Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int Microbiol ; 26(2): 231-242, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36352292

RESUMO

Fungi capable of producing fruit bodies are essential food and medicine resources. Despite recent advances in the study of microbial communities in mycorrhizospheres, little is known about the bacterial communities contained in fruit bodies. Using high-throughput sequencing, we investigated the bacterial communities in four species of mushrooms located on the alpine meadow and saline-alkali soil of the Qinghai-Tibet Plateau (QTP). Proteobacteria (51.7% on average) and Actinobacteria (28.2% on average) were the dominant phyla in all of the sampled fairy ring fruit bodies, and Acidobacteria (27.5% on average) and Proteobacteria (25.7% on average) dominated their adjacent soils. For the Agria. Bitorquis, Actinobacteria was the dominant phylum in its fruit body (67.5% on average) and adjacent soils (65.9% on average). The alpha diversity (i.e., Chao1, Shannon, Richness, and Simpson indexes) of the bacterial communities in the fruit bodies were significantly lower than those in the soil samples. All of the fungi shared more than half of their bacterial phyla and 16.2% of their total operational taxonomic units (OTUs) with their adjacent soil. Moreover, NH4+ and pH were the key factors associated with bacterial communities in the fruit bodies and soils, respectively. These results indicate that the fungi tend to create a unique niche that selects for specific members of the bacterial community. Using culture-dependent methods, we also isolated 27 bacterial species belonging to three phyla and five classes from fruit bodies and soils. The strains isolated will be useful for future research on interactions between mushroom-forming fungi and their bacterial endosymbionts.


Assuntos
Agaricales , Microbiota , Tibet , Solo , Agaricales/genética , Bactérias/genética , Microbiologia do Solo
2.
Front Plant Sci ; 13: 855944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371115

RESUMO

Parnassia L., a perennial herbaceous genus in the family Celastraceae, consists of about 60 species and is mainly distributed in the Pan-Himalayan and surrounding mountainous regions. The taxonomic position and phylogenetic relationships of the genus are still controversial. Herein, we reassessed the taxonomic status of Parnassia and its intra- and inter-generic phylogeny within Celastraceae. To that end, we sequenced and assembled the whole plastid genomes and nuclear ribosomal DNA (nrDNA) of 48 species (74 individuals), including 25 species of Parnassia and 23 species from other genera of Celastraceae. We integrated high throughput sequence data with advanced statistical toolkits and performed the analyses. Our results supported the Angiosperm Phylogeny Group IV (APG IV) taxonomy which kept the genus to the family Celastraceae. Although there were topological conflicts between plastid and nrDNA phylogenetic trees, Parnassia was fully supported as a monophyletic group in all cases. We presented a first attempt to estimate the divergence of Parnassia, and molecular clock analysis indicated that the diversification occurred during the Eocene. The molecular phylogenetic results confirmed numerous taxonomic revisions, revealing that the morphological characters used in Parnassia taxonomy and systematics might have evolved multiple times. In addition, we speculated that hybridization/introgression might exist during genus evolution, which needs to be further studied. Similarly, more in-depth studies will clarify the diversification of characters and species evolution models of this genus.

3.
FEMS Microbiol Lett ; 368(6)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33713124

RESUMO

The Qaidam Basin is the most extensive (120 000 km2) basin on the Qinghai-Tibet Plataea (QTP). Recent studies have shown that environmental selection and dispersal limitation influence the soil fungal community significantly in a large-scale distance. However, less is known about large-scale soil fungal community assemblages and its response to the elevation gradient in the high-elevation basin ecosystems. We studied fungal assemblages using Illumina sequencing of the ITS1 region from 35 sites of the Qaidam Basin. As the increase of elevation, fungal species richness and Chao1 index also increased. The Ascomycota was the most abundant phylum (more than 70% of total sequences), and six of the 10 most abundance fungal family was detected in all 35 soil samples. The key factors influencing the soil fungal community composition in the Qaidam Basin were environmental filtering (soil properties and climate factors). The Mantel test showed no significant relationship between geographic distance and community similarity (r = 0.05; p = 0.81). The absence of the distance effect might be caused by lacking dispersal limitation for the soil fungal community.


Assuntos
Biodiversidade , Meio Ambiente , Micobioma , Microbiologia do Solo , Altitude , Ecossistema , Micobioma/fisiologia , Tibet
4.
Ann Bot ; 125(4): 677-690, 2020 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-31922527

RESUMO

BACKGROUND AND AIMS: Hosting several global biodiversity hotspots, the region of the Qinghai-Tibetan Plateau (QTP) is exceptionally species-rich and harbours a remarkable level of endemism. Yet, despite a growing number of studies, factors fostering divergence, speciation and ultimately diversity remain poorly understood for QTP alpine plants. This is particularly the case for the role of hybridization. Here, we explored the evolutionary history of three closely related Gentiana endemic species, and tested whether our results supported the mountain geo-biodiversity hypothesis (MGH). METHODS: We genotyped 69 populations across the QTP with one chloroplast marker and 12 nuclear microsatellite loci. We performed phylogeographical analysis, Bayesian clustering, approximate Bayesian computation and principal components analysis to explore their genetic relationship and evolutionary history. In addition, we modelled their distribution under different climates. KEY RESULTS: Each species was composed of two geographically distinct clades, corresponding to the south-eastern and north-western parts of their distribution. Thus Gentiana veitchiorum and G. lawrencei var. farreri, which diverged recently, appear to have shared at least refugia in the past, from which their range expanded later on. Indeed, climatic niche modelling showed that both species went through continuous expansion from the Last Interglacial Maximum to the present day. Moreover, we have evidence of hybridization in the northwest clade of G. lawrencei var. farreri, which probably occurred in the refugium located on the plateau platform. Furthermore, phylogenetic and population genetic analyses suggested that G. dolichocalyx should be a geographically limited distinct species with low genetic differentiation from G. lawrencei var. farreri. CONCLUSIONS: Climatic fluctuations in the region of the QTP have played an important role in shaping the current genetic structure of G. lawrencei var. farreri and G. veitchiorum. We argue that a species pump effect did occur prior to the Last Interglacial Maximum, thus lending support to the MGH. However, our results do depart from expectations as suggested in the MGH for more recent distribution range and hybridization dynamics.


Assuntos
DNA de Cloroplastos , Gentiana , Teorema de Bayes , Variação Genética , Filogenia , Tibet
5.
Microbiologyopen ; 8(10): e909, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31452349

RESUMO

Many studies have investigated patterns of soil microbial communities over large spatial scales. However, these studies mainly focused on a few sites. Here, we studied the near-surface (0-30 cm) soil microbial communities of 35 soil samples collected from most of the areas of the Qaidam Basin, which is the largest basin on the Qinghai-Tibet Plateau. A total of 32 phyla and 838 genera were detected from all the samples, in which Actinobacteria, Proteobacteria, Bacteroidetes, and Acidobacteria were the most dominant and cosmopolitan phyla. The most abundant phyla (relative abundance > 5%) detected in all 35 soil samples were also the most dominant, which could be explained by their great dispersal ability. The microbial community structures correlated strongly with variations in pH and Mg2+ and were distinct between the high Mg2+ content (>20 g/kg) samples and other samples (Acidobacteria, Actinobacteria, and Chloroflexi were significantly less abundant in the high Mg2+ content group, but the abundance of Firmicutes was significantly greater). Finally, the microbial spatial pattern was influenced by both the local environment and spatial distance, but environmental factors were the primary drivers of microbial spatial patterns in the Qaidam Basin.


Assuntos
Bactérias/classificação , Bactérias/genética , Microbiota , Microbiologia do Solo , Concentração de Íons de Hidrogênio , Magnésio/análise , Metagenômica , Filogenia , Solo/química , Análise Espacial , Tibet
6.
Appl Plant Sci ; 7(6): e11269, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31236316

RESUMO

PREMISE: Saxifraga sinomontana (Saxifragaceae) is a widespread alpine species in the Qinghai-Tibetan Plateau and its flanking mountains. We developed a set of expressed sequence tag-simple sequence repeat (EST-SSR) markers to investigate the genetic diversity and evolutionary history of the species. METHODS AND RESULTS: We initially designed 50 EST-SSR markers based on transcriptome data of S. sinomontana. Nineteen of 50 loci (38%) were successfully amplified, 13 of which were polymorphic. These were tested on 71 individuals from four populations. Three to 18 alleles per locus were detected, and the levels of observed and expected heterozygosity ranged from 0.2817 to 0.9155 and 0.2585 to 0.8495, respectively. In addition, cross-amplification was successful for all 13 loci in three congeneric species, S. tangutica, S. heleonastes, and S. congestiflora. CONCLUSIONS: These EST-SSR markers will be useful for studying the genetic diversity of S. sinomontana and disentangling the phylogenetic relationships of related species.

7.
Front Plant Sci ; 9: 493, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765380

RESUMO

The chloroplast (cp) genome is useful in the study of phylogenomics, molecular dating, and molecular evolution. Gentiana sect. Kudoa is a predominantly alpine flowering plant that is valued for its contributions to medicine, ecology, and horticulture. Previous evolutionary studies showed that the plastid gene loss pattern and intra-sectional phylogenetics in sect. Kudoa are still unclear. In this study, we compared 11 Gentiana plastomes, including 7 newly sequenced plastomes from sect. Kudoa, to represent its three serious: ser. Ornatae, ser. Verticillatae, and ser. Monanthae. The cp genome sizes of the seven species ranged from 137,278 to 147,156 bp. The plastome size variation mainly occurred in the small single-copy and long single-copy regions rather than the inverted repeat regions. Compared with sect. Cruciata, the plastomes in ser. Ornatae and ser. Verticillatae had lost approximately 11 kb of sequences containing 11 ndh genes. Conversely, far fewer losses were observed in ser. Monanthae. The phylogenetic tree revealed that sect. Kudoa was not monophyletic and that ser. Monanthae was more closely related to other sections rather than sect. Kudoa. The molecular dating analysis indicated that ser. Monanthae and sect. Kudoa diverged around 8.23 Ma. In ser. Ornatae and ser. Verticillatae, the divergence occurred at around 0.07-1.78 Ma. The nucleotide diversity analysis indicated that the intergenic regions trnH-psbA, trnK-trnQ, ycf3-trnS and rpl32-trnL constituted divergence hotspots in both sect. Kudoa and Gentiana, and would be useful for future phylogenetic and population genetic studies.

8.
PeerJ ; 6: e4748, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29770273

RESUMO

The varying topography and environment that resulted from paleoorogeny and climate fluctuations of the Himalaya-Hengduan Mountains (HHM) areas had a considerable impact on the evolution of biota during the Quaternary. To understand the phylogeographic pattern and historical dynamics of Triosteum himalayanum (Caprifoliaceae), we sequenced three chloroplast DNA fragments (rbcL-accD, rps15-ycf1, and trnH-psbA) from 238 individuals representing 20 populations. Nineteen haplotypes (H1-H19) were identified based on 23 single-site mutations and eight indels. Most haplotypes were restricted to a single population or neighboring populations. Analysis of molecular variance revealed that variations among populations were much higher than that within populations for the overall gene pool, as well as for the East Himalayan group (EH group) and the North Hengduan group (NHM group), but not for the Hengduan Mountains group (HM group). Ecoregions representing relatively high genetic diversity or high frequencies of private haplotypes were discovered, suggesting that this alpine herbaceous plant underwent enhanced allopatric divergence in isolated and fragmented locations during the Quaternary glaciations. The current phylogeographic structure of T. himalayanum might be due to heterogeneous habitats and Quaternary climatic oscillations. Based on the phylogeographic structure of T. himalayanum populations, the phylogenetic relationship of identified haplotypes and palaeodistributional reconstruction, we postulated both westwards and northwards expansion from the HM group for this species. The westwards dispersal corridor could be long, narrow mountain areas and/or the Yarlung Zangbo Valley, while the northwards movement path could be south-north oriented mountains and low-elevation valleys.

9.
J Basic Microbiol ; 58(6): 554-563, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29572997

RESUMO

Floccularia luteovirens, an important edible mushroom widely distributed in the Qinghai-Tibet plateau, is ecologically important as an ectomycorrhizal fungus and can form the fairy ring. To explore the influence of F. luteovirens fairy ring on soil microbial communities, we compared the soil microbial communities in three different fairy ring zones (inside the fairy ring (IN); beneath the fairy ring (ON); and outside the fairy ring (OUT)). A total of 1.77 million bacterial reads and 1.59 million fungal reads were obtained. Moreover, sequence clustering yielded 519,613 (57,735 per sample) bacterial OTUs, and 513,204 (57,023 per sample) fungal OTUs representing. Microbial diversity was lower in samples from the ON zone compared with the other two zones. Mycorrhiza helper bacteria (MHB) such as Bradyrhizobium and Paenibacillus were more common in the ON zone, and we isolated four potential MHB from rhizosphere soil. Canonical correspondence analysis showed that the soil nutritional condition and physical changes caused by F. luteovirens shaped the microbial communities in the ON zone. This is the first report on the study of soil microbial diversity influenced by fairy ring F. luteovirens, and further studies need to be conducted to study the ecological function influenced by this species.


Assuntos
Armillaria/fisiologia , Bactérias/classificação , Consórcios Microbianos/fisiologia , Micorrizas , Filogenia , Microbiologia do Solo , Bactérias/genética , Bactérias/isolamento & purificação , Análise por Conglomerados , DNA Bacteriano , RNA Ribossômico/genética , Rizosfera , Solo , Especificidade da Espécie , Tibet
10.
J Microbiol ; 55(8): 600-606, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28674972

RESUMO

Floccularia luteovirens, as an ectomycorrhizal fungus, is widely distributed in the Qinghai-Tibet Plateau. As an edible fungus, it is famous for its unique flavor. Former studies mainly focus on the chemical composition and genetic structure of this species. However, the phylogenetic relationship between genotypes remains unknown. In this study, the genetic variation and phylogenetic relationship between the genotypes of F. luteovirens in Qinghai-Tibet Plateau was estimated through the analysis on two protein-coding genes (rpb1 and ef-1α) from 398 individuals collected from 24 wild populations. The sample covered the entire range of this species during all the growth seasons from 2011 to 2015. 13 genotypes were detected and moderate genetic diversity was revealed. Based on the results of network analysis, the maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) analyses, the genotypes H-1, H-4, H-6, H-8, H-10, and H-11 were grouped into one clade. Additionally, a relatively higher genotype diversity (average h value is 0.722) and unique genotypes in the northeast edge of Qinghai- Tibet plateau have been found, combined with the results of mismatch analysis and neutrality tests indicated that Southeast Qinghai-Tibet plateau was a refuge for F. luteovirens during the historical geological or climatic events (uplifting of the Qinghai-Tibet Plateau or Last Glacial Maximum). Furthermore, the present distribution of the species on the Qinghai-Tibet plateau has resulted from the recent population expansion. Our findings provide a foundation for the future study of the evolutionary history and the speciation of this species.


Assuntos
Armillaria/classificação , Armillaria/genética , Variação Genética , Micorrizas/classificação , Micorrizas/genética , Filogenia , Análise por Conglomerados , Fator 1 de Elongação de Peptídeos/genética , RNA Polimerase I/genética , Análise de Sequência de DNA , Tibet
11.
Front Plant Sci ; 7: 1596, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826314

RESUMO

Studying closely related species and divergent populations provides insight into the process of speciation. Previous studies showed that the Sibiraea complex's evolutionary history on the Qinghai-Tibetan Plateau (QTP) was confusing and could not be distinguishable on the molecular level. In this study, the genetic structure and gene flow of Sibiraea laevigata and Sibiraea angustata on the QTP was examined across 45 populations using 8 microsatellite loci. Microsatellites revealed high genetic diversity in Sibiraea populations. Most of the variance was detected within populations (87.45%) rather than between species (4.39%). We found no significant correlations between genetic and geographical distances among populations. Bayesian cluster analysis grouped all individuals in the sympatric area of Sibiraea into one cluster and other individuals of S. angustata into another. Divergence history analysis based on the approximate Bayesian computation method indicated that the populations of S. angustata at the sympatric area derived from the admixture of the 2 species. The assignment test assigned all individuals to populations of their own species rather than its congeneric species. Consistently, intraspecies were detected rather than interspecies first-generation migrants. The bidirectional gene flow in long-term patterns between the 2 species was asymmetric, with more from S. angustata to S. laevigata. In conclusion, the Sibiraea complex was distinguishable on the molecular level using microsatellite loci. We found that the high genetic similarity of the complex resulted from huge bidirectional gene flow, especially on the sympatric area where population admixtures occurred. This study sheds light on speciation with gene flow in the QTP.

12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(10): 2278-81, 2008 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-19123388

RESUMO

In order to solve the difficulties that the spectrum training data samples of the massive mixed gas cannot be actually obtained, the analysis precision is low and it is not real time online analysis in the analysis of mixed gas component concentration, the support vector machine, a new information processing method, was used in the mixed gas infrared spectrum analysis, and the concept of mixed gas distribution pattern was proposed in the present paper. Based on the thought that the mixed gas distribution pattern recognition is carried out first, and then the analysis work of mixed gas component concentration is done, sixty kinds of mixed gas distribution pattern were determined after investigation and study, and 6000 mixed gas spectrum data samples were used for model training and testing. Sequential minimal optimization algorithm was applied to realize the decrement and the increase of online learning, and finally the model of infrared spectrum online pattern recognition of mixed gas distribution based on SVM was established. The model structure is composed of 2 levels, pattern recognition level and result output level. The pattern recognition level completes the task of mixed gas distribution pattern recognition; while the result output level is composed of 60 SVM calibration models, and it completes the task of mixed gas concentration analysis. Experimental results show that the correct recognition rate of mixture gas distribution pattern is not lower than 98.8%, and that the method can be used for online recognition of mixed gas distribution pattern under the conditions of small samples of a mixed gas, and can add new mixed gas online, and it has the practical application value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA