Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 176(1): e14197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344855

RESUMO

Increased acid phosphatase (APase) activity is a prominent feature of tomato (Solanum lycopersicum) responses to inorganic phosphate (Pi) restriction. SlPHL1, a phosphate starvation response (PHR) transcription factor, has been identified as a positive regulator of low Pi (LP)-induced APase activity in tomato. However, the molecular mechanism underlying this regulation remains to be elucidated. Here, SlPHL1 was found to positively regulate the LP-induced expression of five potential purple acid phosphatase (PAP) genes, namely SlPAP7, SlPAP10b, SlPAP12, SlPAP15, and SlPAP17b. Furthermore, we provide evidence that SlPHL1 can stimulate transcription of these five genes by binding directly to the PHR1 binding sequence (P1BS) located on their promoters. The P1BS mutation notably weakened SlPHL1 binding to the promoters of SlPAP7, SlPAP12, and SlPAP17b but almost completely abolished SlPHL1 binding to the promoters of SlPAP10b and SlPAP15. As a result, the transcriptional activation of SlPHL1 on SlPAP10b and SlPAP15 was substantially diminished. In addition, not only did transient overexpression of either SlPAP10b or SlPAP15 in tobacco leaves increase APase activity, but overexpression of SlPAP15 in Arabidopsis and tomato also increased APase activity and promoted plant growth. Subsequently, two SPX proteins, SlSPX1 and SlSPX4, were shown to physically interact with SlPHL1. Moreover, SlSPX1 inhibited the transcriptional activation of SlPHL1 on SlPAP10b and SlPAP15 and negatively regulated the activity of APase. Taken together, these results demonstrate that SlPHL1-mediated LP signaling promotes APase activity by activating the transcription of SlPAP10b and SlPAP15, which may provide valuable insights into the mechanisms of tomato response to Pi-limited stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Fosfatos , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo
2.
Plant Physiol Biochem ; 200: 107801, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269822

RESUMO

Phosphate (Pi) deficiency is a common stress that limits plant growth and development. Plants exhibit a variety of Pi starvation responses (PSRs), including anthocyanin accumulation. The transcription factors of the PHOSPHATE STARVATION RESPONSE (PHR) family, such as AtPHR1 in Arabidopsis, play central roles in the regulation of Pi starvation signaling. Solanum lycopersicum PHR1-like 1 (SlPHL1) is a recently identified PHR involved in PSR regulation in tomato, but the detailed mechanism of its participation in Pi starvation-inducing anthocyanin accumulation remains unclear. Here we found that overexpression of SlPHL1 in tomato increases the expression of genes associated with anthocyanin biosynthesis, thereby promoting anthocyanin biosynthesis, but silencing SlPHL1 with Virus Induced Gene Silencing (VIGS) attenuated low phosphate (LP) stress-induced anthocyanin accumulation and expression of the biosynthesis-related genes. Notably, SlPHL1 is able to bind the promoters of genes Flavanone 3-Hydroxylase (SlF3H), Flavanone 3'-Hydroxylase (SlF3'H), and Leucoanthocyanidin Dioxygenase (SlLDOX) by yeast one-hybrid (Y1H) analysis. Furthermore, Electrophoretic Mobility Shift Assay (EMSA) and transient transcript expression assay showed that PHR1 binding t (sequence (P1BS) motifs located on the promoters of these three genes are critical for SlPHL1 binding and enhancing the gene transcription. Additionally, allogenic overexpression of SlPHL1 could promote anthocyanin biosynthesis in Arabidopsis under LP conditions through the similar mechanism to AtPHR1, suggesting that SlPHL1 might be functionally conserved with AtPHR1 in this process. Taken together, SlPHL1 positively regulates LP-induced anthocyanin accumulation by directly promoting the transcription of SlF3H, SlF3'H and SlLDOX. These findings will contribute to understanding the molecular mechanism of PSR in tomato.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Solanum lycopersicum/genética , Antocianinas/metabolismo , Regulação para Cima , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA