RESUMO
Background: Gleason grade group (GG) upgrading is associated with increased biochemical recurrence (BCR), local progression, and decreased cancer-specific survival (CSS) in prostate cancer (PCa). However, descriptions of the risk factors of GG upgrading are scarce. The objective of this study was to identify risk factors and establish a model to predict GG upgrading. Methods: There were 361 patients with PCa who underwent radical prostatectomy between May 2011 and February 2022 enrolled. Univariate and multivariate logistic regression analyses were identified and nomogram further narrowed down the contributing factors in GG upgrading. The correction curve and decision curve were used to assess the model. Results: In the overall cohort, 141 patients had GG upgrading. But the subgroup cohort (GG ≤2) showed that 68 patients had GG upgrading. Multivariate logistic regression analysis showed that in the overall cohort, total prostate-specific antigen (tPSA) ≥10 ng/mL, systemic immune-inflammation index (SII) >379.50, neutrophil-lymphocyte ratio (NLR) >2.13, the GG of biopsy ≥3, the number of positive cores >3 were independent risk factors in GG upgrading. In the cohort of biopsy GG ≤2, multivariate logistic regression showed that the tPSA ≥10 ng/mL, SII >379.50 and the number of positive cores >3 were independent risk factors in GG upgrading. A novel model predicting GG upgrading was established based on these three parameters. The area under the curve (AUC) of the prediction model was 0.759. The C-index of the nomogram was 0.768. The calibration curves of the model showed good predictive performance. Clinical decision curves indicated clinical benefit in the interval of 20% to 90% of threshold probability and good clinical utility. Conclusions: Combined levels of tPSA, SII and the positive biopsy cores distinguish patients with high-risk GG upgrading in the group of biopsy GG ≤2 and are helpful in the decision of treatment plans.
RESUMO
AIMS: Resistance to targeted therapy is one of the critical obstacles in cancer management. Resistance to trastuzumab frequently develops in the treatment for HER2+ cancers. The role of protein tyrosine phosphatases (PTPs) in trastuzumab resistance is not well understood. In this study, we aim to identify pivotal PTPs affecting trastuzumab resistance and devise a novel counteracting strategy. METHODS: Four public datasets were used to screen PTP candidates in relation to trastuzumab responsiveness in HER2+ breast cancer. Tyrosine kinase (TK) arrays were used to identify kinases that linked to protein tyrosine phosphate receptor type O (PTPRO)-enhanced trastuzumab sensitivity. The efficacy of small activating RNA (saRNA) in trastuzumab-conjugated silica nanoparticles was tested for PTPRO upregulation and resistance mitigation in cell models, a transgenic mouse model, and human cancer cell line-derived xenograft models. RESULTS: PTPRO was identified as the key PTP which influences trastuzumab responsiveness and patient survival. PTPRO de-phosphorated several TKs, including the previously overlooked substrate ERBB3, thereby inhibiting multiple oncogenic pathways associated with drug resistance. Notably, PTPRO, previously deemed "undruggable," was effectively upregulated by saRNA-loaded nanoparticles. The upregulated PTPRO simultaneously inhibited ERBB3, ERBB2, and downstream SRC signaling pathways, thereby counteracting trastuzumab resistance. CONCLUSIONS: Antibody-conjugated saRNA represents an innovative approach for targeting "undruggable" PTPs.
Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Nanopartículas , Receptor ErbB-2 , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto , Trastuzumab/farmacologia , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Linhagem Celular Tumoral , Nanopartículas/química , Camundongos Transgênicos , Antineoplásicos Imunológicos/farmacologia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/antagonistas & inibidores , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
Metastasis is the primary culprit behind cancer-related fatalities in multiple cancer types, including prostate cancer. Despite great advances, the precise mechanisms underlying prostate cancer metastasis are far from complete. By using a transgenic mouse prostate cancer model (TRAMP) with and without Phf8 knockout, we have identified a crucial role of PHF8 in prostate cancer metastasis. By complexing with E2F1, PHF8 transcriptionally upregulates SNAI1 in a demethylation-dependent manner. The upregulated SNAI1 subsequently enhances epithelial-to-mesenchymal transition (EMT) and metastasis. Given the role of the abnormally activated PHF8/E2F1-SNAI1 axis in prostate cancer metastasis and poor prognosis, the levels of PHF8 or the activity of this axis could serve as biomarkers for prostate cancer metastasis. Moreover, targeting this axis could become a potential therapeutic strategy for prostate cancer treatment. © 2024 The Pathological Society of Great Britain and Ireland.
Assuntos
Fator de Transcrição E2F1 , Transição Epitelial-Mesenquimal , Histona Desmetilases , Neoplasias da Próstata , Fatores de Transcrição da Família Snail , Fatores de Transcrição , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/enzimologia , Animais , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Camundongos , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Camundongos Knockout , Transdução de Sinais , Metástase Neoplásica , Camundongos Transgênicos , Movimento CelularRESUMO
Our understanding of the DNA damage responses of human cells to radiation has increased remarkably over the recent years although some notable signaling events remain to be discovered. Here we provide a brief account of the key molecular events of the responses to reflect the current understanding of the key underlying mechanisms involved.
RESUMO
BACKGROUND/AIM: Protein arginine methyltransferase 5 (PRMT5), a member of the arginine methyltransferases, is an enzyme catalyzing the methylation of arginine residuals of histones and non-histone proteins to serve as one of many critical posttranslational modifications (PTMs). Phosphorylated P21-activated kinase 1 (p-PAK1), a serine/threonine protein kinase family member, is a cytoskeletal protein that plays a critical role in metastasis. We examined the expression of PRMT5 and PAK1 in esophageal squamous cell carcinoma (ESCC) and evaluated the correlation between PRMT5/p-PAK1 and both clinicopathological parameters and prognosis of ESCC patients. MATERIALS AND METHODS: 106 tumor tissues collected from ESCC patients were assessed for PRMT5 and PAK1 expression using immunohistochemistry. Pearson's correlation and Kaplan-Meier analysis were used to estimate the correlation with the clinicopathological parameters and effect on patient survival. Western blot analysis was used to determine the PRMT5/p-PAK1 protein expression. The wound healing assay was performed to assess the effect of PRMT5 on the migration of ESCC cells. RESULTS: PRMT5 is upregulated in ESCC and the level of PRMT5 is correlated with metastasis and can serve as an independent prognostic factor for overall survival (OS). PRMT5 knockdown remarkably inhibited ESCC cell migration with concomitantly reduced levels of phosphorylated PAK1 (p-PAK1) but not total PAK1. Kaplan-Meier analysis showed that the OS of the subgroup of patients with PRMT5high/p-PAK1high is remarkably shorter than those of other subgroups (i.e., PRMT5high/p-PAK1low, PRMT5low/p-PAK1low and PRMT5low/p-PAK1high). CONCLUSION: PRMT5-PAK1 signaling participates in ESCC metastasis and can predict patients' outcomes.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Biomarcadores Tumorais/metabolismo , Prognóstico , Histonas , Arginina , Estimativa de Kaplan-Meier , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismoRESUMO
Introduction and importance: The feasibility of combined tislelizumab with gemcitabine and cisplatin as a neoadjuvant regimen for muscle-invasive bladder cancer (MIBC) remains to be investigated. Case presentation: The neoadjuvant treatment not only shrunk tumours significantly but also lowered their stages from T4bN1M0, T3N0M0, and T3bN0M0 to pT1, pT0 and pTis, respectively. The treatment suppressed tumour cell proliferation and promoted luminal-to-basal transition. Clinical discussion: MIBC is an aggressive bladder cancer with poor prognosis. All three patients with MIBC benefited greatly from the neoadjuvant regimen (tislelizumab + gemcitabine + cisplatin). It appears that the effect of the treatment is independent of the levels of programmed death-ligand 1 nor the subtype of urothelial bladder cancer. Conclusion: Combination of tislelizumab with gemcitabine and cisplatin appeared to be a safe and efficacious neoadjuvant therapy for MIBC.
RESUMO
For clear cell renal cell carcinoma (ccRCC), lipid deposition plays important roles in the development, metastasis, and drug resistance. However, the molecular mechanisms underlying lipid deposition in ccRCC remain largely unknown. By conducting an unbiased CRISPR-Cas9 screening, we identified the epigenetic regulator plant homeodomain finger protein 8 (PHF8) as an important regulator in ccRCC lipid deposition. Moreover, PHF8 is regulated by von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF) axis and essential for VHL deficiency-induced lipid deposition. PHF8 transcriptionally up-regulates glutamate-ammonia ligase (GLUL), which promotes the lipid deposition and ccRCC progression. Mechanistically, by forming a complex with c-MYC, PHF8 up-regulates TEA domain transcription factor 1 (TEAD1) in a histone demethylation-dependent manner. Subsequently, TEAD1 up-regulates GLUL transcriptionally. Pharmacological inhibition of GLUL by l-methionine sulfoximine not only repressed ccRCC lipid deposition and tumor growth but also enhanced the anticancer effects of everolimus. Thus, the PHF8-GLUL axis represents a potential therapeutic target for ccRCC treatment.
Assuntos
Carcinoma de Células Renais , Glutamato-Amônia Ligase , Histona Desmetilases , Neoplasias Renais , Fatores de Transcrição , Humanos , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/metabolismo , Neoplasias Renais/metabolismo , Lipídeos , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glutamato-Amônia Ligase/metabolismoRESUMO
BACKGROUND & AIMS: Early detection of esophageal squamous cell carcinoma (ESCC) will facilitate curative treatment. We aimed to establish a microRNA (miRNA) signature derived from salivary extracellular vesicles and particles (EVPs) for early ESCC detection and prognostication. METHODS: Salivary EVP miRNA expression was profiled in a pilot cohort (n = 54) using microarray. Area under the receiver operator characteristic curve (AUROC) and least absolute shrinkage and selector operation regression analyses were used to prioritize miRNAs that discriminated patients with ESCC from controls. Using quantitative reverse transcription polymerase chain reaction, the candidates were measured in a discovery cohort (n = 72) and cell lines. The prediction models for the biomarkers were derived from a training cohort (n = 342) and validated in an internal cohort (n = 207) and an external cohort (n = 226). RESULTS: The microarray analysis identified 7 miRNAs for distinguishing patients with ESCC from control subjects. Because 1 was not always detectable in the discovery cohort and cell lines, the other 6 miRNAs formed a panel. A signature of this panel accurately identified patients with all-stage ESCC in the training cohort (AUROC = 0.968) and was successfully validated in 2 independent cohorts. Importantly, this signature could distinguish patients with early-stage (stage â /â ¡) ESCC from control subjects in the training cohort (AUROC = 0.969, sensitivity = 92.00%, specificity = 89.17%) and internal (sensitivity = 90.32%, specificity = 91.04%) and external (sensitivity = 91.07%, specificity = 88.06%) validation cohorts. Moreover, a prognostic signature based on the panel was established and efficiently predicted the high-risk cases with poor progression-free survival and overall survival. CONCLUSIONS: The salivary EVP-based 6-miRNA signature can serve as noninvasive biomarkers for early detection and risk stratification of ESCC. Chinese Clinical Trial Registry, ChiCTR2000031507.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Prognóstico , Curva ROCRESUMO
The Src family kinases (SFK) plays an important role in multiple signal transduction pathways. Aberrant activation of SFKs leads to diseases such as cancer, blood disorders, and bone pathologies. By phosphorylating and inactivating SFKs, the C-terminal Src kinase (CSK) serves as the key negative regulator of SFKs. Similar to Src, CSK is composed of SH3, SH2, and a catalytic kinase domain. However, while the Src kinase domain is intrinsically active, the CSK kinase domain is intrinsically inactive. Multiple lines of evidence indicate that CSK is involved in various physiological processes including DNA repair, permeability of intestinal epithelial cells (IECs), synaptic activity, astrocyte-to-neuron communication, erythropoiesis, platelet homeostasis, mast cell activation, immune and inflammation responses. As a result, dysregulation of CSK may lead to many diseases with different underlying molecular mechanisms. Furthermore, recent findings suggest that in addition to the well-established CSK-SFK axis, novel CSK-related targets and modes of CSK regulation also exist. This review focuses on the recent progress in this field for an up-to-date understanding of CSK.
RESUMO
Chemotherapy-related cognitive impairment (CRCI) or "chemo brain" is a devastating neurotoxic sequela of cancer-related treatments, especially for the elderly individuals. Here we show that PTPRO, a tyrosine phosphatase, is highly enriched in the hippocampus, and its level is tightly associated with neurocognitive function but declined significantly during aging. To understand the protective role of PTPRO in CRCI, a mouse model was generated by treating Ptpro-/- female mice with doxorubicin (DOX) because Ptpro-/- female mice are more vulnerable to DOX, showing cognitive impairments and neurodegeneration. By analyzing PTPRO substrates that are neurocognition-associated tyrosine kinases, we found that SRC and EPHA4 are highly phosphorylated/activated in the hippocampi of Ptpro-/- female mice, with increased sensitivity to DOX-induced CRCI. On the other hand, restoration of PTPRO in the hippocampal CA3 region significantly ameliorate CRCI in Ptpro-/- female mice. In addition, we found that the plant alkaloid berberine (BBR) is capable of ameliorating CRCI in aged female mice by upregulating hippocampal PTPRO. Mechanistically, BBR upregulates PTPRO by downregulating miR-25-3p, which directly targeted PTPRO. These findings collectively demonstrate the protective role of hippocampal PTPRO against CRCI.
Assuntos
Comprometimento Cognitivo Relacionado à Quimioterapia , Animais , Camundongos , Hipocampo/metabolismo , Proteínas Tirosina Fosfatases , Proteínas Tirosina Quinases , TirosinaRESUMO
Protein tyrosine phosphatase receptor-type O (PTPRO) is a membrane-bound tyrosine phosphatase. Notably, epigenetically silenced PTPRO due to promoter hypermethylation is frequently linked to malignancies. In this study, we used cellular and animal models, and patient samples to demonstrate that PTPRO can suppress the metastasis of esophageal squamous cell carcinoma (ESCC). Mechanistically, PTPRO can inhibit MET-mediated metastasis by dephosphorylating Y1234/1235 in the kinase activation loop of MET. Patients with PTPROlow/p-METhigh had significantly poor prognosis, suggesting that PTPROlow/p-METhigh can serve as an independent prognostic factor for patients with ESCC.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , Metástase Linfática , Linhagem Celular Tumoral , Monoéster Fosfórico Hidrolases , PrognósticoRESUMO
BACKGROUND: Primary bilateral macronodular adrenocortical hyperplasia (PBMAH) is a highly heterogeneous disease with divergent manifestations ranging from asymptomatic subclinical Cushing syndrome (CS) to overt Cushing syndrome with severe complications. ARMC5 mutations occur in 20 to 55% PBMAH patients usually with more severe phenotypes. Different ARMC5 mutations might be associated with diverse phenotypes of PBMAH. CASE PRESENTATION: A 39-year-old man was admitted to our hospital with progressive weight gain and severe hypertension. He presented typical CS and its classical metabolic and bone complications like hypertension and osteoporosis. The laboratory results showed high levels of cortisol and low levels of ACTH. Low- and high-dosed dexamethasone suppression tests were negative. Contrast-enhanced computed tomography (CT) revealed multiple bilateral irregular macronodular adrenal masses. Adrenal venous sampling (AVS) confirmed that the right adrenal gland with larger nodules secreted more hormone that the left side did. Right adrenalectomy and subsequent contralateral subtotal resection were conducted. His blood pressure and CS symptoms as well as comorbidities including backache and muscle weakness improved. Whole exome sequencing identified one ARMC5 germline mutation (c.1855C > T, p. R619*), five ARMC5 somatic mutations (four novel mutations) in his right and left adrenal nodules. CONCLUSIONS: This PBMAH patient was identified with one ARMC5 germline mutation and five different somatic ARMC5 mutations (four novel mutations) in the different nodules of the bilateral adrenal masses. AVS combined with CT imagine could be helpful to determine the dominant side for adrenalectomy. Genetic testing is important for the diagnosis and management of the patient with PBMAH.
Assuntos
Síndrome de Cushing , Hipertensão , Humanos , Masculino , Glândulas Suprarrenais/metabolismo , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Síndrome de Cushing/diagnóstico , Síndrome de Cushing/genética , Síndrome de Cushing/metabolismo , Hiperplasia/patologia , Hipertensão/patologia , Mutação , AdultoRESUMO
Introduction: 21-hydroxylase deficiency (21OHD) is the most common cause of congenital adrenal hyperplasia (CAH). However, patients with 21OHD manifest various phenotypes due to a wide-spectrum residual enzyme activity of different CYP21A2 mutations. Methods: A total of 15 individuals from three unrelated families were included in this study. Target Capture-Based Deep Sequencing and Restriction Fragment Length Polymorphism was conducted on peripheral blood DNA of the three probands to identify potential mutations/deletions in CYP21A2; Sanger sequencing was conducted with the DNA from the family members of the probands. Results: Dramatically different phenotypes were seen in the three probands of CAH with different compound heterozygous mutations in CYP21A2. Proband 1 manifested simple virilizing with mutations of 30-kb deletion/c.[188A>T;518T>A], the latter is a novel double mutants classified as SV associated mutation. Although both probands carry the same compound mutations [293-13C>G]:[518T>A], gonadal dysfunction and giant bilateral adrenal myelolipoma were diagnosed for proband 2 and proband 3, respectively. Conclusion: Both gender and mutations contribute to the phenotypes, and patients with the same compound mutations and gender could present with different phenotypes. Genetic analysis could help the etiologic diagnosis, especially for atypical 21OHD patients.
Assuntos
Hiperplasia Suprarrenal Congênita , Humanos , Hiperplasia Suprarrenal Congênita/genética , Hiperplasia Suprarrenal Congênita/diagnóstico , Esteroide 21-Hidroxilase/genética , Genótipo , Estudos de Associação GenéticaRESUMO
Cancer stem-like cells (CSC) play pivotal roles in both chemoresistance and recurrence of many cancer types, including urothelial bladder cancer (UBC). In addition to intrinsic signaling pathways, extracellular cues from the tumor microenvironment (TME) are indispensable for the maintenance of CSCs. To better understand the mechanisms involved in TME-mediated generation and support of UBC CSCs, we focused on the role of cancer-associated fibroblasts (CAF) in this study. Overexpression of miR-146a-5p in CAFs promoted CAF-to-UBC cell interactions, cancer stemness, and chemoresistance to treatment with gemcitabine and cisplatin. Mechanistically, miR-146-5p upregulated SVEP1 in CAFs by enhancing the recruitment of transcriptional factor YY1. Meanwhile, by targeting the 3'UTR of mRNAs of ARID1A and PRKAA2 (also known as AMPKα2) in UBC cells, CAF-secreted miR-146a-5p promoted cancer stemness and chemoresistance. Downregulation of ARID1A resulted in the inhibition of SOCS1 and subsequent STAT3 activation, and downregulated PRKAA2 led to the activation of mTOR signaling. Elevated levels of exosomal miR-146a-5p in the serum of patients with UBC were correlated with both tumor stage and relapse risk. These findings altogether indicate that CAF-derived miR-146a-5p can promote stemness and enhance chemoresistance in UBC. Exosomal miR-146a-5p may be a biomarker of UBC recurrence and a potential therapeutic target. SIGNIFICANCE: The tumor-stromal cross-talk mediated by cancer-associated fibroblast-derived miR-146a-5p fosters cancer stem cell niche formation and cancer stemness to drive chemoresistance in urothelial bladder cancer.
Assuntos
Fibroblastos Associados a Câncer , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Proliferação de Células , Microambiente TumoralRESUMO
BACKGROUND: Genetic profiling of patients with prostate cancer could potentially identify mutations prone to castration-resistant prostate cancer (CRPC). Here, we aimed to identify the differences in genetic profiles of patients with hormone-sensitive prostate cancer (HSPC) and CRPC and stratify HSPC patients to identify mutations associated with CRPC progression. METHODS: A total of 103 samples were collected, including 62 DNA samples from the tumor tissues of 59 HSPC patients and 41 cell-free DNA (cfDNA) samples from prostate cancer patients at different cancer stages. Targeted sequence was conducted on both the tissue DNA and cfDNA. The associations between mutations and clinical outcomes (CRPC-free time) were analyzed using χ2 test, logistic regression analysis, Kaplan-Meier analysis, and Cox regression analysis. RESULTS: By comparing to that of cfDNA sequencing, the results from DNA sequencing of 1-needle (80%) and mixed 12-needle (77.8%) biopsies are highly comparable. FOXA1 (30.5%), CDK12 (23.7%), and TP53 (22.0%) were the top 3 most frequently mutated genes in HSPC patients; 50.8% (30/59) and 44.1% (26/59) HSPC patients had mutations in DDR and HRR pathway, respectively. Mutations in AR and APC as well as the members involved in the regulation of stem cell pluripotency and EMT pathway were often observed in CRPC samples. We established a panel of four genetic mutations (MSH2, CDK12, TP53, and RB1) to predict the risk of CRPC early progression with concordance index = 0.609 and the area under curve of the ROC curve as 0.838. CONCLUSIONS: In this study, we demonstrated that the cfDNA can be used in genetic profiling in prostate cancer and our newly established panel is capable of predicting which mHSPC patient has a high risk of early CRPC progression.
Assuntos
Ácidos Nucleicos Livres , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Perfil Genético , Mutação , HormôniosRESUMO
Background: The prevalence of lung cancer, a major type of malignant tumor, has been increasing over the years greatly impacting the health of Chinese residents. This study investigates the epidemiological characteristics of lung cancer among healthcare workers in the Hunan Province, as well as the occupational risk factors. Methods: The data analyzed in this study was collected from the largest tumor hospital in the province: the Hunan Provincial Tumor Hospital affiliated with Central South University, School of Medicine. The data collected encompasses input collected between the years of 2004 to 2013 of the population of healthcare workers who were hospitalized for lung cancer treatments. Information was obtained through statistical analysis and telephonic interviews. Results: The prevalence of lung cancer among healthcare workers was much higher than that of the general population, as revealed by the difference between number of healthcare worker cases per 1,000 cases and number of healthcare workers per 1,000 population in the decade from 2004 to 2013. Analysis of the data further demonstrates that lung cancer prevalence among healthcare workers increases exponentially with age. Although smoking has been shown to increase the incidence of lung cancer to some extent, it is most likely not the main cause of lung cancer. In addition, it appears that the highest rates of lung cancer incidence occurs in mainly in primary general practitioners, medical radiologists, and nurses. The lack of awareness of personal safety measures may place healthcare workers at a greater risk of lung cancer.
Assuntos
Clínicos Gerais , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/epidemiologia , Incidência , Fatores de Risco , FumarRESUMO
Src family kinases (SFKs) play pivotal roles in multiple signaling pathways (Yeatman, 2004). SFK activity is inhibited by phosphorylation at its C-terminal tyrosine, by CSK (C-terminal Src kinase) and CHK (CSK-homologous kinase). CHK expression is restricted to normal hematopoietic cells, brain, and colon tissues. Downregulation of CHK in brain and colon tumors contributes to tumorigenicity in these tissues. CHK does not phosphorylate Src efficiently, however, in contrast to CSK, CHK inhibits Src kinase activity allosterically. Although the functions of CHK are still largely unknown, potential substrates of CHK including ß-synuclein, α-tubulin, α-spectrin, 14-3-3, and Hsp90 have been identified. CHK is regulated epigenetically via promoter methylation. As the unknown roles of CHK are beginning to be revealed, current knowledge of regulation, molecular targets and functions of CHK is summarized, and important topics for future CHK research are discussed.
RESUMO
Objective: To investigate the inherited mutations and their association with clinical features and treatment response in young-onset prostate cancer patients. Method: Targeted gene sequencing on 139 tumor susceptibility genes was conducted with a total of 24 patients diagnosed with PCa under the age of 63 years old. Meanwhile, the related clinical information of those patients is collected and analyzed. Results: Sixty-two germline mutations in 45 genes were verified in 22 patients. BRCA2 (20.8%) and GJB2 (20.8%) were found to be the most frequently mutated, followed by CHEK2, BRCA1, PALB2, CDKN2A, HOXB13, PPM1D, and RECQL (8.3% of each, 2/24). Of note, 58.3% (14/24) patients carry germline mutations in DNA repair genes (DRGs). Four families with HRR (homologous recombination repair)-related gene mutations were described and analyzed in detail. Two patients with BRCA2 mutation responded well to the combined treatment of androgen deprivation therapy (ADT) and radiotherapy/chemotherapy. Conclusion: Mutations in DRGs are more prevalent in early-onset PCa with advanced clinical stages, and these patients had shorter progression-free survival. ADT Combined with either radiotherapy or chemotherapy may be effective in treating PCa caused by HRR-related gene mutations.
RESUMO
Despite the initial benefit from treating ERBB2-positive breast cancer with tyrosine kinase inhibitor lapatinib, resistance develops inevitably. Since the expression of protein tyrosine phosphatase receptor-type O (PTPRO), a member of the R3 subfamily of receptor protein tyrosine phosphatases (PTPs), is inversely correlated with the aggressiveness of multiple malignancies, we decided to explore the correlation between PTPRO and lapatinib resistance in ERBB2-positive breast cancer. Results of immunohistochemical (IHC) staining and the correlation analysis between the expression levels of PTPRO and the clinicopathological parameters indicate that PTPRO is downregulated in cancer tissues as compared with normal tissues and negatively associated with differentiation, tumor size, tumor depth, as well as the expression of ERBB2 and Ki67. Results from Kaplan-Meier analyses indicate that lower expression of PTPRO is correlated with shorter relapse-free survival for patients with ERBB2-positive breast cancer, and multivariable Cox regression analysis found that PTPRO can potentially serve as an independent prognostic indicator for ERBB2-positive breast cancer. Results from both human breast cancer cells with PTPRO knockdown or overexpression and mouse embryonic fibroblasts (MEFs) which derived from Ptpro +/+ and Ptpro -/- mice with then stably transfected plasmid FUGW-Erbb2 consistently demonstrated the essentiality of PTPRO in the lapatinib-mediated anticancer process. Our findings suggest that PTPRO is not only able to serve as an independent prognostic indicator, but upregulating PTPRO can also reverse the lapatinib resistance of ERBB2-positive breast cancer.