with drugs. Future research will focus on these interactions and the metabolic fate of propolis in vivo.

8.
Nat Commun ; 15(1): 3904, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724502

RESUMO

Chronic wounds are a major complication in patients with diabetes. Here, we identify a therapeutic circRNA and load it into small extracellular vesicles (sEVs) to treat diabetic wounds in preclinical models. We show that circCDK13 can stimulate the proliferation and migration of human dermal fibroblasts and human epidermal keratinocytes by interacting with insulin-like growth factor 2 mRNA binding protein 3 in an N6-Methyladenosine-dependent manner to enhance CD44 and c-MYC expression. We engineered sEVs that overexpress circCDK13 and show that local subcutaneous injection into male db/db diabetic mouse wounds and wounds of streptozotocin-induced type I male diabetic rats could accelerate wound healing and skin appendage regeneration. Our study demonstrates that the delivery of circCDK13 in sEVs may present an option for diabetic wound treatment.


Assuntos
Diabetes Mellitus Experimental , Vesículas Extracelulares , Fibroblastos , Queratinócitos , RNA Circular , Cicatrização , Animais , Humanos , Masculino , Camundongos , Ratos , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Vesículas Extracelulares/química , Fibroblastos/efeitos dos fármacos , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Queratinócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Circular/farmacologia , RNA Circular/uso terapêutico , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
11.
Nat Commun ; 15(1): 2618, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521767

RESUMO

While phonon anharmonicity affects lattice thermal conductivity intrinsically and is difficult to be modified, controllable lattice defects routinely function only by scattering phonons extrinsically. Here, through a comprehensive study of crystal structure and lattice dynamics of Zintl-type Sr(Cu,Ag,Zn)Sb thermoelectric compounds using neutron scattering techniques and theoretical simulations, we show that the role of vacancies in suppressing lattice thermal conductivity could extend beyond defect scattering. The vacancies in Sr2ZnSb2 significantly enhance lattice anharmonicity, causing a giant softening and broadening of the entire phonon spectrum and, together with defect scattering, leading to a ~ 86% decrease in the maximum lattice thermal conductivity compared to SrCuSb. We show that this huge lattice change arises from charge density reconstruction, which undermines both interlayer and intralayer atomic bonding strength in the hierarchical structure. These microscopic insights demonstrate a promise of artificially tailoring phonon anharmonicity through lattice defect engineering to manipulate lattice thermal conductivity in the design of energy conversion materials.

12.
Analyst ; 149(6): 1907-1920, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38372525

RESUMO

Arachidonic acid metabolites are a family of bioactive lipids derived from membrane phospholipids. They are involved in cancer progression, but arachidonic acid metabolite profiles and their related biosynthetic pathways remain uncertain in colorectal cancer (CRC). To compare the arachidonic acid metabolite profiles between CRC patients and healthy controls, quantification was performed using a liquid chromatography-mass spectrometry-based analysis of serum and tissue samples. Metabolomics analysis delineated the distinct oxidized lipids in CRC patients and healthy controls. Prostaglandin (PGE2)-derived metabolites were increased, suggesting that the PGE2 biosynthetic pathway was upregulated in CRC. The qRT-PCR and immunohistochemistry analyses showed that the expression level of PGE2 synthases, the key protein of PGE2 biosynthesis, was upregulated in CRC and positively correlated with the CD68+ macrophage density and CRC development. Our study indicates that the PGE2 biosynthetic pathway is associated with macrophage infiltration and progression of CRC tumors.


Assuntos
Neoplasias Colorretais , Dinoprostona , Humanos , Dinoprostona/metabolismo , Ácido Araquidônico , Metaboloma , Metabolômica , Neoplasias Colorretais/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-38366346

RESUMO

Frailty syndrome refers to the nonspecific state of increased body vulnerability and decreased antistress and recovery abilities after stress during aging. Sarcopenia is the major component of frailty and is characterized by the gradual loss of muscle mass, strength, and function with age. Inflammaging is the gradual increase in inflammatory status during aging, and it disrupts immune tolerance, causes physiological changes in tissues, organs, and normal cells, and is related to frailty and sarcopenia. The gut microbiota is an extremely complex and diverse microbial community that coevolves with the host. The composition and structure of the gut microbiota and the metabolism of tryptophan (Trp) significantly change in older adults with frailty and sarcopenia. The gut microbiota participates in regulating the Trp metabolic pathways of kynurenine (Kyn), 5-hydroxytryptamine (5-HT), and indole in the gastrointestinal tract. The Trp metabolites derived from the gut microbiota may synergistically promote the occurrence of age-related frailty and sarcopenia by promoting inflammation in the intestines, nervous system, and muscles. The role and mechanisms of the gut microbiota, Trp metabolism, and inflammaging in age-related frailty and sarcopenia may be a worthwhile research direction to help promote healthy aging.


Assuntos
Fragilidade , Microbioma Gastrointestinal , Sarcopenia , Humanos , Idoso , Triptofano/metabolismo , Microbioma Gastrointestinal/fisiologia , Idoso Fragilizado
14.
J Exp Clin Cancer Res ; 43(1): 51, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373953

RESUMO

BACKGROUNDS: Immune checkpoint blockade (ICB) is widely considered to exert long-term treatment benefits by activating antitumor immunity. However, many cancer patients show poor clinical responses to ICB due in part to the lack of an immunogenic niche. Focal adhesion kinase (FAK) is frequently amplified and acts as an immune modulator across cancer types. However, evidence illustrates that targeting FAK is most effective in combination therapy rather than in monotherapy. METHODS: Here, we used drug screening, in vitro and in vivo assays to filter out that doxorubicin and its liposomal form pegylated liposome doxorubicin (PLD) showed synergistic anti-tumor effects in combination with FAK inhibitor IN10018. We hypothesized that anti-tumor immunity and immunogenic cell death (ICD) may be involved in the treatment outcomes through the data analysis of our clinical trial testing the combination of IN10018 and PLD. We then performed cell-based assays and animal studies to detect whether FAK inhibition by IN10018 can boost the ICD of PLD/doxorubicin and further established syngeneic models to test the antitumor effect of triplet combination of PLD, IN10018, and ICB. RESULTS: We demonstrated that the combination of FAK inhibitor IN10018, and PLD/doxorubicin exerted effective antitumor activity. Notably, the doublet combination regimen exhibited response latency and long-lasting treatment effects clinically, outcomes frequently observed in immunotherapy. Our preclinical study confirmed that the 2-drug combination can maximize the ICD of cancer cells. This approach primed the tumor microenvironment, supplementing it with sufficient tumor-infiltrating lymphocytes (TILs) to activate antitumor immunity. Finally, different animal studies confirmed that the antitumor effects of ICB can be significantly enhanced by this doublet regimen. CONCLUSIONS: We confirmed that targeting FAK by IN10018 can enhance the ICD of PLD/doxorubicin, further benefiting the anti-tumor effect of ICB. The animal tests of the triplet regimen warrant further discovery in the real world.


Assuntos
Lipossomos , Neoplasias , Animais , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Morte Celular Imunogênica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polietilenoglicóis , Microambiente Tumoral
16.
Adv Sci (Weinh) ; 11(13): e2307761, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286650

RESUMO

Delayed wound healing is a major complication of diabetes, and is associated with impaired cellular functions. Current treatments are unsatisfactory. Based on the previous reports on microRNA expression in small extracellular vesicles (sEVs), miR-17-5p-engineered sEVs (sEVs17-OE) and encapsulated them in gelatin methacryloyl (GelMA) hydrogel for diabetic wounds treatment are fabricated. SEVs17-OE are successfully fabricated with a 16-fold increase in miR-17-5p expression. SEVs17-OE inhibited senescence and promoted the proliferation, migration, and tube formation of high glucose-induced human umbilical vein endothelial cells (HG-HUVECs). Additionally, sEVs17-OE also performs a promotive effect on high glucose-induced human dermal fibroblasts (HG-HDFs). Mechanism analysis showed the expressions of p21 and phosphatase and tensin homolog (PTEN), as the target genes of miR-17-5p, are downregulated significantly by sEVs17-OE. Accordingly, the downstream genes and pathways of p21 and PTEN, are activated. Next, sEVs17-OE are loaded in GelMA hydrogel to fabricate a novel bioactive wound dressing and to evaluate their effects on diabetic wound healing. Gel-sEVs17-OE effectively accelerated wound healing by promoting angiogenesis and collagen deposition. The cellular mechanism may be associated with local cell proliferation. Therefore, a novel bioactive wound dressing by loading sEVs17-OE in GelMA hydrogel, offering an option for chronic wound management is successfully fabricated.


Assuntos
Diabetes Mellitus , Vesículas Extracelulares , Gelatina , Metacrilatos , MicroRNAs , Cicatrização , Humanos , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Células Endoteliais , Vesículas Extracelulares/genética , Glucose , Hidrogéis , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/genética , Cicatrização/genética , Complicações do Diabetes/terapia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA