Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Comput Biol Med ; 172: 108221, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452473

RESUMO

BACKGROUND: Gastric carcinoma (GC) remains a significant therapeutic challenge, garnering widespread attention. Oxymatrine (OMT), an active component of the traditional Chinese medicine compound Kushen injection (CKI), has shown promising results in combination with chemotherapy for the treatment of GC. However, the molecular mechanisms underlying OMT's therapeutic effects in GC have yet to be elucidated. METHODS: The transcriptomic expression data of HGC-27 post-OMT intervention were obtained through microarray sequencing, while the miRNA and mRNA sequencing data for GC patients were sourced from the TCGA database. The mechanism of OMT intervention in GC is analyzed in multiple aspects, including Protein-Protein Interactions (PPI), Competitive Endogenous RNA (ceRNA) networks, correlation and co-expression analyses, immune infiltration, and clinical implications. RESULTS: By analyzing key modules, five critical mRNAs were identified, and their interacting miRNAs were predicted to construct a ceRNA network. Among these, TGFBR2 and hsa-miR-107 have correlations or co-expression relationships with other genes in the network. They are differentially expressed in most other cancers, associated with prognosis, and have diagnostic value. TGFBR2 also exhibits immune infiltration phenomena, and its high expression is linked to poor patient prognosis. Low expression of hsa-miR-107 is associated with poor patient prognosis. OMT may act on the TGFß/Smad signaling pathway or negatively regulate the WNT signaling pathway through the hsa-miR-107/BTRC axis, thereby inhibiting the onset and progression of GC. CONCLUSION: The mechanisms of OMT intervention in GC are diverse, TGFBR2 and hsa-miR-107 may serve as prognostic molecular biomarkers or potential therapeutic targets.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Biologia Computacional/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , RNA Mensageiro/genética , Neoplasias Gástricas/genética
2.
Phytomedicine ; 123: 155242, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100922

RESUMO

BACKGROUND: This study employed a meta-analysis to evaluate the efficacy and safety of adjunctive treatment with injectable Lentinan (LNT) in combination with chemotherapy for gastric cancer (GC). METHODS: Computer-based searches of 6 databases were performed to identify randomized controlled trials (RCTs) relevant to the treatment of GC with LNT through mid-March 2023. Two independent researchers performed risk of bias assessment and trial sequential analysis(TSA), extracted the data and used Revman 5.3 software for data analysis. The certainty of evidence was graded based on the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. RESULTS: A total of 31 RCTs with 2729 patients were included in the analysis. The results revealed that adjunctive therapy with LNT was associated with improved treatment efficacy (RR = 1.48, 95%CI: 1.36 ∼ 1.61, p < 0.00001), improvement in clusters of differentiation (CD3+, CD4+, and CD4+/CD8+), natural killer (NK) cells, and quality of life assessment (RR = 1.32, 95%CI: 1.20 ∼ 1.45, p < 0.00001) compared to using chemotherapy alone. In addition, there was a reduction in CD8+ levels, incidence of white blood cell decline, gastrointestinal reactions, and platelet decline. TSA results indicated that there was sufficient evidence to draw firm conclusions about these outcomes, and the GRADE scores showed 'high' or 'moderate' quality of evidence for these outcomes. CONCLUSION: The efficacy of treatment of GC with LNT in combination with chemotherapy was found to be better than chemotherapy alone. And no serious adverse effects were observed. However, further RCTs are needed to further validate the results of this study.


Assuntos
Lentinano , Neoplasias Gástricas , Humanos , Lentinano/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Resultado do Tratamento
3.
Comput Biol Med ; 166: 107562, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37847945

RESUMO

BACKGROUND: Gastric cancer is a life-threatening disease that poses a serious risk to human health. Although there are numerous molecular targets for gastric cancer in clinical practice, they often exhibit low specificity and sensitivity. Consequently, this can result in a low early diagnosis rate, delayed treatment, and poor prognosis for patients with gastric cancer. Hence, it remains crucial to identify more precise diagnostic markers for this disease. METHODS: This study utilized ceRNA chips and bioinformatics methods to investigate the key genes and mechanisms involved in matrine intervention in gastric cancer cells. RESULTS: ADAM12 and PDGFRB are the key genes that are down-regulated after matrine intervention in gastric cancer cells. By conducting bioinformatics analysis, two ceRNA regulatory axes were identified, which are associated with the prognosis of gastric cancer. These axes are lncRNA DGCR5/hsa-miR-206/ADAM12 and circRNA ITGA3/hsa-miR-24-3p/PDGFRB. CONCLUSION: The low expression of ADAM12 may weaken the digestion of extracellular matrix (ECM) molecules, which can result in the invasion and metastasis of tumor cells. This occurs without the catalysis of ECM proteases, thereby impacting the invasion and metastasis of gastric cancer cells. Additionally, the analysis of immune infiltration suggests that ADAM12 and PDGFRB may influence changes in the tumor immune microenvironment, thereby affecting the occurrence and development of gastric cancer. This study contributes to a deeper understanding of the role of the matrine-related ceRNA network in gastric cancer, providing a reference for clinical diagnosis and treatment. It holds significant importance in discovering new drug treatment targets.

4.
Medicine (Baltimore) ; 102(34): e34866, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37653800

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide, leading to a pandemic. In China, Xiyanping injection (XYP) has been recommended as a drug for COVID-19 treatment in the Guideline on Diagnosis and Treatment of COVID-19 by the National Health Commission of the People Republic of China and National Administration of Traditional Chinese Medicine (Trial eighth Edition). However, the relevant mechanisms at the molecular-level need to be further elucidated. METHODS: In this study, XYP related active ingredients, potential targets and COVID-19 related genes were searched in public databases. Protein-protein interaction network and module analyzes were used to screen for key targets. gene ontology and Kyoto encyclopedia of genes and genomes were performed to investigate the potentially relevant signaling pathways. Molecular docking was performed using Autodock Tools and Vina. For the validation of potential mechanism, PolyI:C was used to induce human lung epithelial cells for an inflammation model. Subsequently, CCK-8 assays, enzyme-linked immunosorbent assay, reverse transcription quantitative polymerase chain reaction and western blot were employed to determine the effect of XYP on the expression of key genes. RESULTS: Seven effective active ingredients in XYP were searched for 123 targets in the relevant databases. Furthermore, 6446 COVID-19 disease targets were identified. Sodium 9-dehydro-17-hydro-andrographolide-19-yl sulfate was identified as the vital active compounds, and IL-6, TNF, IL-1ß, CXCL8, STAT3, MAPK1, MAPK14, and MAPK8 were considered as the key targets. In addition, molecular docking revealed that the active compound and the targets showed good binding affinities. The enrichment analysis predicted that the XYP could regulate the IL-17, Toll-like receptor, PI3K-Akt and JAK-STAT signaling pathways. Consistently, further in vitro experiments demonstrated that XYP could slow down the cytokine storm in the lung tissue of COVID-19 patients by down-regulating IL-6, TNF-α, IL-1ß, CXCL8, and p-STAT3. CONCLUSION: Through effective network pharmacology analysis and molecular docking, this study suggests that XYP contains many effective compounds that may target COVID-19 related signaling pathways. Moreover, the in vitro experiment confirmed that XYP could inhibit the cytokine storm by regulating genes or proteins related to immune and inflammatory responses.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Mapas de Interação de Proteínas , Transdução de Sinais , Simulação de Acoplamento Molecular , Células Epiteliais , Células Cultivadas , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas
5.
Comput Biol Med ; 165: 107402, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37657358

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is the most prevalent subtype of non-small cell lung cancer. Additionally, disulfidptosis, a newly discovered type of cell death, has been found to be closely associated with the onset and progression of tumors. METHODS: The study first identified genes related to disulfidptosis through correlation analysis. These genes were then screened using univariate cox regression and LASSO regression, and a prognostic model was constructed through multivariate cox regression. A nomogram was also created to predict the prognosis of LUAD. The model was validated in three independent data sets: GSE72094, GSE31210, and GSE37745. Next, patients were grouped based on their median risk score, and differentially expressed genes between the two groups were analyzed. Enrichment analysis, immune infiltration analysis, and drug sensitivity evaluation were also conducted. RESULTS: In this study, we examined 21 genes related to disulfidptosis and developed a gene signature that was found to be associated with a poorer prognosis in LUAD. Our model was validated using three independent datasets and showed AUC values greater than 0.5 at 1, 3, and 5 years. Enrichment analysis revealed that the disulfidptosis-related genes signature had a multifaceted impact on LUAD, particularly in relation to tumor development, proliferation, and metastasis. Patients in the high-risk group exhibited higher tumor purity and lower stromal score, ESTIMATE score, and Immune score. CONCLUSION: This study constructed a gene signature related to disulfidptosis in lung adenocarcinoma and analyzed its impact on the disease and its association with the tumor microenvironment. The findings of this research provide valuable insights into the understanding of lung adenocarcinoma and could potentially lead to the development of new treatment strategies.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Prognóstico , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , Microambiente Tumoral
7.
Comput Biol Med ; 163: 107239, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37450965

RESUMO

BACKGROUND: Early diagnosis and prognostic predication of gastric cancer (GC) pose significant challenges in current clinical practice of GC treatments. Therefore, our aim was to explore relevant gene signatures that can predict the prognosis of GC patients. METHODS: Here, we established a single-cell transcriptional atlas of GC, focusing on the expression of T-cell-related genes for cell-cell communication analysis, trajectory analysis, and transcription factor regulatory network analysis. Additionally, we conducted validation and prediction of immune-related prognostic gene signatures in GC patients using TCGA and GEO data. Based on these prognostic gene signatures, we predicted the immune infiltration status of GC patients by grouping the patient samples into high or low-risk groups. RESULTS: Based on 10 tumor samples and corresponding normal samples from GC patients, we selected 18,416 cells for subsequent analysis using single-cell sequencing. From these, we identified 3,284 T-cells and obtained 641 differentially expressed genes related to T-cells from 5 different T-cell subtypes. By integrating bulk RNA sequencing data, we identified prognostic signatures associated with T-cells. Stratifying patients based on these prognostic signatures into high-risk or low-risk groups allowed us to effectively predict their survival rates and the immunoinfiltration status of the tumor microenvironment. CONCLUSION: This study explored prognostic gene signatures associated with T-cells in GC patients, providing insights into predicting patients' survival rates and immunoinfiltration levels.


Assuntos
Neoplasias Gástricas , Humanos , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Análise de Sequência de RNA , Microambiente Tumoral/genética
9.
Comput Biol Med ; 161: 107066, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37263064

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive and fatal malignancy. The current success of tumor immunotherapy has focused attention on intermediate T-cell subsets and the tumor microenvironment, which are essential for activation of the anti-tumor response. Therefore, both areas require further research to accelerate progress in developing tailored immunotherapeutic approaches for patients with TNBC. METHODS: We obtained scRNA-seq data of TNBC from the GEO database. A multiplex strategy was used to analyze and identify the T-cell heterogeneity of TNBC. By combining the METABRIC and GEO databases, a prognostic risk model for T-cell marker genes was constructed and validated. In addition, the immune-infiltrating cells of TNBC was analyzed using CIBERSORT, and the association between the risk model and response to immunotherapy was investigated. RESULTS: Based on scRNA-seq data, 25,932 cells were identified for multiple analyzes. T cells were studied with a focus on 2 subtypes, including CD8+ and CD4+. There were also communication relationships between T cells and multiple cell types. The results of the enrichment analysis showed that the T-cell marker genes were focused in pathways related to the immune system. In addition, OPTN, TMEM176A, PKM and HES1 deserve attention as prognostic markers in TNBC. The immune infiltration results showed that the high-risk group had significant immune cell infiltration and immunosuppression status. CONCLUSION: This study provides a resource for understanding T-cell heterogeneity and the associated prognostic risk model for TNBC. The results show that the model helps predict prognosis and response to treatment in breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Proteínas de Membrana/genética , Prognóstico , RNA-Seq , Análise da Expressão Gênica de Célula Única , Linfócitos T , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral/genética , Feminino
10.
Chin Med ; 18(1): 52, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37165407

RESUMO

BACKGROUND: Yinzhihuang granules (YZHG) is a commonly used Chinese patent medicine for the treatment of liver disease. However, the mechanism of YZHG in alcoholic liver disease (ALD) is still unclear. METHODS: This study combined liquid chromatography-mass spectrometry technology, pharmacodynamics, network pharmacology and molecular docking methods to evaluate the potential mechanism of YZHG in the treatment of ALD. RESULTS: A total of 25 compounds including 4-hydroxyacetophenone, scoparone, geniposide, quercetin, baicalin, baicalein, chlorogenic acid and caffeic acid in YZHG were identified by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The pharmacodynamic investigations indicated that YZHG could improve liver function and the degree of liver tissue lesions, and reduce liver inflammation and oxidative stress in ALD mice. Network pharmacology analysis showed that YZHG treated ALD mainly by regulating inflammation-related signaling pathways such as the PI3K-Akt signaling pathway. The results of the PPI network and molecular docking showed that the targets of SRC, HSP90AA1, STAT3, EGFR and AKT1 could be the key targets of YZHG in the treatment of ALD. CONCLUSION: This study explored the potential compounds, potential targets and signaling pathways of YZHG in the treatment of ALD, which is helpful to clarify the efficacy and mechanism of YZHG and provide new insights for the clinical application of YZHG.

11.
J Ethnopharmacol ; 310: 116418, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36990301

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yinzhihuang granule (YZHG) has liver protective effect and can be used for clinical treatment of non-alcoholic fatty liver disease (NAFLD), but its material basis and mechanism need to be further clarified. AIM OF THE STUDY: This study aims to reveal the material basis and mechanism of YZHG treating NAFLD. MATERIALS AND METHODS: Serum pharmacochemistry were employed to identify the components from YZHG. The potential targets of YZHG against NAFLD were predicted by system biology and then preliminarily verified by molecular docking. Furthermore, the functional mechanism of YZHG in NAFLD mice was elucidated by 16S rRNA sequencing and untargeted metabolomics. RESULTS: From YZHG, 52 compounds were identified, of which 42 were absorbed into the blood. Network pharmacology and molecular docking showed that YZHG treats NAFLD with multi-components and multi-targets. YZHG can improve the levels of blood lipids, liver enzymes, lipopolysaccharide (LPS), and inflammatory factors in NAFLD mice. YZHG can also significantly improve the diversity and richness of intestinal flora and regulate glycerophospholipid and sphingolipid metabolism. Moreover, Western Blot experiment showed that YZHG can regulate liver lipid metabolism and enhance intestinal barrier function. CONCLUSIONS: YZHG may treat NAFLD by improving the disruption of intestinal flora and enhancing the intestinal barrier. This will reduce the invasion of LPS into the liver subsequently regulate liver lipid metabolism and reduce liver inflammation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Fígado
12.
Sci Rep ; 13(1): 1373, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697459

RESUMO

Stomach adenocarcinoma (STAD) is a type of cancer which often at itsadvanced stage apon diagnosis and mortality in clinical practice. Several factors influencethe prognosis of STAD, including the expression and regulation of immune cells in the tumor microenvironment. We here investigated the biomarkers related to the diagnosis and prognosis of gastric cancer, hoping to provide insights for the diagnosis and treatment of gastric cancer in the future. STAD and normal patient RNA sequencing data sets were accessed from the cancer genome atlas (TCGA database). Differential genes were determined and obtained by using the R package DESeq2. The stromal, immune, and ESTIMATE scores are calculated by the ESTIMATE algorithm, followed by the modular genes screening using the R package WGCNA. Subsequently, the intersection between the modular gene and the differential gene was taken and the STRING database was used for PPI network module analysis. The R packages clusterProfiler, enrichplot, and ggplot2 were used for GO and KEGG enrichment analysis. Cox regression analysis was used to screen survival-related genes, and finally, the R package Venn Diagram was used to take the intersection and obtain 7 hub genes. The time-dependent ROC curve and Kaplan-Meier survival curve were used to find the SERPINE1 gene, which plays a critical role in prognosis. Finally, the expression pattern, clinical characteristics, and regulatory mechanism of SERPINE1 were analyzed in STAD. We revealed that the expression of SERPINE1 was significantly increased in the samples from STAD compared with normal samples. Cox regression, time-dependent ROC, and Kaplan-Meier survival analyses demonstrated that SERPINE1 was significantly related to the adverse prognosis of STAD patients. The expression of SERPINE1 increased with the progression of T, N, and M classification of the tumor. In addition, the results of immune infiltration analysis indicated that the immune cells' expression were higher in high SERPINE1 expression group than that in low SERPINE1 expression group, including CD4+ T cells, B cells, CD8+ T cells, macrophages, neutrophils and other immune cells. SERPINE1 was closely related to immune cells in the STAD immune microenvironment and had a synergistic effect with the immune checkpoints PD1 and PD-L1. In conclusion, we proved that SERPINE1 is a promising prognostic and diagnostic biomarker for STAD and a potential target for immunotherapy.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Linfócitos T CD8-Positivos , Prognóstico , Biomarcadores , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Biologia Computacional , Mineração de Dados , Microambiente Tumoral/genética , Inibidor 1 de Ativador de Plasminogênio/genética
13.
Chin Med ; 18(1): 7, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641437

RESUMO

BACKGROUND: Pancreatic cancer is one of the most lethal cancers worldwide. Aidi injection (ADI) is a representative antitumor medication based on Chinese herbal injection, but its antitumor mechanisms are still poorly understood. MATERIALS AND METHODS: In this work, the subcutaneous xenograft model of human pancreatic cancer cell line Panc-1 was established in nude mice to investigate the anticancer effect of ADI in vivo. We then determined the components of ADI using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) and explored the possible molecular mechanisms against pancreatic cancer using network pharmacology. RESULTS: In vivo experiments, the volume, weight, and degree of histological abnormalities of implanted tumors were significantly lower in the medium and high concentration ADI injection groups than in the control group. Network pharmacology analysis identified four active components of ADI and seven key targets, TNF, VEGFA, HSP90AA1, MAPK14, CASP3, P53 and JUN. Molecular docking also revealed high affinity between the active components and the target proteins, including Astragaloside IV to P53 and VEGFA, Ginsenoside Rb1 to CASP3 and Formononetin to JUN. CONCLUSION: ADI could reduce the growth rate of tumor tissue and alleviate the structural abnormalities in tumor tissue. ADI is predicted to act on VEGFA, P53, CASP3, and JUN in ADI-mediated treatment of pancreatic cancer.

14.
Comput Biol Med ; 152: 106460, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565482

RESUMO

BACKGROUND: T cells are present in all stages of tumor formation and play an important role in the tumor microenvironment. We aimed to explore the expression profile of T cell marker genes, constructed a prognostic risk model based on these genes in Lung adenocarcinoma (LUAD), and investigated the link between this risk model and the immunotherapy response. METHODS: We obtained the single-cell sequencing data of LUAD from the literature, and screened out 6 tissue biopsy samples, including 32,108 cells from patients with non-small cell lung cancer, to identify T cell marker genes in LUAD. Combined with TCGA database, a prognostic risk model based on T-cell marker gene was constructed, and the data from GEO database was used for verification. We also investigated the association between this risk model and immunotherapy response. RESULTS: Based on scRNA-seq data 1839 T-cell marker genes were identified, after which a risk model consisting of 9 gene signatures for prognosis was constructed in combination with the TCGA dataset. This risk model divided patients into high-risk and low-risk groups based on overall survival. The multivariate analysis demonstrated that the risk model was an independent prognostic factor. Analysis of immune profiles showed that high-risk groups presented discriminative immune-cell infiltrations and immune-suppressive states. Risk scores of the model were closely correlated with Linoleic acid metabolism, intestinal immune network for IgA production and drug metabolism cytochrome P450. CONCLUSION: Our study proposed a novel prognostic risk model based on T cell marker genes for LUAD patients. The survival of LUAD patients as well as treatment outcomes may be accurately predicted by the prognostic risk model, and make the high-risk population present different immune cell infiltration and immunosuppression state.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Prognóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Linfócitos T , Adenocarcinoma de Pulmão/genética , Análise de Sequência de RNA , Microambiente Tumoral/genética
15.
Front Pharmacol ; 13: 998218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188623

RESUMO

Introduction: Systematic evaluation of the clinical efficacy and safety of Brucea javanica oil emulsion injection (BJOEI) in combination with chemotherapy in the treatment of malignant pleural effusion (MPE). Methods: The study searched CNKI, Wanfang database, VIP database, SinoMed, PubMed, Embase, the Cochrane Library, and the Web of Science database and retrieved randomized controlled trials (RCTs) on the treatment of MPE with BJOEI in combination with chemotherapy from seven electronic databases from inception to 31 March 2022. Meta-analysis and sensitivity analysis were performed using Revman 5.4 and Stata 13.0 software. Results: Ultimately, 30 RCTs with 2035 patients were included, including 1002 cases in the control group and 1033 cases in the treatment group. The results of the meta-analysis showed that the overall efficacy rate of BJOEI combined with chemotherapy was higher in the treatment of MPE compared with chemotherapy alone (RR = 1.45, 95%CI: 1.36-1.54, p < 0.00001). And it could improve the Karnofsky (KPS) score (RR = 1.54, 95%CI: 1.41-1.68, p < 0.00001), reduce adverse reactions such as fever (RR = 0.82, 95%CI:0.60-1.12), chest pain (RR = 0.90, 95%CI: 0.67-1.21), gastrointestinal reactions (RR = 0.70, 95%CI: 0.57-0.87, p < 0.005), and leukopenia (RR = 0.51, 95%CI: 0.43-0.61, p < 0.00001). Conclusion: BJOEI combined with chemotherapy has better clinical efficacy than chemotherapy alone in the treatment of MPE. It can further improve KPS score, improve patients' quality of life, and reduce the occurrence of adverse reactions. However, the conclusions of this study need to be confirmed by further randomized, double-blind, controlled trials with large sample size, reasonable design, and strict implementation.

16.
Cells ; 11(16)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36010627

RESUMO

Gastric carcinoma (GC) heterogeneity represents a major barrier to accurate diagnosis and treatment. Here, we established a comprehensive single-cell transcriptional atlas to identify the cellular heterogeneity in malignant epithelial cells of GC using single-cell RNA sequencing (scRNA-seq). A total of 49,994 cells from nine patients with paired primary tumor and normal tissues were analyzed by multiple strategies. This study focused on the malignant epithelial cells, which were divided into three subtypes, including pit mucous cells, chief cells, and gastric and intestinal cells. The trajectory analysis results suggest that the differentiation of the three subtypes could be from the pit mucous cells to the chief cells and then to the gastric and intestinal cells. Lauren's histopathology of GC might originate from various subtypes of malignant epithelial cells. The functional enrichment analysis results show that the three subtypes focused on different biological processes (BP) and pathways related to tumor development. In addition, we generated and validated the prognostic signatures for predicting the OS in GC patients by combining the scRNA-seq and bulk RNA sequencing (bulk RNA-seq) datasets. Overall, our study provides a resource for understanding the heterogeneity of GC that will contribute to accurate diagnosis and prognosis.


Assuntos
Carcinoma , Neoplasias Gástricas , Células Epiteliais/patologia , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
17.
Front Pharmacol ; 13: 875700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559233

RESUMO

Background: The incidence of Nonalcoholic Fatty Liver (NAFL) is increasing year by year, growing evidence suggests that the intestinal flora plays a causative role in NAFL. Huazhi Rougan Granule (HRG) is commonly used in the clinical treatment of NAFL. It is reported that it can reduce lipids and protect the liver, but no research has confirmed whether the drug's effect is related to the intestinal flora. Therefore, we investigated whether the effect of HRG is related to the regulation of intestinal flora to further explore the mechanism of HRG in the treatment of NAFL through intestinal flora. Methods: In this study, C57BL/6J mice were fed a high-fat diet for 8 weeks, and the high-fat diet plus HRG or polyene phosphatidylcholine capsules were each administered by gavage for 4 weeks. High-throughput sequencing, network pharmacology, and molecular docking were used to explore the mechanism of HRG in the treatment of NAFL through intestinal flora. Results: HRG treatment can reduce body weight gain, lipid accumulation in liver and lipogenesis and reduce serum biochemical indexes in high-fat-fed mice. Analysis of intestinal flora showed that HRG changed the composition of intestinal flora, which was characterized by a decrease in the Firmicutes/Bacteroidetes ratio. Moreover, the species distribution was significantly correlated with AKP, HDL-C, and TG. Metagenetic analysis showed that HRG altered the functional composition and functional diversity of microorganisms, which was mainly characterized by an increase in the abundance of metabolic pathways. The network pharmacology results show that the mechanism of HRG in the treatment of NAFL through intestinal flora is mainly reflected in the biological process of gene function and related to infectious diseases, immune systems, and signal transduction pathways, such as cytokine-cytokine receptor interaction, Chagas disease, IL-17 signaling pathway and other signaling pathways. Conclusion: These results strongly suggest that HRG may alleviate NAFL by preventing IFD.

18.
BMC Vet Res ; 10: 223, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25253294

RESUMO

BACKGROUND: Mycoplasma synoviae is an avian pathogen that can lead to respiratory tract infections and arthritis in chickens and turkeys, resulting in serious economic losses to the poultry industry. Enolase reportedly plays important roles in several bacterial pathogens, but its role in M. synoviae has not been established. Therefore, in this study, the enolase encoding gene (eno) of M. synoviae was amplified from strain WVU1853 and expressed in E. coli BL21 cells. Then the enzymatic activity, immunogenicity and binding activity with chicken plasminogen (Plg) and human fibronectin (Fn) was evaluated. RESULTS: We demonstrated that the recombinant M. synoviae enolase protein (rMsEno) can catalyze the conversion of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP), the Km and Vmax values of rMsEno were 1.1 × 10(-3) M and 0.739 µmol/L/min, respectively. Western blot and immuno-electron microscopy analyses confirmed that enolase was distributed on the surface and within the cytoplasm of M. synoviae cells. The binding assays demonstrated that rMsEno was able to bind to chicken Plg and human Fn proteins. A complement-dependent mycoplasmacidal assay demonstrated that rabbit anti-rMsEno serum had distinct mycoplasmacidal efficacy in the presence of complement, which also confirmed that enolase was distributed on the surface of M. synoviae. An inhibition assay showed that the adherence of M. synoviae to DF-1 cells pre-treated with Plg could be effectively inhibited by treatment with rabbit anti-rMsEno serum. CONCLUSION: These results reveal that M. synoviae enolase has good catalytic activity for conversion of 2-PGA to PEP, and binding activity with chicken Plg and human Fn. Rabbit anti-rMsEno serum displayed an obvious complement-dependent mycoplasmacidal effect and adherent inhibition effect. These results suggested that the M. synoviae enolase plays an important role in M. synoviae metabolism, and could potentially impact M. synoviae infection and immunity.


Assuntos
Proteínas de Bactérias/metabolismo , Fibronectinas/metabolismo , Mycoplasma synoviae/enzimologia , Fosfopiruvato Hidratase/metabolismo , Plasminogênio/metabolismo , Animais , Aderência Bacteriana , Proteínas de Bactérias/genética , Galinhas , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Fibronectinas/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Humanos , Fosfopiruvato Hidratase/genética , Plasminogênio/química , Ligação Proteica , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA