Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123284, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619488

RESUMO

Phosgene is an important and widely used highly toxic chemical that poses a serious potential threat to public health and property if leaked or abused. Therefore, developing an efficient and convenient detection method for phosgene is of great significance. In this work, we synthesized a novel fluorescent probe, BCyP, based on benzohemicyanine for highly selective and sensitive detection of phosgene in both liquid and gas phases. The probe uses amino alcohol as a specific recognition group for phosgene and does not fluoresce due to the strong intramolecular charge transfer effect (ICT). However, in the presence of phosgene, the amino alcohol part in the probe can form oxazolidinone in situ with phosgene, reducing the ICT effect in the probe molecule and lighting fluorescence, thus realizing the selective phosgene detection. The probe exhibits good specificity towards phosgene, with significant fluorescence enhancement (approximately 400-fold), a remarkable Stokes shift (139 nm), a fast response speed (less than 17 s), and a low detection limit (0.12 ppm). Additionally, we prepared a phosgene detection paper strip loaded with the probe on filter paper and combined it with color recognition software on a smartphone to achieve visual detection of phosgene in the gas phase.

2.
Diabetologia ; 66(6): 1142-1155, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36917279

RESUMO

AIMS/HYPOTHESIS: Glucagon-stimulated hepatic gluconeogenesis contributes to endogenous glucose production during fasting. Recent studies suggest that TGF-ß is able to promote hepatic gluconeogenesis in mice. However, the physiological relevance of serum TGF-ß levels to human glucose metabolism and the mechanism by which TGF-ß enhances gluconeogenesis remain largely unknown. As enhanced gluconeogenesis is a signature feature of type 2 diabetes, elucidating the molecular mechanisms underlying TGF-ß-promoted hepatic gluconeogenesis would allow us to better understand the process of normal glucose production and the pathophysiology of this process in type 2 diabetes. This study aimed to investigate the contribution of upregulated TGF-ß1 in human type 2 diabetes and the molecular mechanism underlying the action of TGF-ß1 in glucose metabolism. METHODS: Serum levels of TGF-ß1 were measured by ELISA in 74 control participants with normal glucose tolerance and 75 participants with type 2 diabetes. Human liver tissue was collected from participants without obesity and with or without type 2 diabetes for the measurement of TGF-ß1 and glucagon signalling. To investigate the role of Smad3, a key signalling molecule downstream of the TGF-ß1 receptor, in mediating the effect of TGF-ß1 on glucagon signalling, we generated Smad3 knockout mice. Glucose levels in Smad3 knockout mice were measured during prolonged fasting and a glucagon tolerance test. Mouse primary hepatocytes were isolated from Smad3 knockout and wild-type (WT) mice to investigate the underlying molecular mechanisms. Smad3 phosphorylation was detected by western blotting, levels of cAMP were detected by ELISA and levels of protein kinase A (PKA)/cAMP response element-binding protein (CREB) phosphorylation were detected by western blotting. The dissociation of PKA subunits was measured by immunoprecipitation. RESULTS: We observed higher levels of serum TGF-ß1 in participants without obesity and with type 2 diabetes than in healthy control participants, which was positively correlated with HbA1c and fasting blood glucose levels. In addition, hyperactivation of the CREB and Smad3 signalling pathways was observed in the liver of participants with type 2 diabetes. Treating WT mouse primary hepatocytes with TGF-ß1 greatly potentiated glucagon-stimulated PKA/CREB phosphorylation and hepatic gluconeogenesis. Mechanistically, TGF-ß1 treatment induced the binding of Smad3 to the regulatory subunit of PKA (PKA-R), which prevented the association of PKA-R with the catalytic subunit of PKA (PKA-C) and led to the potentiation of glucagon-stimulated PKA signalling and gluconeogenesis. CONCLUSIONS/INTERPRETATION: The hepatic TGF-ß1/Smad3 pathway sensitises the effect of glucagon/PKA signalling on gluconeogenesis and synergistically promotes hepatic glucose production. Reducing serum levels of TGF-ß1 and/or preventing hyperactivation of TGF-ß1 signalling could be a novel approach for alleviating hyperglycaemia in type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Humanos , Animais , Camundongos , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hiperglicemia/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Hepatócitos/metabolismo , Fígado/metabolismo , Glucose/metabolismo , Gluconeogênese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL
3.
Cell Commun Signal ; 18(1): 60, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32272950

RESUMO

Adiponectin, an adipokine produced and secreted by adipocytes, is involved in regulating the development and progression of insulin resistance, diabetes, and diabetic complications. Heat shock protein 60 (HSP60) is a molecular chaperone, most commonly presenting in mitochondria and participating in the maintenance of protein homeostasis. Accumulating studies have demonstrated that the elevated circulating HSP60 and the decreased intracellular HSP60 are closely associated with diabetic complications such as diabetic cardiomyopathy. However, the underlying mechanism remains poorly understood. In the present study, we reported that HSP60 interacted directly with adiponectin receptors. Its abundance was positively associated with adiponectin action. Furthermore, HSP60 depletion markedly mitigated the protective impacts of adiponectin on high glucose-induced oxidative stress and cell apoptosis in rat cardiac H9c2 cells. In addition, HSP60 knockdown significantly enhanced proteasome activity leading to the degradation of adiponectin receptor 1. Taken together, we showed for the first time that HSP60 interacted with adiponectin receptors and mediated adiponectin signaling through stabilizing adiponectin receptor. This in vitro study also provides an alternative explanation for mechanism by which adiponectin exerts its action. Video abstract.


Assuntos
Chaperonina 60/metabolismo , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Adiponectina/metabolismo , Animais , Linhagem Celular , Camundongos , Miócitos Cardíacos/citologia , Ratos
4.
Mol Cell Endocrinol ; 506: 110755, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32045627

RESUMO

Adipocyte dysfunction is closely associated with the development of obesity, insulin resistance, and type 2 diabetes. In addition to having a positive effect on adiponectin pathway and insulin signaling through direct and/or indirect mechanisms, adapter protein APPL1 has also been reported to regulate body weight, brown fat tissues thermogenesis, and body fat distribution in diabetic individuals. However, there is dearth of data on the specific role of APPL1 on adipogenic differentiation and adipocyte lipolysis. In this study, APPL1's function in adipocyte differentiation and adipocyte lipolysis was evaluated, and the possible mechanisms were investigated. We found that APPL1 knockdown (KD) impeded differentiation of 3T3-L1 preadipocytes into mature 3T3-L1 adipocytes and enhanced basal and insulin-suppressed lipolysis in mature 3T3-L1 adipocytes. APPL1 KD cells presented a reduced autophagic activity in 3T3-L1 preadipocytes and mature 3T3-L1 adipocytes. In 3T3-L1 preadipocytes, APPL1 KD reduced PPARγ protein levels, which was prevented by administration with proteasome inhibitor MG132. Furthermore, APPL1 KD-reduced autophagic activity in mature 3T3-L1 adipocytes was markedly restored by inhibition of PKA, accompanied with prevention of APPL1-induced lipolysis. In addition, APPL1 KD caused insulin resistance in mature 3T3-L1 adipocytes. Unexpectedly, we found that APPL1 overexpression did not appear to play a role in adipogenic differentiation and adipocyte lipolysis. Our results confirmed that APPL1 KD inhibits adipogenic differentiation by suppressing autophagy and enhances adipocyte lipolysis through activating PKA respectively. These findings may deepen our understanding of APPL1 function, especially its regulation on adipocyte biology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adipócitos/metabolismo , Adipogenia/genética , Lipólise/genética , Células 3T3-L1 , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Adipogenia/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Técnicas de Silenciamento de Genes , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/farmacologia
5.
Front Pharmacol ; 9: 1180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459603

RESUMO

Both thioredoxin-interacting protein (TXNIP) and endoplasmic reticulum (ER) stress are implicated in skeletal muscle insulin resistance. Icariin has been found to mimic insulin action in normal skeletal muscle C2C12 cells and display anti-diabetic properties in diet-induced obese mice. However, the underlying molecular mechanism remains to be well-established. Herein, we tested the hypothesis that the protective effects of icariin on free fatty acid-induced insulin resistance were attributed to its regulation on TXNIP protein levels and ER stress in skeletal muscle cells. We found that TXNIP mediated the saturated fatty acid palmitate (PA)-induced insulin resistance in C2C12 myotubes. Icariin treatment significantly restored PA-reduced proteasome activity resulting in reduction of TXNIP protein and suppression of ER stress, as well as improvement of insulin sensitivity. Proteasome inhibition by its specific inhibitor MG132 obviously abolished the inhibitory effect of icariin on PA-induced insulin resistance. In addition, MG132 supplementation markedly abrogated the impacts of icariin on ER stress and TXNIP-mediated downstream events such as inflammation and STAT3 phosphorylation. These results clearly indicate that icariin improves PA-induced skeletal muscle insulin resistance through a proteasome-dependent mechanism, by which icariin downregulats TXNIP levels and inhibits ER stress.

6.
J Biol Chem ; 293(16): 6064-6074, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29483192

RESUMO

Adiponectin is an adipocyte-derived hormone with antidiabetic activities that include increasing the sensitivity of cells to insulin. Adaptor protein containing pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif (APPL1) stimulates adiponectin signaling and promotes adiponectin's insulin-sensitizing effects by binding to two adiponectin receptors, AdipoR1 and AdipoR2, and the insulin receptor. In this study, we report an alternative splicing variant of APPL1 (APPL1sv) that is highly expressed in mouse liver, pancreas, and spleen tissues. The expression levels of APPL1sv in liver tissues were enhanced in a mouse model of obesity and diabetic dyslipidemia (i.e. db/db mice) and reduced in calorie-restricted mice compared with ad libitum-fed mice. APPL1sv overexpression or suppression inhibited or enhanced, respectively, adiponectin-stimulated phosphorylation of AMP protein kinase (AMPK) in mouse hepatocytes. We also found that APPL1sv binds to AdipoR1 and AdipoR2 under basal conditions and that adiponectin treatment reduces this binding. Overexpression of APPL1sv blocked adiponectin-induced interactions of APPL1 with the adiponectin receptors. Moreover, adenovirus-mediated and short hairpin RNA-based suppression of APPL1sv greatly reduced high fat diet-induced insulin resistance and hepatic glucose production in mice. Our study identifies a key suppressor of hepatic adiponectin signaling and insulin sensitivity, a finding that may shed light on identifying effective therapeutic targets for treating insulin resistance and type 2 diabetes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adiponectina/metabolismo , Processamento Alternativo , Resistência à Insulina , Fígado/metabolismo , Obesidade/genética , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Regulação para Cima
7.
Clin Exp Pharmacol Physiol ; 44(7): 760-770, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28394420

RESUMO

Tiron functions as an effective antioxidant alleviating the intracellular reactive oxygen species (ROS) or the acute toxic metal overload. Previous studies have shown that cardiac myocyte apoptosis can be effectively inhibited by tiron administration in streptozotocin (STZ)-induced diabetic rats, primary neonatal rat cardiomyocytes (NRVMs), and H9c2 embryonic rat cardiomyocytes. However, the underlying signalling mechanism is ill-defined. In the present study, we found that tiron supplementation significantly inhibited apoptosis of high glucose (HG)-treated NRVMs and the left ventricular cardiomyocytes from STZ-diabetic rat, accompanied with a reduction of osteopontin (OPN) levels as well as an inhibition of PKCδ phosphorylation. OPN knockdown protected NRVMs against HG-induced cell apoptosis. In addition, genetic inhibition of PKCδ mitigated HG-stimulated enhancement of intracellular OPN levels in NRVMs. These findings indicate that ROS-mediated activation of PKCδ upregulated OPN expression, leading to cardiac myocyte apoptosis. Interfering with ROS/PKCδ pathway by antioxidants such as tiron provides an optional therapeutic strategy for treatment and prevention of apoptosis-related cardiovascular diseases including diabetic cardiomyopathy.


Assuntos
Sal Dissódico do Ácido 1,2-Di-Hidroxibenzeno-3,5 Dissulfônico/farmacologia , Apoptose/efeitos dos fármacos , Glucose/farmacologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Osteopontina/antagonistas & inibidores , Proteína Quinase C-delta/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Experimental/patologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Miócitos Cardíacos/patologia , Fosforilação/efeitos dos fármacos , Ratos
8.
Endocr J ; 64(1): 15-26, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27667474

RESUMO

As an insulin sensitizer and modulator of inflammatory responses, adiponectin has become a therapeutic target for insulin resistance, diabetes, and diabetes-related complications. Wogonin possesses anti-oxidative, anti-inflammatory, and anti-diabetic abilities. However, its effect on generation and secretion of adiponectin is ill-defined in adipocytes. Here, we demonstrated that wogonin administration augmented intracellular adiponectin levels and attenuated adiponectin release in a dose- and time-dependent manner in mature 3T3-L1 adipocytes, along with a suppression of PKCδ phosphorylation. Wogonin treatment also prevented PKCδ overexpression-induced reduction of intracellular adiponectin levels and enhancement of adiponectin release. In addition, wogonin supplementation dramatically increased AMPK phosphorylation and SirT1 expression. Inhibition of either AMPK or SirT1 mitigated wogonin action on adiponectin production and release. Furthermore, inhibition of AMPK by its specific inhibitor markedly reduced wogonin-enhanced mRNA and protein expressions of SirT1. These results suggested that wogonin regulated expression and secretion of adiponectin via PKCδ/AMPK/SirT1 signaling pathway in mature 3T3-L1 adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Adiponectina/genética , Adiponectina/metabolismo , Flavanonas/farmacologia , Células 3T3-L1 , Adenilato Quinase/metabolismo , Adipócitos/metabolismo , Animais , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Camundongos , Proteína Quinase C-delta/metabolismo , Via Secretória/efeitos dos fármacos
9.
PLoS One ; 11(11): e0166172, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27820851

RESUMO

Leptin has been implicated in tumorigenesis and tumor progression, particularly in obese patients. As a multifunctional adaptor protein, APPL1 (containing pleckstrin homology domain, phosphotyrosine binding domain, and a leucine zipper motif 1) plays a critical role in regulating adiponectin and insulin signaling pathways. Currently, high APPL1 level has been suggested to be related to metastases and progression of some types of cancer. However, the intercourse between leptin signaling pathway and APPL1 remains poorly understood. Here, we show that the protein levels and phosphorylation statues of APPL1were highly expressed in tissues from human hepatocellular carcinoma and triple-positive breast cancer. Leptin stimulated APPL1 phosphorylation in a time-dependent manner in both human hepatocellular carcinoma HepG2 cell and breast cancer MCF-7 cell. Overexpression or suppression of APPL1 promoted or attenuated, respectively, leptin-induced phosphorylation of STAT3, ERK1/2, and Akt in the cancer cells, accompanied with enhanced or mitigated cell proliferation and migration. In addition, we identified that APPL1 directly bound to both leptin receptor and STAT3. This interaction was significantly enhanced by leptin stimulation. Our results suggested that APPL1 positively mediated leptin signaling and promoted leptin-induced proliferation and migration of cancer cells. This finding reveals a novel mechanism by which leptin promotes the motility and growth of cancer cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Leptina/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Células MCF-7 , Obesidade/metabolismo , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia
10.
Mol Cell Endocrinol ; 433: 12-9, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27246173

RESUMO

Adiponectin has been shown to suppress hepatic gluconeogenesis. However, the signaling pathways underlying its action remain ill-defined. The purpose of this study was to examine the potential role of APPL1 in mediating anti-gluconeogenic ability of adiponectin. Primary hepatocytes were isolated from male C57BL/6 mice. Western blot and RT-PCR were performed to detect protein expression and mRNA level, respectively. The protein-protein association was determined by immunoprecipitation and GST pull-down assay. We found that APPL1 protein levels were negatively associated with expressions of proteins and mRNAs of gluconeogenesis enzymes under stimulation with adiponectin. In addition, adiponectin-stimulated STAT3 phosphorylation and acetylation were positively regulated by APPL1 and negative regulated by SirT1. Pharmacological and genetic inhibition of STAT3 mitigated impact of adiponectin on hepatic gluconeogenesis. Furthermore, adiponectin administration facilitated the binding of APPL1 to SirT1 and suppressed the association of SirT1 with STAT3. Taken together, our study showed that APPL1-SirT1-STAT3 pathway mediated adiponectin signaling in primary hepatocytes. This new finding provides a novel mechanism by which adiponectin suppresses hepatic gluconeogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adiponectina/metabolismo , Gluconeogênese/fisiologia , Fígado/metabolismo , Fígado/fisiologia , Fator de Transcrição STAT3/metabolismo , Acetilação , Animais , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/fisiologia , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
11.
Mol Cell Endocrinol ; 429: 1-9, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27113027

RESUMO

Previous study has shown that curcumin directly or indirectly suppresses insulin signaling in 3T3-L1 adipocytes. However, the underlying mechanism remains unclear. Here we experimentally demonstrate that curcumin inhibited the ubiquitin-proteasome system (UPS) function, activated autophagy, and reduced protein levels of protein kinase B (Akt) in a dose- and time-dependent manner in 3T3-L1 adipocytes, accompanied with attenuation of insulin-stimulated Akt phosphorylation, plasma membrane translocation of glucose transporter type 4 (GLUT4), and glucose uptake. These in vitro inhibitory effects of curcumin on Akt protein expression and insulin action were reversed by pharmacological and genetic inhibition of autophagy but not by inhibition of the UPS and caspases. In addition, Akt reduction in adipose tissues of mice treated with curcumin could be recovered by administration of autophagy inhibitor bafilomycin A1 (BFA). This new finding provides a novel mechanism by which curcumin induces insulin resistance in adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Curcumina/farmacologia , Resistência à Insulina , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Proteólise/efeitos dos fármacos , Ubiquitina/metabolismo
12.
Mol Cell Endocrinol ; 428: 101-8, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27013352

RESUMO

Among diabetic cardiovascular complications cardiomyopathy is major event which if not well controlled culminates in cardiac failure. Wogonin from the root of Scutellaria baicalensis Georgi has shown specific anti-diabetes bioactivity. However, its effect on diabetic complications remains unclear. The main purpose of this study is to investigate the potential effects of wogonin on diabetic cardiomyopathy and to figure out its underlying mechanism. We found that wogonin administration suppressed hyperglycemia, improved cardiac function, and mitigated cardiac fibrosis in STZ-induced diabetic mice. Wogonin supplementation also attenuated diabetic-induced cardiomyocyte apoptosis and necrosis. In addition, wogonin treatment exhibited the properties of anti-oxidative stress and anti-inflammation in STZ diabetic mice, evidenced by improved activities of anti-oxidases including SOD1/2 and CAT, decreased ROS and MDA production, suppressed expression of inflammation factors such as IL-1ß, IL-6, TNFα, and PAI-1, and inhibited NF-κB signaling. These results suggested that wogonin potentially mitigate hyperglycemia-related cardiomyocyte impairment through inhibiting inflammation and oxidative stress.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Cardiomiopatias Diabéticas/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Glicemia/metabolismo , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/fisiopatologia , Fibrose , Flavanonas , Testes de Função Cardíaca , Hiperglicemia/sangue , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necrose , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley
13.
Zhonghua Nan Ke Xue ; 22(7): 608-612, 2016 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-28965377

RESUMO

OBJECTIVE: To investigate the relationship of the expression of vasodilator-stimulated phosphoprotein (VASP) with the metastasis and prognosis of prostate cancer. METHODS: Prostate cancer PC3 cells were infected with VASP shRNA and control shRNA lentiviruses, respectively. The invasive ability of the PC3 cells was determined by transwell migration assay, the expression of VASP in the prostate cancer tissue from 56 patients was detected by immunohistochemistry, and the survival rate of the patients was analyzed according to the VASP expression levels and follow-up data after radical prostatectomy. RESULTS: VASP shRNA lentivirus significantly inhibited the expression of VASP and decreased the invasive ability of the PC3 cells as compared with the results obtained in the scramble shRNA and blank control groups (P<0.05). The survival analysis of the 56 prostate cancer patients showed that the time of biochemical recurrence was markedly shorter in the VASP positive and strongly positive groups than in the VASP-negative cases (P<0.05), but with no statistically significant difference between the former two groups (P>0.05). CONCLUSIONS: VASP is involved in the regulation of the invasive ability of prostate cancer PC3 cells, and the differences in the VASP expression are related to the prognosis of prostate cancer.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica/fisiopatologia , Fosfoproteínas/metabolismo , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Lentivirus , Masculino , Prognóstico , Prostatectomia , Neoplasias da Próstata/cirurgia , RNA Interferente Pequeno , Taxa de Sobrevida
14.
Acta Pharmacol Sin ; 34(1): 137-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23103623

RESUMO

AIM: To establish the mechanism responsible for the stimulation of glucose uptake by Astragalus polysaccharide (APS), extracted from Astragalus membranaceus Bunge, in L6 myotubes in vitro. METHODS: APS-stimulated glucose uptake in L6 myotubes was measured using the 2-deoxy-[(3)H]-D-glucose method. The adenine nucleotide contents in the cells were measured by HPLC. The phosphorylation of AMP-activated protein kinase (AMPK) and Akt substrate of 160 kDa (AS160) was examined using Western blot analysis. The cells transfected with 4P mutant AS160 (AS160-4P) were constructed using gene transfer approach. RESULTS: Treatment of L6 myotubes with APS (100-1600 µg/mL) significantly increased glucose uptake in time- and concentration-dependent manners. The maximal glucose uptake was reached in the cells treated with APS (400 µg/mL) for 36 h. The APS-stimulated glucose uptake was significantly attenuated by pretreatment with Compound C, a selective AMPK inhibitor or in the cells overexpressing AS160-4P. Treatment of L6 myotubes with APS strongly promoted the activation of AMPK. We further demonstrated that either Ca(2+)/calmodulin-dependent protein kinase kinase ß (CaMKKß) or liver kinase B1 (LKB1) mediated APS-induced activation of AMPK in L6 myotubes, and the increased cellular AMP: ATP ratio was also involved. Treatment of L6 myotubes with APS robustly enhanced the phosphorylation of AS160, which was significantly attenuated by pretreatment with Compound C. CONCLUSION: Our results demonstrate that APS stimulates glucose uptake in L6 myotubes through the AMP-AMPK-AS160 pathway, which may contribute to its hypoglycemic effect.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Astrágalo/química , Proteínas Ativadoras de GTPase/metabolismo , Glucose/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Polissacarídeos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Proteínas Ativadoras de GTPase/genética , Fibras Musculares Esqueléticas/metabolismo , Fosforilação/efeitos dos fármacos , Polissacarídeos/isolamento & purificação , Ratos , Regulação para Cima
15.
Acta Biochim Biophys Sin (Shanghai) ; 42(1): 30-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20043044

RESUMO

The unfolding and refolding of two multidomain oxidoreductases, bovine liver catalase and flavoprotein bovine milk xanthine oxidase (XO), have been analyzed by fluorescence spectroscopy, circular dichroism, and activity measurements. Two intermediates, a partially folded active dimer disassembled from the native tetramer and a partially folded inactivated monomer, are found to exist in the conformational changes of catalase induced by guanidine hydrochloride (GdnHCl). Similarly, two intermediates, an active, compacted intermediate bound by flavin adenine dinucleotide (FAD) partially and an inactive flexible intermediate with FAD completely dissociated, exist in the conformational changes of XO induced by GdnHCl. The activity regains completely and an enhancement in activity compared with the native catalase or native XO is observed by dilution of catalase or XO incubated with GdnHCl at concentrations not >0.5 or 1.8 M into the refolding buffer, but the yield of reactivation for catalase or XO is zero when the concentration of GdnHCl is >1.5 or 3.0 M. The addition of FAD provides a remarkable protection against the inactivation of XO by GdnHCl under mild denaturing conditions, and the conformational change of XO is irreversible after FAD has been removed in the presence of a strong denaturing agent. These findings provide impetus for exploring the influences of cofactors such as FAD on the structure-function relationship of xanthine oxidoreductases.


Assuntos
Dicroísmo Circular , Guanidina/química , Oxirredutases/química , Conformação Proteica , Dobramento de Proteína , Animais , Bovinos , Dicroísmo Circular/estatística & dados numéricos , Relação Dose-Resposta a Droga , Concentração de Íons de Hidrogênio , Oxirredutases/metabolismo , Oxirredutases/fisiologia , Ligação Proteica , Estrutura Terciária de Proteína
16.
Mol Cell Biochem ; 335(1-2): 1-11, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19711176

RESUMO

Vasodilator-stimulated phosphoprotein (VASP), an important substrate of PKA, plays a critical role in remodeling of actin cytoskeleton and actin-based cell motility. However, how PKA accurately transfers extracellular signals to VASP and then how phosphorylation of VASP regulates endothelial cell migration have not been clearly defined. Protein kinase A anchoring proteins (AKAPs) are considered to regulate intracellular-specific signal targeting of PKA via AKAP-mediated PKA anchoring. Thus, our study investigated the relationship among AKAP anchoring of PKA, PKA activity, and VASP phosphorylation, which is to clarify the exact role of VASP and its upstream regulatory mechanism in PKA-dependent migration. Our results show that chemotactic factor PDGF activated PKA, increased phosphorylation of VASP at Ser157, and enhanced ECV304 endothelial cell migration. However, phosphorylation site-directed mutation of VASP at Ser157 attenuated the chemotactic effect of PDGF on endothelial cells, suggesting phosphorylation of VASP at Ser157 promotes PKA-mediated endothelial cell migration. Furthermore, disrupting PKA anchoring to AKAP or PKA activity significantly attenuated the PKA activity, VASP phosphorylation, and subsequent cell migration. Meanwhile, disrupting PKA anchoring to AKAP abolished PDGF-induced lamellipodia formation and special VASP accumulation at leading edge of lamellipodia. These results indicate that PKA activation and PKA-mediated substrate responses in VASP phosphorylation and localization depend on PKA anchoring via AKAP in PDGF-induced endothelial cell migration. In conclusion, AKAP anchoring of PKA is an essential upstream event in regulation of PKA-mediated VASP phosphorylation and subsequent endothelial cell migration, which contributes to explore new methods for controlling endothelial cell migration related diseases and angiogenesis.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Endoteliais/enzimologia , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Moléculas de Adesão Celular/genética , Movimento Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Proteínas dos Microfilamentos/genética , Fosfoproteínas/genética , Fosforilação
17.
Mol Cell Endocrinol ; 307(1-2): 89-98, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19524131

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) was considered as a potential therapeutic target of type 2 diabetes (T2DM) because of its negative regulation of insulin signaling. It located on the cytosolic surface of endoplasmic reticulum (ER) and played an essential role in the ER stress signaling. Activating transcription factor 6 (ATF6) was an ER stress regulated transmembrane transcription factor that activated the transcription of ER molecular chaperones. We hypothesized that the expression of PTP1B may be regulated by ATF6 when ER stress happened. Our previous studies showed that Astragalus polysaccharide (APS) increased the insulin sensitivity through decreasing the overexpression of PTP1B in T2DM animal models. In this study, we intended to investigate the possible mechanisms involved in this effect. A rat model of T2DM was established using high fat diet associated with intraperitoneal injection of 25 mg/kg streptozocin; 25 mmol/l D-glucose and 5x10(-7) mol/l insulin were used as in vitro investigations to mimic T2DM-like environment. 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) and pCI-Flag-ATF6(N)(2-366) plasmid were treated separately on human hepatocyte line HL-7702 to observe the effect of ATF6 on the expression of PTP1B. The results suggested that APS not only restored the glucose homeostasis but also reduced the ER stress in this rat model of T2DM; ATF6 was involved in mediating the expression of PTP1B when ER stress happened; APS decreased the expression of PTP1B at least partly through inhibiting the activation of ATF6.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Astrágalo/química , Diabetes Mellitus Experimental/enzimologia , Retículo Endoplasmático/patologia , Polissacarídeos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Animais , Linhagem Celular , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Insulina/farmacologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Plasmídeos , Ratos , Ratos Sprague-Dawley , Sulfonas/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA