Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biomacromolecules ; 24(4): 1662-1674, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36913719

RESUMO

Numerous metabolic reactions and pathways use adenosine 5'-triphosphate (ATP) as an energy source and as a phosphorous or pyrophosphorous donor. Based on three-dimensional (3D)-printing, enzyme immobilization can be used to improve ATP regeneration and operability and reduce cost. However, due to the relatively large mesh size of 3D-bioprinted hydrogels soaked in a reaction solution, the lower-molecular-weight enzymes cannot avoid leaking out of the hydrogels readily. Here, a chimeric adenylate-kinase-spidroin (ADK-RC) is created, with ADK serving as the N-terminal domain. The chimera is capable of self-assembling to form micellar nanoparticles at a higher molecular scale. Although fused to spidroin (RC), ADK-RC remains relatively consistent and exhibits high activity, thermostability, pH stability, and organic solvent tolerance. Considering different surface-to-volume ratios, three shapes of enzyme hydrogels are designed, 3D bioprinted, and measured. In addition, a continuous enzymatic reaction demonstrates that ADK-RC hydrogels have higher specific activity and substrate affinity but a lower reaction rate and catalytic power compared to free enzymes in solution. With ATP regeneration, the ADK and ADK-RC hydrogels significantly increase the production of d-glucose-6-phosphate and obtain an efficient usage frequency. In conclusion, enzymes fused to spidroin might be an efficient strategy for maintaining activity and reducing leakage in 3D-bioprinted hydrogels under mild conditions.


Assuntos
Adenilato Quinase , Fibroínas , Adenilato Quinase/química , Adenilato Quinase/metabolismo , Hidrogéis , Trifosfato de Adenosina/química , Catálise
2.
J Microbiol ; 61(1): 95-107, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36719619

RESUMO

The oleaginous marine microalga Nannochloropsis oceanica strain IMET1 has attracted increasing attention as a promising photosynthetic cell factory due to its unique excellent capacity to accumulate large amounts of triacylglycerols and eicosapentaenoic acid. To complete the genomic annotation for genes in the fatty acid biosynthesis pathway of N. oceanica, we conducted the present study to identify a novel candidate gene encoding the archetypical chloroplast stromal acyl-acyl carrier protein Δ9 desaturase. The full-length cDNA was generated using rapid-amplification of cDNA ends, and the structure of the coding region interrupted by four introns was determined. The RT-qPCR results demonstrated the upregulated transcriptional abundance of this gene under nitrogen starvation condition. Fluorescence localization studies using EGFP-fused protein revealed that the translated protein was localized in chloroplast stroma. The catalytic activity of the translated protein was characterized by inducible expression in Escherichia coli and a mutant yeast strain BY4389, indicating its potential desaturated capacity for palmitoyl-ACP (C16:0-ACP) and stearoyl-ACP (C18:0-ACP). Further functional complementation assay using BY4839 on plate demonstrated that the expressed enzyme restored the biosynthesis of oleic acid. These results support the desaturated activity of the expressed protein in chloroplast stroma to fulfill the biosynthesis and accumulation of monounsaturated fatty acids in N. oceanica strain IMET1.


Assuntos
Proteína de Transporte de Acila , Ácidos Graxos Dessaturases , Proteína de Transporte de Acila/genética , DNA Complementar/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo
3.
Prep Biochem Biotechnol ; 53(8): 914-922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36573266

RESUMO

Due to their advantages in structural stability and versatility, cysteine-rich peptides, which are secreted from the venom glands of venomous animals, constitute a naturally occurring pharmaceutical arsenal. However, the correct folding of disulfide bonds is a challenging task in the prokaryotic expression system like Escherichia coli due to the reducing environment. Here, a secretory expression plasmid pSE-G1M5-SUMO-HWTX-I for the spider neurotoxin huwentoxin-I (HWTX-I) with three disulfides as a model of cysteine-rich peptides was constructed. By utilizing the signal peptide G1M5, the fusion protein 6 × His-SUMO-HWTX-I was successfully secreted into extracellular medium of BL21(DE3). After enrichment using cation-exchange chromatography and purification utilizing the Ni-NTA column, 6 × His-SUMO-HWTX-I was digested via Ulp1 kinase to release recombinant HWTX-I (rHWTX-I), which was further purified utilizing RP-HPLC. Finally, both impurities with low and high molecular weights were completely removed. The molecular mass of rHWTX-I was identified as being 3750.8 Da, which was identical to natural HWTX-I with three disulfide bridges. Furthermore, by utilizing whole-cell patch clamp, the sodium currents of hNav1.7 could be inhibited by rHWTX-I and the IC50 value was 419 nmol/L.


Assuntos
Venenos de Aranha , Aranhas , Animais , Neurotoxinas/química , Neurotoxinas/farmacologia , Cisteína/metabolismo , Aranhas/química , Aranhas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Venenos de Aranha/genética , Venenos de Aranha/química , Venenos de Aranha/metabolismo , Peptídeos/metabolismo , Dissulfetos/metabolismo
4.
J Pharm Biomed Anal ; 218: 114837, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35659657

RESUMO

In this study, a plant metabonomics technique, utilizing ultra-high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI--QTOF), was used to clarify the differences of various processed Bupleurum scorzonerifolium Willd. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to determine the differences in raw and different processed B. scorzonerifolium samples, including vinegar stir-fry, wine stir-fry, honey stir-fry, honey bran stir-fry and charcoal stir-fry. Thus, 39 significant compounds, e.g., saponins, free fatty acids, fatty acid pentitol glycosides, organic acid and linalool glycosides, were clearly or tentatively identified by UPLC-ESI--QTOF-MS/MS fragmentation pathways and by comparison with available reference standards. Most importantly, fatty acid pentitol glycosides were discovered and identified in B. scorzonerifolium for the first time. Furthermore, a HepG2 hepatitis model induced by TNF-α was used to measure the anti-hepatitis effect of raw and processed B. scorzonerifolium in vitro. Molecular docking was used to understand the interaction of key Q-markers with the active sites of the target protein. The results show that the UPLC-QTOF-MS metabolomics coupled with molecular docking is a powerful tool to quickly identify quality control characteristics of B. scorzonerifolium and its products.


Assuntos
Bupleurum , Saponinas , Bupleurum/química , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Graxos , Metabolômica/métodos , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem/métodos
5.
Ecotoxicol Environ Saf ; 229: 113056, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883323

RESUMO

Tea plants that have a large leaf area mainly suffer from heavy metal accumulation in the above-ground parts through foliar uptake. With the world rapid industrialization, this pollution in tea is considered a crucial challenge due to its potential health risks. The present study proposes an innovative approach based on visible and near-infrared (Vis-NIR) spectroscopy coupled with chemometrics for the characterization of tea chemical indicators under airborne lead stress, which can be performed fast and in situ. The effects of lead stress on chemical indicators and accumulation in leaves of the two tea varieties at different time intervals and levels of treatment were investigated. In addition, changes in cell structure and leaf stomata were monitored during foliar uptake of aerosol particles by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The spectral variation was able to classify the tea samples into the Pb treatment groups through the linear discriminant analysis (LDA) model. Two machine learning techniques, namely, partial least squares (PLS) and radial basis function neural network (RBFNN), were evaluated and compared for building the quantitative determination models. The RBFNN models combined with correlation-based feature selection (CFS) and PLS data compression methods were used to optimize the prediction performance. The results demonstrated that the PLS-RBFNN as a non-linear model outperformed the PLS model and provided the R-value of 0.944, 0.952, 0.881, 0.937, and 0.930 for prediction of MDA, starch, sucrose, fructose, glucose, respectively. It can be concluded that the proposed approach has strong application potential in monitoring the quality and safety of plants under airborne heavy metal stress.


Assuntos
Chumbo , Espectroscopia de Luz Próxima ao Infravermelho , Quimiometria , Análise dos Mínimos Quadrados , Redes Neurais de Computação , Indicadores de Qualidade em Assistência à Saúde , Chá
6.
Int J Biol Macromol ; 185: 983-996, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34229018

RESUMO

A hydrophilic interaction liquid chromatography-negative electrospray-mass spectrometry (HILIC-ESI--MS) coupled with microwave assisted mild acid (MAMA) depolymerization is proposed here for unusual discrimination and characterization of plant polysaccharides: a case study of fruit polysaccharides in Schisandra chinensis and S. sphenanthera (SCP and SSP). The optimized MAMA hydrolysis procedure was proposed for sample preparations of low-polymerization saccharides (Mw < 5000 Da) released in SCP and SSP. In addition, HILIC-MS/MS was employed for elucidation of isomeric glycosidic linkages in terms of 18O labelling. The MAMA hydrolysates showed that the amount of neutral →(4Hex1)n→ moiety is confirmed to be more bigger than that of acidic →(4HexA1)n → in SCP, whereas the amount of acidic →(4HexA1)n→ moiety seems to be more bigger than that of neutral →(4Hex1)n→ in SSP. The resulting low-polymerization compositional fingerprinting (LCF) showed the performance on rapid visualization of SCP and SSP by HILIC-MIM-MS. Principal components analysis (PCA) and hierarchical cluster analysis (HCA) further unveils several key Q-markers (e.g., m/z 503, 369, 665, 827, 989, 1151 and 735) for rapid discrimination of SCP and SSP. This practical study showed that the LCF with PCA and HCA could effectively reflect structural differences and could rapidly achieve discrimination of SCP and SSP.


Assuntos
Polissacarídeos/análise , Polissacarídeos/química , Schisandra/química , Sequência de Carboidratos , Cromatografia Líquida , Análise por Conglomerados , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Análise de Componente Principal , Espectrometria de Massas por Ionização por Electrospray
7.
Cell Rep ; 36(3): 109413, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289355

RESUMO

Metabolic regulation strategies have been developed to redirect metabolic fluxes to production pathways. However, it is difficult to screen out target genes that, when repressed, improve yield without affecting cell growth. Here, we report a strategy using a quorum-sensing system to control small RNA transcription, allowing cell-density-dependent repression of target genes. This strategy is shown with convenient operation, dynamic repression, and availability for simultaneous regulation of multiple genes. The parameters Ai, Am, and RA (3-oxohexanoyl-homoserine lactone [AHL] concentrations at which half of the maximum repression and the maximum repression were reached and value of the maximum repression when AHL was added manually, respectively) are defined and introduced to characterize repression curves, and the variant LuxRI58N is identified as the most suitable tuning factor for shake flask culture. Moreover, it is shown that dynamic overexpression of the Hfq chaperone is the key to combinatorial repression without disruptions on cell growth. To show a broad applicability, the production titers of pinene, pentalenene, and psilocybin are improved by 365.3%, 79.5%, and 302.9%, respectively, by applying combinatorial dynamic repression.


Assuntos
Escherichia coli/genética , Loci Gênicos , Percepção de Quorum/genética , RNA Bacteriano/metabolismo , Monoterpenos Bicíclicos/metabolismo , Vias Biossintéticas/genética , Ciclopentanos/metabolismo , Regulação Bacteriana da Expressão Gênica , Glicólise , Psilocibina/metabolismo
8.
Front Cell Dev Biol ; 9: 645647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178980

RESUMO

Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.

9.
Cell Rep ; 34(1): 108600, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406425

RESUMO

Microgravity is a major environmental factor of space flight that triggers dysregulation of the immune system and increases clinical risks for deep-space-exploration crews. However, systematic studies and molecular mechanisms of the adverse effects of microgravity on the immune system in animal models are limited. Here, we establish a ground-based zebrafish disease model of microgravity for the research of space immunology. RNA sequencing analysis demonstrates that the retinoic-acid-inducible gene (RIG)-I-like receptor (RLR) and the Toll-like receptor (TLR) signaling pathways are significantly compromised by simulated microgravity (Sµg). TRIM25, an essential E3 for RLR signaling, is inhibited under Sµg, hampering the K63-linked ubiquitination of RIG-I and the following function-induction positive feedback loop of antiviral immune response. These mechanisms provide insights into better understanding of the effects and principles of microgravity on host antiviral immunity and present broad potential implications for developing strategies that can prevent and control viral diseases during space flight.


Assuntos
Proteína DEAD-box 58/imunologia , Imunidade , Rhabdoviridae/imunologia , Receptores Toll-Like/imunologia , Ubiquitina-Proteína Ligases/imunologia , Ausência de Peso/efeitos adversos , Peixe-Zebra/imunologia , Medicina Aeroespacial , Animais , Proteína DEAD-box 58/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Transdução de Sinais , Receptores Toll-Like/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Peixe-Zebra/metabolismo
10.
Front Bioeng Biotechnol ; 9: 779437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976975

RESUMO

Metabolic engineering of cyanobacteria has received much attention as a sustainable strategy to convert CO2 to various longer carbon chain fuels. Pinene has become increasingly attractive since pinene dimers contain high volumetric energy and have been proposed to act as potential aircraft fuels. However, cyanobacteria cannot directly convert geranyl pyrophosphate into pinene due to the lack of endogenous pinene synthase. Herein, we integrated the gene encoding Abies grandis pinene synthase into the model cyanobacterium Synechococcus sp. PCC 7002 through homologous recombination. The genetically modified cyanobacteria achieved a pinene titer of 1.525 ± 0.l45 mg L-1 in the lab-scale tube photobioreactor with CO2 aeration. Specifically, the results showed a mixture of α- and ß-pinene (∼33:67 ratio). The ratio of ß-pinene in the product was significantly increased compared with that previously reported in the engineered Escherichia coli. Furthermore, we investigated the photoautotrophic growth performances of Synechococcus overlaid with different concentrations of dodecane. The work demonstrates that the engineered Synechococcus is a suitable potential platform for ß-pinene production.

11.
J Appl Biomater Funct Mater ; 18: 2280800020963471, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270494

RESUMO

A novel graphene oxide (GO)-based carrier was fabricated for the controlled release of Benazepril (BENA). Freeze dried samples of GO-BENA carrier were prepared for controlled drug release at different pHs (pH = 2, 7, and 10) and release kinetics indicate BENA desorption from GO is by Fickian diffusion. The BENA yield from the carrier amounted to ~55% of the adsorbed material in a strongly acidic medium after 50 h. Binding fractions of BENA to 10 mg/L GO was determined for different solution concentrations of the drug. In vitro assays of cell proliferation (WST-1 kit), cell structural integrity (LDH kit) and flow cytometric indicators of necrosis in three different cell lines (CACO-2, SGC-7901, and primary mouse hepatic fibroblast) all demonstrated that the GO carrier had a good biocompatibility. The pH-dependent release sensitivity of the GO-based carrier suggests that it is a potential candidate for use in the controlled release of drugs in the acidic environment of the stomach.


Assuntos
Contenção de Riscos Biológicos , Grafite , Animais , Benzazepinas , Células CACO-2 , Preparações de Ação Retardada , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Óxidos
12.
Biotechnol Lett ; 41(10): 1147-1154, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31428906

RESUMO

OBJECTIVES: Developing a dynamic regulation strategy is an essential step in establishing an automatic control system for manipulating metabolic fluxes and cellular behaviors. To broaden the extent of the application, a system that can generally control any gene of interest is demanded. RESULTS: Through characterization and optimization, the strategy repressed the immediate expression incrementally from 0 to 90% during culturing. Moreover, by changing single base pair in the lux box of the Plux promoter, the degree of repression of the target genomic gene was tuned to a difference of 70%. This strategy is expected to control metabolic flux without disrupting cell growth. CONCLUSIONS: We engineered bacterial small RNA to develop a pathway-independent strategy that can dynamically repress the expression of any gene at the posttranscription level.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum , RNA Bacteriano/biossíntese , Pequeno RNA não Traduzido/biossíntese
13.
Plasmid ; 105: 102431, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31319110

RESUMO

Pinene is a monoterpene with wide industrial applications, especially as a promising high energy-density jet fuel. Traditional production of pinene on an industrial scale is material consumptive and has a low yield. As an alternative, microbial organisms have been engineered though advanced synthetic biological techniques to produce a variety of heterologous products, including pinene. Here, we investigated the stability of genetic circuits encoding the pinene producing pathway during fermentation and its relationship to the pinene titer. By replacing scar sequences in the genetic elements and modifying the genome of E. coli strain MG1655, plasmid loss caused by serious metabolic burden was eliminated, generating a remarkable increase in the pinene titer. Furthermore, the heterologous mevalonate pathway was analyzed by overexpression of enzymes and intermediates monitoring. Optimized pathway plasmids and strains were combined to increase the pinene titer to 104.6 mg/L.


Assuntos
Vias Biossintéticas/genética , Monoterpenos/metabolismo , Plasmídeos/genética , Recombinação Genética/genética , Escherichia coli/genética , Fermentação , Plasmídeos/metabolismo
14.
ACS Sens ; 4(6): 1577-1585, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31244010

RESUMO

Although ultraviolet (UV) light illumination has been widely used to increase the sensitivity of semiconductor gas sensors, its underlying mechanism is still blurred and controversial. In this work, the influence of UV light illumination on the sensitivity of ZnO nanofilm gas sensors is explored experimentally and simulated based on a modified Wolkenstein's model. The influential factors on sensitivity are determined respectively: the surface band bending and Fermi level are measured by Kelvin probe force microscopy, the binding energy and extrinsic surface state are calculated by density functional theory, and the depletion of the whole semiconductor caused by the finite size is illustrated by the transfer characteristics of a field effect transistor. With all these factors taken into consideration, the surface state densities of adsorbed O2 and NO2 molecules in the dark and under UV light illumination are calculated which determine the sensitivity. Good agreement has been obtained between the experiment and simulation results. Accordingly, when NO2 is introduced into the atmosphere, the enhancement of sensitivity is ascribed to the more dramatic increase of surface state density and surface band bending activated by the UV light illumination compared with that in the dark. This finding is critical and would contribute greatly to the development of gas sensors with high sensitivity.

15.
J Biotechnol ; 296: 69-74, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30885657

RESUMO

Synthetic scaffold systems, which exhibit enzyme clustering effect, have been considered as an important parallel approach for metabolic flux control and pathway enhancement. Here, we described an improved DNA-based scaffold system for synthetic tri-enzymatic pathway in Escherichia coli. With plasmid DNA serving as scaffold and exogenous enzymes fused with rationally designed transcription activator-like effectors (TALEs), our approach successfully clustered three TALE-fused enzymes and significantly increased the production of a mevalonate-producing tri-enzymatic pathway with the optimized scaffold structure and plasmid copy number. These results further suggested the scalability and robustness of the TALE-based scaffold system, and we can assume that it can be used on numerous multi-enzyme metabolic pathways due to its programmable features.


Assuntos
DNA/genética , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Efetores Semelhantes a Ativadores de Transcrição/química , DNA/química , Escherichia coli/genética , Ácido Mevalônico/química , Ácido Mevalônico/metabolismo , Plasmídeos/genética , Efetores Semelhantes a Ativadores de Transcrição/genética
16.
Protein Expr Purif ; 155: 130-135, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30508587

RESUMO

To optimize the expression conditions for human lactoferrin production, we have constructed the transgenic chlorella with human lactoferrin named as GTD8A1-HLF, the original chlorella was separated from Gurbantunggut Desert in Xinjiang China. To further improve the production of human lactoferrin, a sequential methodology was used to optimize human lactoferrin production by GTD8A1-HLF. First, a screening trial using a Plackett-Burman design was done, and variables with statistically significant effects on human lactoferrin bio-production were identified. These were further optimized by central composite design experiments and response surface methodology. Finally, we found that the maximum human lactoferrin production (52.70 mg/L) was achieved under the following optimized conditions: Initial pH 5.0, NaNO3 concentration of 0.600 mol/L, FeSO4 concentration of 0.006 mol/L, and a CuSO4 concentration of 0.002 mol/L, with the other medium components constituting the basal culture medium BBM. The yield of HLF protein under optimized culture conditions was approximately 4-fold higher than that obtained by using the basal culture medium BBM. The findings are significant for the potential industrial use of GTD8A1-HLF.


Assuntos
Chlorella/genética , Lactoferrina/genética , Algoritmos , Biotecnologia/métodos , Técnicas de Cultura de Células/métodos , Chlorella/crescimento & desenvolvimento , Meios de Cultura/análise , Humanos , Lactoferrina/análise , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Projetos de Pesquisa
17.
ACS Synth Biol ; 7(3): 807-813, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29486117

RESUMO

MicroRNAs have been reported as related to multiple diseases and have potential applications in diagnosis and therapeutics. However, detection of miRNAs remains improvable, given their complexity, high cost, and low sensitivity as of currently. In this study, we attempt to build a novel platform that detects miRNAs at low cost and high efficacy. This detection system contains isothermal amplification, detecting and reporting process based on rolling circle amplification, CRISPR-Cas9, and split-horseradish peroxidase techniques. It is able to detect trace amount of miRNAs from samples with mere single-base specificity. Moreover, we demonstrated that such scheme can effectively detect target miRNAs in clinical serum samples and significantly distinguish patients of non-small cell lung cancer from healthy volunteers by detecting the previously reported biomarker: circulating let-7a. As the first to use CRISPR-Cas9 in miRNA detection, this method is a promising approach capable of being applied in screening, diagnosing, and prognosticating of multiple diseases.


Assuntos
Sistemas CRISPR-Cas/genética , Custos e Análise de Custo , Técnicas Genéticas/economia , MicroRNAs/análise , MicroRNAs/economia , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , MicroRNAs/genética , Sondas RNA/metabolismo
18.
Oncol Lett ; 15(1): 813-820, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29399149

RESUMO

Hepatocellular carcinoma (HCC) is one of the most widespread malignant human tumors worldwide. Treatment options include radiotherapy, surgical intervention and chemotherapy; however, drug resistance is an ongoing treatment concern. In the present study, the effects of a microRNA (miR/miRNA), miR-9, on the sensitivity of HCC cell lines to the epidermal growth factor receptor inhibitor, cetuximab, were examined. miR-9 has been proposed to serve a role in tumorigenesis and tumor progression. In the present study, bioinformatics analyses identified the eukaryotic translation initiation factor 5A2 (eIF-5A-2) as a target of miR-9. The expression levels of miR-9 and eIF-5A-2 were examined by reverse transcription-quantitative polymerase chain reaction and HCC cell lines were transfected with miR-9 mimics and inhibitors to determine the effects of the miRNA on cell proliferation and viability. The miR-9 mimic was revealed to significantly increase the sensitivity of epithelial phenotype HCC cells (Hep3B and Huh7) to cetuximab, while the miR-9 inhibitor triggered the opposite effect. There were no significant differences in sensitivity to cetuximab observed in mesenchymal phenotype HCC cells (SNU387 and SNU449). Cells lines displaying high expression levels of eIF-5A-2 were more resistant to cetuximab. Transfection of cells with a miR-9 mimic resulted in downregulation of the expression of eIF-5A-2 mRNA, while an miR-9 inhibitor increased expression. When expression of eIF-5A-2 was knocked down with siRNA, the effects of miR-9 on cetuximab sensitivity were no longer observed. Taken together, these data support a role for miR-9 in enhancing the sensitivity of epithelial phenotype HCC cells to cetuximab through regulation of eIF-5A-2.

19.
J Cell Biochem ; 119(7): 5222-5232, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29240236

RESUMO

Mesoporous bioactive glass (MBG), a kind of porous materials with great osteoconductive and osteoinductive ability, shows promising application in bone tissue engineering due to its high specific surface area, orderly channel structure, and large pore volume. Here we reported that the proliferation, differentiation, and mineralization were promoted in MC3T3-E1 cells cultured on MBG which adsorbed with testosterone (MBG/T). We found that transcriptional activity of Runx2 which is a critical transcription factor is increased in MC3T3-E1 cells cultured on MBG/T. Intriguingly, we observed that ERK phosphorylation was enhanced in MC3T3-E1 cells cultured on MBG/T. We showed that activated Runx2 in MC3T3-E1 cells cultured on MBG/T is through Erk1/2 phosphorylation. Consistent with this result, we also found that the expression of osteoblastic marker genes were increased. Therefore, we concluded that osteoblast differentiation and mineralization was enhanced after cells cultured on MBG/T through Erk1/2-activated Runx2 pathway. Our findings provided that MBG/T is a potential material in the process of bone repair.


Assuntos
Vidro/química , Osteoblastos/citologia , Testosterona/química , Testosterona/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Western Blotting , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Camundongos , Fosforilação/efeitos dos fármacos
20.
J Membr Biol ; 250(3): 315-325, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28597209

RESUMO

Tarantula toxins compose an important class of spider toxins that target ion channels, and some are known to interact with lipid membranes. In this study, we focus on a tarantula toxin, Jingzhaotoxin-III (JZTx-III) that specifically targets the cardiac voltage-gated sodium channel Na[Formula: see text]1.5 and is suspected to be able to interact with lipid membranes. Here, we use an all-atom model and long-term molecular dynamics simulations to investigate the interactions between JZTx-III and lipid membranes of different compositions. Trajectory analyses show that JZTx-III has no substantial interaction with the neutral 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids, but binds to membranes containing negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG). The most intriguing observations in our simulation are the different interactions between the toxin and the membrane in the mixed and pure POPG membrane systems. The POPC/POPG mixed membrane undergoes a phase transition to a rippled phase upon binding of the toxin, while the pure POPG membrane has no apparent change. Moreover, the binding of JZTx-III to both of the mixture and the pure POPG membrane systems induce small conformational changes. The sequence alignment shows that JZTx-III may not partition into the lipid bilayer due to the mutations of a C-terminal hydrophobic residue and some charged residues that affect toxin orientation. Taken together, JZTx-III and lipid membranes have unique effects on each other that may facilitate the specific binding of JZTx-III to Na[Formula: see text]1.5. This computational study also enriches our understanding of the potential complex interactions between spider toxins and lipid membranes.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Venenos de Aranha/química , Potenciais da Membrana , Fosfatidilcolinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA