Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38747993

RESUMO

We present a comprehensive investigation into the dissociative chemisorption of HOD on a rigid Ni(100) surface using an approximate full-dimensional (9D) quantum dynamics approach, which was based on the time-dependent wave-packet calculations on a full-dimensional potential energy surface obtained through neural network fitting to density functional theory energy points. The approximate-9D probabilities were computed by averaging the seven-dimensional (7D) site-specific dissociation probabilities across six impact sites with appropriate relative weights. Our results uncover a distinctive bond-selective effect, demonstrating that the vibrational excitation of a specific bond substantially enhances the cleavage of that excited bond. The product branching ratios are substantially influenced by which bond undergoes excitation, exhibiting a clear preference for the product formed through the cleavage of the excited bond over the alternative product.

2.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38785279

RESUMO

This study presents a parallel algorithm for high-dimensional quantum dynamics simulations in poly atomic reactions, integrating distributed- and shared-memory models. The distributions of the wave function and potential energy matrix across message passing interface processes are based on bundled radial and angular dimensions, with implementations featuring either two- or one-sided communication schemes. Using realistic parameters for the H + NH3 reaction, performance assessment reveals linear scalability, exceeding 90% efficiency with up to 600 processors. In addition, owing to the universal and concise structure, the algorithm demonstrates remarkable extensibility to diverse reaction systems, as demonstrated by successes with six-atom and four-atom reactions. This work establishes a robust foundation for high-dimensional dynamics studies, showcasing the algorithm's efficiency, scalability, and adaptability. The algorithm's potential as a valuable tool for unraveling quantum dynamics complexities is underscored, paving the way for future advancements in the field.

3.
J Phys Chem A ; 128(12): 2330-2338, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38480504

RESUMO

An accurate, global, full-dimensional potential energy surface (PES) of NaCl + NaCl has been constructed by the fundamental invariant-neural network (FI-NN) fitting based on roughly 13,000 ab initio energies at the level of CCSD(T)-F12a/aug-cc-pVTZ, with the small fitting error of 0.16 meV. Extensive quasiclassical trajectory (QCT) calculations were performed on this PES to investigate the energy transfer process of the NaCl + NaCl collision at four different collision energies. Various quantities were obtained, including the cross-sections, energy transfer probability, average energy transfer, and collision lifetime. The probabilities of energy transfer (P(ΔE)) for prompt trajectories, nonreactive trajectories, and reactive trajectories deviate from a simple exponential decay pattern. Instead, a noteworthy probability is observed in the high-energy transfer region, indicative of supercollisions. The formation of the (NaCl)2 complex, coupled with a comparatively extended collision lifetime, promotes vibrational excitation in NaCl molecules. The reactive trajectories exhibit enhanced energy transfer, attributed to the longer lifetime of the NaCl dimer. This study not only provides an accurate and extensive understanding of the NaCl + NaCl collision dynamics but also reveals intriguing phenomena, such as supercollisions and enhanced energy transfer in reactive trajectories, shedding light on the complex intricacies of molecular interactions.

4.
Nat Commun ; 15(1): 1698, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402199

RESUMO

Quantum interference between reaction pathways around a conical intersection (CI) is an ultrasensitive probe of detailed chemical reaction dynamics. Yet, for the hydrogen exchange reaction, the difference between contributions of the two reaction pathways increases substantially as the energy decreases, making the experimental observation of interference features at low energy exceedingly challenging. We report in this paper a combined experimental and theoretical study on the H + HD → H2 + D reaction at the collision energy of 1.72 eV. Although the roaming insertion pathway constitutes only a small fraction (0.088%) of the overall contribution, angular oscillatory patterns arising from the interference of reaction pathways were clearly observed in the backward scattering direction, providing direct evidence of the geometric phase effect at an energy of 0.81 eV below the CI. Furthermore, theoretical analysis reveals that the backward interference patterns are mainly contributed by two distinct groups of partial waves (J ~ 10 and J ~ 19). The well-separated partial waves and the geometric phase collectively influence the quantum reaction dynamics.

5.
J Phys Chem A ; 128(6): 1032-1040, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315118

RESUMO

Previous experiments and theories have shown the existence of heavy-light-heavy (HLH) reactivity oscillation in the Cl + CH4 reaction and anticipated that similar oscillations should exist in many HLH reactions involving polyatomic reagents. However, the total reaction probabilities for the Cl + CHD3 → HCl + CD3 reaction exhibit only a step-like feature, and the total reaction probabilities for Cl + CHT3 → HCl + CT3 do not show any structure at all. Here, we report seven-dimensional state-to-state quantum dynamics studies for this reaction on the FI-NN PES, and we demonstrate that HLH reactivity oscillations also exist in these two reactions, manifesting as peaks in the reaction probabilities for low product rotational states. These oscillations, however, are obscured in the total reaction probability because of the higher excitation of j ≥ 2 product rotational states. Furthermore, the isotope replacement of nonreactive hydrogen with deuterium and tritium significantly enhances reactivity at collision energies above 0.112 eV, indicating an inverse secondary isotope effect on the probabilities, which is proved to be also caused by HLH mass combination. We also demonstrate that the highly rotational excitation of CHD3 substantially enhances reactivity and the HLH oscillations, similar to HLH triatomic reactions. These observations are completely different from those in the H + CHD3 reaction, which is also a late-barrier reaction. Therefore, the HLH mass combination is very important, which affects not only the reactivity oscillation but also the amplitude and product rotational state distribution and makes the initial rotation excitation play a pivotal role in the reaction.

6.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38265082

RESUMO

Polanyi's rules predict that a late-barrier reaction yields vibrationally cold products; however, experimental studies showed that the H2 product from the late-barrier H + H2O(|04⟩-) and H + HOD(vOH = 4) reactions is vibrationally hot. Here, we report a potential-averaged five-dimensional state-to-state quantum dynamics study for the H + HOD(vOH = 0-4) → H2 + OD reactions on a highly accurate potential energy surface with the total angular momentum J = 0. It is found that with the HOD vibration excitation increasing from vOH = 1 to 4, the product H2 becomes increasingly vibrationally excited and manifests a typical characteristic of an early barrier reaction for vOH = 3 to 4. Analysis of the scattering wave functions revealed that vibrational excitation in the breaking OH bond moves the location of dynamical saddle point from product side to reactant side, transforming the reaction into an early barrier reaction. Interestingly, pronounced oscillatory structures in the total and product vibrational-state-resolved reaction probabilities were observed for the H + HOD(vOH = 3, 4) reactions, in particular at low collision energies, which originate from the Feshbach resonance states trapped in the bending/torsion excited vibrational adiabatic potential wells in the entrance region due to van der Waals interactions.

7.
J Chem Phys ; 160(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38168693

RESUMO

The 6D time-dependent wave packet calculations were performed to explore H2 dissociation on Ag, Au, and two AgAu alloy surfaces, using four newly fitted potential energy surfaces based on the neural network fitting to density functional theory energy points. The ligand effect resulting from the Ag-Au interaction causes a reduction in the barrier height for H2+Ag/Au(111) compared to H2+Ag(111). However, the scenario is reversed for H2+Au/Ag(111) and H2+Au(111). The 6D dissociation probabilities of H2 on Ag/Au(111) surfaces are significantly higher than those on the pure Ag(111) surface, but the corresponding results for H2 on Au/Ag(111) surfaces are substantially lower than those on the pure Au(111) surface. The reactivity of H2 on Au(111) is larger than that on Ag(111), despite Ag(111) having a slightly lower static barrier height. This can be attributed to the exceptionally small dissociation probabilities at the hcp and fcc regions, which are at least 100 times smaller compared to those at the bridge or top site for H2+Ag(111). Due to the late barrier being more pronounced, the vibrational excitation of H2 on Ag(111) is more effective in promoting the reaction than on Au(111). Moreover, a high degree of alignment dependence is detected for the four reactions, where the H2 dissociation has the highest probability at the helicopter alignment, as opposed to the cartwheel alignment.

8.
J Phys Chem A ; 127(45): 9513-9519, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37921345

RESUMO

We utilized the time-dependent wave packet approach to compute the first full-dimensional (6D) state-to-state differential cross sections (DCSs) for the title reaction with the initial nonrotating H2S in the ground and the (100) and (001) vibrational excited states. It is found that the fundamental symmetric and asymmetric stretching excitations of H2S exhibit almost the same influence on the DCS, but unlike the H + H2O → H2 + OH reaction, they greatly increase the vibrational excitation of both the H2 and SH products. The hot vibrational state distributions of H2 are consistent with the prediction of product energy disposal by Polanyi's rules for an early barrier reaction. Because the incident H atom reacts strongly with both the ground and excited S-H states, the large populations of product SH(v2 = 1), which are very close to the relative reactivity of the initial S-H(v = 0) state, can still be explained by the local mode picture for H2S and the nonreacting SH bond's spectator nature.

9.
J Phys Chem Lett ; 14(43): 9713-9719, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37877754

RESUMO

Understanding polar molecule dynamics on bimetallic surfaces, especially electropositivity and electronegativity, remains a challenge. Here, we report the reactivity of HCl on a strained Ag monolayer on Au(111) using six-dimensional quantum dynamics with a new machine-learning-based potential energy surface. Surprisingly, HCl reactivity is significantly suppressed by the Ag-Au interaction despite a lower HCl+Ag/Au(111) barrier than pure Ag(111). This arises from charge transfer between Ag and Au, where electronegative Au makes the top Ag layer on Ag/Au(111) electropositive, unlike that on pure Ag(111). Electropositive Ag in HCl+Ag/Au(111) attracts Cl, yielding an unfavorable H-Cl configuration and reduced reactivity. These findings deepen our understanding of polar molecule interactions on bimetallic surfaces, highlighting the role of charge transfer in dissociative chemisorption and the implications for catalyst design in heterogeneous catalysis.

10.
J Phys Chem A ; 127(43): 9098-9105, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870501

RESUMO

The CH2OO + H2O reaction is an important atmospheric process that leads to the formation of formic acid (HCOOH) and water via the intermediate hydroxymethyl hydroperoxide (HOCH2OOH, HMHP). We investigated the intricacies of this process by employing quasiclassical trajectory calculations on an accurate, full-dimensional ab initio potential energy surface (PES). In addition to the direct mechanism via the transition state (TS), an interesting roaming mechanism was found to play the predominant role in producing H2O and HCOOH. This roaming pathway is featured as the near direct dissociation of HMHP into OH and hydroxymethoxy radical, followed by the retraction of OH and abstraction of the H atom, culminating in the formation of H2O. Due to the longer interaction time of the roaming mechanism, less product translational energy was released, but more internal energies of HCOOH were obtained, as compared with the direct TS mechanism. The enhanced yield of H2O and formic acid achieved through roaming dynamics underscores the significance of dynamics simulations based on an accurate full-dimensional PES. This work provides new insights into the dynamics of the CH2OO + H2O reaction and its implications for atmospheric chemistry.

11.
JACS Au ; 3(10): 2855-2861, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37885590

RESUMO

The exquisite features of molecular photochemistry are key to any complete understanding of the chemical processes governed by potential energy surfaces (PESs). It is well established that multiple dissociation pathways relate to nonadiabatic transitions between multiple coupled PESs. However, little detail is known about how the single PES determines reaction outcomes. Here we perform detailed experiments on HNCO photodissociation, acquiring the state-specific correlations of the NH (a1Δ) and CO (X1Σ+) products. The experiments reveal a trimodal CO rotational distribution. Dynamics simulations based on a full-dimensional machine-learning-based PES of HNCO unveil three dissociation pathways exclusively occurring on the S1 excited electronic state. One pathway, following the minimum energy path (MEP) via the transition state, contributes to mild rotational excitation in CO, while the other two pathways deviating substantially from the MEP account for relatively cold and hot CO rotational state populations. These peculiar dynamics are unambiguously governed by the S1 state PES topography, i.e., a narrow acceptance cone in the vicinity of the transition state region. The dynamical picture shown in this work will serve as a textbook example illustrating the importance of the PES topography in molecular photochemistry.

12.
Phys Chem Chem Phys ; 25(34): 22804-22812, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584113

RESUMO

Full-dimensional, ab initio-based many-body potential energy surfaces and dipole moment surfaces constructed using the neural network method for SO2(H2O)n (n = 1,2) complexes are reported. The database of the SO2 1-body PES, SO2(H2O) 2-body PES and SO2(H2O)2 3-body PES consists of 11 952, 79 882 and 84 159 ab initio energies, respectively. All 1-body energies were calculated at the CCSD(T)/CBS(AVTZ:AVQZ) level and all 2,3-body energies were calculated at the DSD-PBEP86/AVTZ level. The database of DMSs is the same as that of PESs and all dipole moments were calculated at the MP2/AVTZ level. Harmonic frequencies and dissociation energies of SO2(H2O) and SO2(H2O)2 were calculated on these PESs and compared with ab initio results to examine the fidelity of these PESs.

13.
Chem Sci ; 14(31): 8255-8261, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37564413

RESUMO

The emergence of molecular oxygen (O2) in the Earth's primitive atmosphere is an issue of major interest. Although the biological processes leading to its accumulation in the Earth's atmosphere are well understood, its abiotic source is still not fully established. Here, we report a new direct dissociation channel yielding S(1D) + O2(a1Δg/X3Σg-) products from vacuum ultraviolet (VUV) photodissociation of SO2 in the wavelength range between 120 and 160 nm. Experimental results show O2 production to be an important channel from SO2 VUV photodissociation, with a branching ratio of 30 ± 5% at the H Lyman-α wavelength (121.6 nm). The relatively large amounts of SO2 emitted from volcanic eruptions in the Earth's late Archaean eon imply that VUV photodissociation of SO2 could have provided a crucial additional source term in the O2 budget in the Earth's primitive atmosphere. The results could also have implications for abiotic oxygen formation on other planets with atmospheres rich in volcanically outgassed SO2.

14.
Chem Sci ; 14(29): 7973-7979, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502322

RESUMO

The signature of dynamics resonances was observed in the benchmark polyatomic F + CH4/CHD3 reactions more than a decade ago; however, the dynamical origin of the resonances is still not clear due to the lack of reliable quantum dynamics studies on accurate potential energy surfaces. Here, we report a six-dimensional state-to-state quantum dynamics study on the F + CHD3 → HF + CD3 reaction on a highly accurate potential energy surface. Pronounced oscillatory structures are observed in the total and product rovibrational-state-resolved reaction probabilities. Detailed analysis reveals that these oscillating features originate from the Feshbach resonance states trapped in the peculiar well on the HF(v' = 3)-CD3 vibrationally adiabatic potential caused by HF chemical bond softening. Most of the resonance structures on the reaction probabilities are washed out in the well converged integral cross sections (ICS), leaving only one distinct peak at low collision energy. The calculated HF vibrational state-resolved ICS for CD3(v = 0) agrees quantitatively with the experimental results, especially the branching ratio, but the theoretical CD3 umbrella vibration state distribution is found to be much hotter than the experiment.

15.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37272570

RESUMO

The mode-specific dynamics for the dissociative chemisorption of H2O on rigid Ni(100) is investigated by approximate nine-dimensional (9D) quantum dynamics calculations. The vibrational state-specific 9D dissociation probabilities are obtained by site-averaging the site-specific seven-dimensional results based on an accurate full-dimensional potential energy surface newly developed by neural network fitting to density functional theory energy points with the revised version of the Perdew, Burke, and Ernzerhof functional. The mode specificity of H2O/Ni(100) is very different from that of H2O/Ni(111) or H2O/Cu(111) whose reactivity enhancement by vibrational excitations is quite efficient. For H2O/Ni(100), it is found that the excitation in the symmetric stretching mode is more efficacious than increasing the translational energy in promoting the reaction, while the excitations in the asymmetric stretching mode and bending mode are less efficacious than the translational energy at low collision energies. These interesting observations can be attributed to the near central-barrier reaction for H2O/Ni(100), as well as large discrepancies between the site-specific mode specificities at different impact sites. The mode-specific dynamics obtained in this study is different from that obtained with the reaction path Hamiltonian approach, indicating the importance of full-dimensional quantum dynamics for gas-surface reactions.

16.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37290067

RESUMO

Tunneling splittings observed in molecular rovibrational spectra are significant evidence for tunneling motion of hydrogen nuclei in water clusters. Accurate calculations of the splitting sizes from first principles require a combination of high-quality inter-atomic interactions and rigorous methods to treat the nuclei with quantum mechanics. Many theoretical efforts have been made in recent decades. This Perspective focuses on two path-integral based tunneling splitting methods whose computational cost scales well with the system size, namely, the ring-polymer instanton method and the path-integral molecular dynamics (PIMD) method. From a simple derivation, we show that the former is a semiclassical approximation to the latter, despite that the two methods are derived very differently. Currently, the PIMD method is considered to be an ideal route to rigorously compute the ground-state tunneling splitting, while the instanton method sacrifices some accuracy for a significantly smaller computational cost. An application scenario of such a quantitatively rigorous calculation is to test and calibrate the potential energy surfaces of molecular systems by spectroscopic accuracy. Recent progress in water clusters is reviewed, and the current challenges are discussed.


Assuntos
Teoria Quântica , Água , Simulação de Dinâmica Molecular , Hidrogênio/química , Polímeros
17.
RSC Adv ; 13(20): 13397-13404, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37143908

RESUMO

An accurate global full-dimensional machine learning-based potential energy surface (PES) of the simplest Criegee intermediate (CH2OO) reaction with water monomer was developed based on the high level of extensive CCSD(T)-F12a/aug-cc-pVTZ calculations. This analytical global PES not only covers the regions of reactants to hydroxymethyl hydroperoxide (HMHP) intermediates, but also different end product channels, which facilities both the reliable and efficient kinetics and dynamics calculations. The rate coefficients calculated by the transition state theory with the interface to the full-dimensional PES agree well with the experimental results, indicating the accuracy of the current PES. Extensive quasi-classical trajectory (QCT) calculations were performed both from the bimolecular reaction CH2OO + H2O and from HMHP intermediate on the new PES. The product branching ratios of hydroxymethoxy radical (HOCH2O, HMO) + OH radical, formaldehyde (CH2O) + H2O2 and formic acid (HCOOH) + H2O were calculated. The reaction yields dominantly HMO + OH, because of the barrierless pathway from HMHP to this channel. The computed dynamical results for this product channel show the total available energy was deposited into the internal rovibrational excitation of HMO, and the energy release in OH and translational energy is limited. The large amount of OH radical found in the current study implies that the CH2OO + H2O reaction can provide crucially OH yield in Earth's atmosphere.

18.
J Phys Chem Lett ; 14(18): 4179-4184, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37114860

RESUMO

[Au25(PPh3)10(SC2H4Ph)5Cl2]2+ (Au25) supported on TiO2 (P25) exhibited distinct photocatalytic behaviors in the oxidation of amines using visible or ultraviolet light. The activity under visible light (455 nm) was superior to that under ultraviolet light. To gain insight into the origin of this difference, we investigated the photoreaction pathways of Au25 isolated in the gas phase upon irradiation with a pulsed laser with wavelengths of 455, 193, and 154 nm. High-resolution mass spectrometry revealed photon energy-dependent pathways for Au25: dissociation of the PPh3 ligands and PPh3AuCl units at 455 nm, dissociation into small [AunSm]+ ions (n = 3-20; m = 0-4) at 193 nm, and ionization affording the triply charged state at 154 nm. These results were substantiated by density functional theory simulations. On the basis of these results, we proposed that the inferior photocatalytic activity of Au25/P25 under ultraviolet light is mainly due to the poor photostability of Au25.

19.
J Am Chem Soc ; 145(16): 8817-8821, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37070757

RESUMO

The importance of quantum-mechanical tunneling becomes increasingly recognized in chemical reactions involving hydrogen as well as heavier atoms. Here we report concerted heavy-atom tunneling in an oxygen-oxygen bond breaking reaction from cyclic beryllium peroxide to linear dioxide in cryogenic Ne matrix, as evidenced by subtle temperature-dependent reaction kinetics and unusually large kinetic isotope effects. Furthermore, we demonstrate that the tunneling rate can be tuned through noble gas atom coordination on the electrophilic beryllium center of Be(O2), as the half-life dramatically increased from 0.1 h for NeBe(O2) at 3 K to 12.8 h for ArBe(O2). Quantum chemistry and instanton theory calculations reveal that noble gas coordination notably stabilizes the reactants and transition states, increases the barrier heights and widths, and consequently reduces the reaction rate drastically. The calculated rates and in particular kinetic isotope effects are in good agreement with experiment.

20.
Phys Chem Chem Phys ; 25(11): 8117-8127, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36876923

RESUMO

We report here a full-dimensional machine learning global potential surface (PES) for the rearrangement of methylhydroxycarbene (H3C-C-OH, 1t). The PES is trained with the fundamental invariant neural network (FI-NN) method on 91 564 ab initio energies calculated at the UCCSD(T)-F12a/cc-pVTZ level of theory, covering three possible product channels. FI-NN PES has the correct symmetry properties with respect to permutation of four identical hydrogen atoms and is suitable for dynamics studies of the 1t rearrangement. The averaged root mean square error (RMSE) is 11.4 meV. Six important reaction pathways, as well as the energies and vibrational frequencies at the stationary geometries on these pathways are accurately preproduced by our FI-NN PES. To demonstrate the capacity of the PES, we calculated the rate coefficient of hydrogen migration in -CH3 (path A) and hydrogen migration of -OH (path B) with instanton theory on this PES. Our calculations predicted the half-life of 1t to be 95 min, which is excellent in agreement with experimental observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA