RESUMO
OBJECTIVE: To construct and validate a nomogram for prediction of in-hospital postoperative heart failure (PHF) in elderly patients with hip fracture. METHODS: This was a retrospective cohort study. The patients aged ≥65 years undergoing hip fracture surgery in Peking University Third Hospital from July 2015 to December 2023 were enrolled. The patients admitted from July 2015 to December 2021 were divided into a development cohort, and the others admitted from January 2022 to December 2023 in to a validation cohort. The patients ' clinical data were collected from the electronic medical record system. Univariate and multivariate Logistic regression were employed to screen the predictors for PHF in the patients. The R software was used to construct a nomogram. Internal and external validation were performed by the Bootstrap method. The discriminatory ability of the model was determined by the area under the receiver operating characteristic curve (AUC). The calibration was evaluated by the calibration plot and Hosmer-Lemeshow goodness-of-fit test. Decision curve analysis (DCA) was performed to assess the clinical utility. RESULTS: In the study, 944 patients were eventually enrolled in the development cohort, and 469 were in the validation cohort. A total of 54 (5.7%) patients developed PHF in the deve-lopment cohort, and 18 (3.8%) patients had PHF in the validation cohort. Compared with those from non-PHF group, the patients from PHF group were older, had higher prevalence of heart disease, hypertension and pulmonary disease, had poorer American Society of Anesthesiologists (ASA) classification (â ¢-â £), presented with lower preoperative hemoglobin level, lower left ventricular ejection fraction, higher preoperative serum creatinine, received hip arthroplasty and general anesthesia more frequently. Multivariate Logistic regression analysis showed that age (OR=1.071, 95%CI: 1.019-1.127, P=0.008), history of heart disease (OR=5.360, 95%CI: 2.808-10.234, P < 0.001), preoperative hemoglobin level (OR=0.979, 95%CI: 0.960-0.999, P=0.041), preoperative serum creatinine (OR=1.007, 95%CI: 1.001-1.013, P=0.015), hip arthroplasty (OR=2.513, 95%CI: 1.259-5.019, P=0.009), and general anesthesia (OR=2.024, 95%CI: 1.053-3.890, P=0.034) were the independent predictors for PHF in elderly patients with hip fracture. Four preoperative predictors were incorporated to construct a preoperative nomogram for PHF in the patients. The AUC values of the nomogram in internal and external validation were 0.818 (95%CI: 0.768-0.868) and 0.873 (95%CI: 0.805-0.929), indicating its good accuracy. The calibration plots and Hosmer-Lemeshow goodness-of-fit test (internal validation: χ2=9.958, P=0.354; external validation: χ2=5.477, P=0.791) showed its satisfactory calibration. Clinical usefulness of the nomogram was confirmed by decision curve analysis. CONCLUSION: An easy-to-use nomogram for prediction of in-hospital PHF in elderly patients with hip fracture is well developed. This preoperative risk assessment tool can effectively identify patients at high risk of PHF and may be useful for perioperative management optimization.
Assuntos
Insuficiência Cardíaca , Fraturas do Quadril , Nomogramas , Humanos , Idoso , Fraturas do Quadril/cirurgia , Estudos Retrospectivos , Feminino , Masculino , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/diagnóstico , Fatores de Risco , Curva ROC , Modelos Logísticos , Idoso de 80 Anos ou maisRESUMO
Laccase, a copper-containing oxidoreductase, has close links with secondary metabolite biosynthesis in plants. Its activity can affect the synthesis and accumulation of secondary metabolites, thereby influencing plant growth, development, and stress resistance. This study aims to identify the grape laccases (VviLAC) gene family members in grape (Vitis vinifera L.) and explore the transcriptional regulatory network in berry development. Here, 115 VviLACs were identified and divided into seven (Type I-VII) classes. These were distributed on 17 chromosomes and out of 47 VviLACs on chromosome 18, 34 (72.34%) were involved in tandem duplication events. VviLAC1, VviLAC2, VviLAC3, and VviLAC62 were highly expressed before fruit color development, while VviLAC4, VviLAC12, VviLAC16, VviLAC18, VviLAC20, VviLAC53, VviLAC60 and VviLAC105 were highly expressed after fruit color transformation. Notably, VviLAC105 showed a significant positive correlation with important metabolites including resveratrol, resveratrol dimer, and peonidin-3-glucoside. Analysis of the transcriptional regulatory network predicted that the 12 different transcription factors target VviLACs genes. Specifically, WRKY and ERF were identified as potential transcriptional regulatory factors for VviLAC105, while Dof and MYB were identified as potential transcriptional regulatory factors for VviLAC51. This study identifies and provides basic information on the grape LAC gene family members and, in combination with transcriptome and metabolome data, predicts the upstream transcriptional regulatory network of VviLACs.
Assuntos
Regulação da Expressão Gênica de Plantas , Lacase , Proteínas de Plantas , Metabolismo Secundário , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/enzimologia , Lacase/genética , Lacase/metabolismo , Metabolismo Secundário/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Família MultigênicaRESUMO
High levels of antibiotic accumulation and the difficulty of degradation can have serious consequences for the environment and, therefore, require urgent attention. To solve this problem, a synergistic Er and Cd ion-codoped Bi4O5Br2 photocatalyst was proposed. The degradation rate of sulfamethoxazole (SMX) by Er/Cd-Bi4O5Br2 was eight times higher than that of pure Bi4O5Br2, exceeding that of single Er-doped or Cd-doped Bi4O5Br2, which was attributed to the ability of Er/Cd-Bi4O5Br2 to generate a variety of free radicals. Experimental results and theoretical calculations suggested a possible mechanism for the improved photocatalytic degradation rate. The reduction of the band gap can facilitate the production of electron-hole pairs, which play a significant role in the production of reactive radicals. Furthermore, an optimal stabilized structure of the ErCd-Bi4O5Br2 dopant system was identified based on the formation energy formulas of different ligand configurations. These findings offer promising potential for the degradation of broad-spectrum antibiotics and provide valuable insights for the design and modification of photocatalytic materials.
Assuntos
Antibacterianos , Bismuto , Teoria da Densidade Funcional , Luz , Antibacterianos/química , Bismuto/química , Érbio/química , Microesferas , Sulfametoxazol/química , CatáliseRESUMO
Electronic waste (e-waste) has become a significant environmental and societal challenge, necessitating the development of sustainable alternatives. Biocompatible and biodegradable electronic devices offer a promising solution to mitigate e-waste and provide viable alternatives for various applications, including triboelectric nanogenerators (TENGs). This review provides a comprehensive overview of recent advancements in biocompatible, biodegradable, and implantable TENGs, emphasizing their potential as energy scavengers for healthcare devices. The review delves into the fabrication processes of self-powered TENGs using natural biopolymers, highlighting their biodegradability and compatibility with biological tissues. It further explores the biomedical applications of ultrasound-based TENGs, including their roles in wound healing and energy generation. Notably, the review presents the novel application of TENGs for vagus nerve stimulation, demonstrating their potential in neurotherapeutic interventions. Key findings include the identification of optimal biopolymer materials for TENG fabrication, the effectiveness of TENGs in energy harvesting from physiological movements, and the potential of these devices in regenerative medicine. Finally, the review discusses the challenges in scaling up the production of implantable TENGs from biomaterials, addressing issues such as mechanical stability, long-term biocompatibility, and integration with existing medical devices, outlining future research opportunities to enhance their performance and broaden their applications in the biomedical field.
Assuntos
Materiais Biocompatíveis , Materiais Biocompatíveis/química , Humanos , Fontes de Energia Elétrica , Biopolímeros/química , AnimaisRESUMO
We aimed to investigate the preventive effect of vitamin D2 on COVID-19 and the improvement of symptoms after COVID-19 infection. The study recruited 228 health care workers who tested negative PCR or antigen for COVID-19. Subjects were randomly allocated to vitamin D2 or non-intervention at a ratio 1:1. Subjects recorded PCR or antigen tests and the symptoms of COVID-19 twice a week during the follow-up visit. The concentration of serum 25-hydroxyvitamin D (25(OH)D), C-reaction protein (CRP), complement component C1q and inflammatory cytokines were measured. The rates of COVID-19 infection were 50.5% in the vitamin D2 group and 52.4% in the non-intervention group (P = 0.785). There was no difference in the COVID-19 symptoms between the two groups. The mean 25(OH)D level significantly increased from 14.1 to 31.1 ng/mL after administration (P < 0.001). The difference between the two groups was not significant for the concentrations of CRP, C1q and inflammatory cytokines on the thirtieth day of the trial. According to the second level of vitamin D, there was a 14.3% difference in positive infection rates between the vitamin D adequate (> 30 ng/mL) and deficient groups (< 20 ng/mL). Adequate vitamin D had a tendency to prevent COVID-19.Trial registration: ClinicalTrials.gov NCT05673980, dated: 12/2022.
Assuntos
Proteína C-Reativa , COVID-19 , Citocinas , SARS-CoV-2 , Vitamina D , Humanos , Masculino , Vitamina D/sangue , Vitamina D/uso terapêutico , Vitamina D/análogos & derivados , Vitamina D/administração & dosagem , Feminino , COVID-19/prevenção & controle , COVID-19/sangue , COVID-19/epidemiologia , Adulto , Pessoa de Meia-Idade , Citocinas/sangue , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/efeitos dos fármacos , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise , Ergocalciferóis/uso terapêutico , Ergocalciferóis/administração & dosagem , Tratamento Farmacológico da COVID-19 , Complemento C1q/metabolismoRESUMO
We present a new scheme for Majorana modes in systems with nonsymmorphic-symmetry-protected band degeneracy. We reveal that when the gapless fermionic excitations are encoded with conventional superconductivity and magnetism, which can be intrinsic or induced by proximity effect, topological superconductivity and Majorana modes can be obtained. We illustrate this outcome in a system which respects the space group P4/nmm and features a fourfold-degenerate fermionic mode at (π, π) in the Brillouin zone. We show that in the presence of conventional superconductivity, different types of topological superconductivity, i.e., first-order and second-order topological superconductivity, with coexisting fragile Wannier obstruction in the latter case, can be generated in accordance with the different types of magnetic orders; Majorana modes are shown to exist on the boundary, at the corner and in the vortices. To further demonstrate the effectiveness of our approach, another example related to the space group P4/ncc based on this scheme is also provided. Our study offers insights into constructing topological superconductors based on bulk energy bands and conventional superconductivity and helps to find new material candidates and design new platforms for realizing Majorana modes.
RESUMO
Pair density wave (PDW) is a distinct superconducting state characterized by a periodic modulation of its order parameter in real space. Its intricate interplay with the charge density wave (CDW) state is a continuing topic of interest in condensed matter physics. While PDW states have been discovered in cuprates and other unconventional superconductors, the understanding of diverse PDWs and their interactions with different types of CDWs remains limited. Here, utilizing scanning tunneling microscopy, we unveil the subtle correlations between PDW ground states and two distinct CDW phases - namely, anion-centered-CDW (AC-CDW) and hollow-centered-CDW (HC-CDW) - in 2H-NbSe2. In both CDW regions, we observe coexisting PDWs with a commensurate structure that aligns with the underlying CDW phase. The superconducting gap size, Δ(r), related to the pairing order parameter is in phase with the charge density in both CDW regions. Meanwhile, the coherence peak height, H(r), qualitatively reflecting the electron-pair density, exhibits a phase difference of approximately 2π/3 relative to the CDW. The three-fold rotational symmetry is preserved in the HC-CDW region but is spontaneously broken in the AC-CDW region due to the PDW state, leading to the emergence of nematic superconductivity.
RESUMO
Seedlessness is a crucial quality trait in table grape (Vitis vinifera L.) breeding. However, the development of seeds involved intricate regulations, and the polygenic basis of seed abortion remains unclear. Here, we combine comparative genomics, population genetics, quantitative genetics, and integrative genomics to unravel the evolution and polygenic basis of seedlessness in grapes. We generated the haplotype-resolved genomes for two seedless grape cultivars, "Thompson Seedless" (TS, syn. "Sultania") and "Black Monukka" (BM). Comparative genomics identified a â¼4.25 Mb hemizygous inversion on Chr10 specific in seedless cultivars, with seedless-associated genes VvTT16 and VvSUS2 located at breakpoints. Population genomic analyses of 548 grapevine accessions revealed two distinct clusters of seedless cultivars, and the identity-by-descent (IBD) results indicated that the origin of the seedlessness trait could be traced back to "Sultania." Introgression, rather than convergent selection, shaped the evolutionary history of seedlessness in grape improvement. Genome-wide association study (GWAS) analysis identified 110 quantitative trait loci (QTLs) associated with 634 candidate genes, including previously unidentified candidate genes, such as three 11S GLOBULIN SEED STORAGE PROTEIN and two CYTOCHROME P450 genes, and well-known genes like VviAGL11. Integrative genomic analyses resulted in 339 core candidate genes categorized into 13 functional categories related to seed development. Machine learning-based genomic selection achieved a remarkable prediction accuracy of 97% for seedlessness in grapevines. Our findings highlight the polygenic nature of seedlessness and provide candidate genes for molecular genetics and an effective prediction for seedlessness in grape genomic breeding.
Assuntos
Estudo de Associação Genômica Ampla , Genômica , Locos de Características Quantitativas , Sementes , Vitis , Vitis/genética , Vitis/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Genoma de Planta/genética , Herança Multifatorial/genética , Melhoramento VegetalRESUMO
Micro/nano-plastics (MNPs) are emerging non-point source pollutants that have garnered increasing attention owing to their threat to ecosystems. Studies on the effects of MNPs on horticultural crops are scarce. Specifically, whether MNPs can be absorbed and transported by grapevines have not been reported. To fill this gap, we added polystyrene nanoplastics (PS-NPs, 100 nm) to a hydroponic environment and observed their distribution in grape seedlings of Thompson Seedless (TS, Vitis vinifera L.). After 15 d of exposure, plastic nanospheres were detected on the cell walls of the roots, stems, and leaves using confocal microscopy and scanning electron microscopy. This indicated that PS-NPs can also be absorbed by the root system through the epidermis-cortex interface in grapevines and transported upward along the xylem conduit. Furthermore, we analyzed the molecular response mechanisms of TS grapes to the PS-NPs. Through the measurement of relevant indicators and combined omics analysis, we found that plant hormone signal transduction, flavonoid and flavonol biosynthesis, phenylpropanoid biosynthesis, and MAPK signaling pathway biosynthesis played crucial roles in its response to PS-NPs. The results not only revealed the potential risk of MNPs being absorbed by grapevines and eventually entering the food chain but also provided valuable scientific evidence and data for the assessment of plant health and ecological risk.
Assuntos
Poliestirenos , Plântula , Vitis , Vitis/metabolismo , Vitis/genética , Vitis/efeitos dos fármacos , Poliestirenos/química , Plântula/metabolismo , Plântula/efeitos dos fármacos , Metabolômica , Transcriptoma , Microplásticos/toxicidade , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Reguladores de Crescimento de Plantas/metabolismoRESUMO
Herein, poly(pentanediamine terephthalamide) (PA5T) homopolymer was synthesized via a salt-forming reaction+solid state polycondensation method using bio-based 1,5-pentanediamine and terephthalic acid as the primary raw materials. To address the issue of its narrower processing window, poly(hexamethylene terephthalamide)(PA6T), which also cannot be melt processed due to the processing window is negative, was introduced into its molecular chain to synthesize poly (pentanediamine/hexanediamine terephthaloyl) (PA5T-co-6T) copolymers. The structures were investigated by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance carbon spectroscopy (13C-NMR). Furthermore, the melting temperature, crystallization temperature, thermal stability, and crystal growth mode of the polymer were tested and analyzed using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide-angle x-ray diffraction (WAXD), respectively. The results demonstrate that the crystal growth mode gradually changes from three-dimensional spherical growth to two-dimensional disk-like or three-dimensional spherical growth with the increase of 6T chain segment content. Simultaneously, the crystallization temperature, melting temperature, and crystallization rate of the polymer all showed a trend of decreasing first and then increasing, which was due to the combined effects of the increase in the content of 6T chain segments on the molecular-chain structure and crystal structure of the polymer. Bio-based PA5T-co-6T has excellent heat resistance and a wider processing window than PA5T and PA6T, which possesses great application prospects in the fields of automotive, electronic appliances, and LED optics.
RESUMO
Guangdong, China, has experienced several dengue epidemics involving thousands of confirmed cases in recent decades, and elderly individuals suffered severe dengue (SD) most seriously. However, the clinical characteristics and risk factors for SD among elderly patients in Guangdong have not been investigated. Patients older than 65 years were recruited and divided into a dengue fever (DF) group and an SD group according to the 2009 Dengue Guidelines of the WHO. We analyzed the clinical manifestations of the elderly patients with dengue and then assessed the risk factors for SD. Of a total of 1,027 patients, 868 patients were diagnosed as having DF and 159 as having SD. Of the 159 elderly patients with SD, 129 (81%) had comorbidities, with hypertension being the most common. Severe organ impairment (SOI) (115, 54%) was the most common presentation in SD patients, followed by severe plasma leakage (52, 24.4%) and severe hemorrhage (46, 21.6%). The most common symptom of SOI was kidney injury, followed by heart injury and central nervous system injury. Furthermore, multivariate regression revealed that the presence of chronic obstructive pulmonary disease (COPD), a lower red blood cell (RBC) count (≤3.5 × 1012/L; odds ratio [OR], 0.35; 95% CI, 0.17-0.55; P <0.001), lower serum albumin (ALB) (≤35 U/L; OR, 0.18; 95% CI, 0.09-0.32; P <0.001), and hyperpyrexia (body temperature ≥39°C; OR, 1.8; 95% CI, 1.2-2.6, P <0.001) were risk factors for SD. Severe organ impairment was the predominant manifestation in elderly individuals with SD characterized by kidney injury. The potential risk factors of SD such as presence of COPD and hyperpyrexia and lower RBC and ALB levels might help clinicians identify patients with SD early.
Assuntos
Dengue , Humanos , Idoso , Masculino , China/epidemiologia , Feminino , Fatores de Risco , Idoso de 80 Anos ou mais , Dengue/epidemiologia , Dengue/complicações , Dengue Grave/epidemiologia , Dengue Grave/complicações , Comorbidade , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/complicaçõesRESUMO
Fractional quantum Hall (FQH) states are exotic quantum many-body phases whose elementary charged excitations are anyons obeying fractional braiding statistics. While most FQH states are believed to have Abelian anyons, the Moore-Read type states with even denominators - appearing at half filling of a Landau level (LL) - are predicted to possess non-Abelian excitations with appealing potential in topological quantum computation. These states, however, depend sensitively on the orbital contents of the single-particle LL wavefunctions and the LL mixing. Here we report magnetotransport measurements on Bernal-stacked trilayer graphene, whose multiband structure facilitates interlaced LL mixing, which can be controlled by external magnetic and displacement fields. We observe robust FQH states including even-denominator ones at filling factors ν = - 9/2, - 3/2, 3/2 and 9/2. In addition, we fine-tune the LL mixing and crossings to drive quantum phase transitions of these half-filling states and neighbouring odd-denominator ones, exhibiting related emerging and waning behaviour.
RESUMO
This is the Preface to Special Topic: Challenges to Achieving Room-Temperature Superconductivity in Superhydrides under Pressure.
RESUMO
Using physical vapor deposition (PVD) technology, GeSe nanowires were successfully fabricated by heating GeSe powder at temperatures of 500 °C, 530 °C, 560 °C, 590 °C, and 620 °C. The microstructure, crystal morphology, and chemical composition of the resulting materials were thoroughly analyzed employing methods like Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), plus Raman Spectroscopy. Through a series of photoelectric performance tests, it was discovered that the GeSe nanowires prepared at 560 °C exhibited superior properties. These nanowires not only possessed high crystalline quality but also featured uniform diameters, demonstrating excellent consistency. Under illumination at 780 nm, the GeSe nanowires prepared at this temperature showed higher dark current, photocurrent, and photoresponsivity compared to samples prepared at other temperatures. These results indicate that GeSe nanomaterials hold substantial potential in the field of photodetection. Particularly in the visible light spectrum, GeSe nanomaterials exhibit outstanding light absorption capabilities and photoresponse.
RESUMO
In this comprehensive investigation, we explore the effectiveness of 55 dual-atom catalysts (DACs) supported on graphitic carbon nitride (gCN) for both alkaline and acidic hydrogen evolution reactions (HER). Employing density functional theory (DFT), we scrutinize the thermodynamic and kinetic profiles of these DACs, revealing their considerable potential across a diverse pH spectrum. For acidic HER, our results identify catalysts such as FePd-gCN, CrCr-gCN, and NiPd-gCN, displaying promising ΔGH* values of 0.0, 0.0, and -0.15 eV, respectively. This highlights their potential effectiveness in acidic environments, thereby expanding the scope of their applicability. Within the domain of alkaline HER, this study delves into the thermodynamic and kinetic profiles of DACs supported on gCN, utilizing DFT to illuminate their efficacy in alkaline HER. Through systematic evaluation, we identify that DACs such as CrCo-gCN, FeRu-gCN, and FeIr-gCN not only demonstrate favorable Gibbs free energy change (ΔGmax) for the overall water splitting reaction of 0.02, 0.27, and 0.38 eV, respectively, but also feature low activation energies (Ea) for water dissociation, with CrCo-gCN, FeRu-gCN, and FeIr-gCN notably exhibiting the Ea of just 0.42, 0.33, and 0.42 eV, respectively. The introduction of an electronic descriptor (φ), derived from d electron count (Nd) and electronegativity (ETM), provides a quantifiable relationship with catalytic activity, where a lower φ corresponds to enhanced reaction kinetics. Specifically, φ values between 4.0-4.6 correlate with the lowest kinetic barriers, signifying a streamlined HER process. Our findings suggest that DACs with optimized φ values present a robust approach for the development of high-performance alkaline HER electrocatalysts, offering a pathway towards the rational design of energy-efficient catalytic systems.
RESUMO
BACKGROUND: The strong invasiveness and rapid expansion of dengue virus (DENV) pose a great challenge to global public health. However, dengue epidemic patterns and mechanisms at a genetic scale, particularly in term of cross-border transmissions, remain poorly understood. Importation is considered as the primary driver of dengue outbreaks in China, and since 1990 a frequent occurrence of large outbreaks has been triggered by the imported cases and subsequently spread to the western and northern parts of China. Therefore, this study aims to systematically reveal the invasion and diffusion patterns of DENV-1 in Guangdong, China from 1990 to 2019. METHODS: These analyses were performed on 179 newly assembled genomes from indigenous dengue cases in Guangdong, China and 5152 E gene complete sequences recorded in Chinese mainland. The genetic population structure and epidemic patterns of DENV-1 circulating in Chinese mainland were characterized by phylogenetics, phylogeography, phylodynamics based on DENV-1 E-gene-based globally unified genotyping framework. RESULTS: Multiple serotypes of DENV were co-circulating in Chinese mainland, particularly in Guangdong and Yunnan provinces. A total of 189 transmission clusters in 38 clades belonging to 22 subgenotypes of genotype I, IV and V of DENV-1 were identified, with 7 Clades of Concern (COCs) responsible for the large outbreaks since 1990. The epidemic periodicity was inferred from the data to be approximately 3 years. Dengue transmission events mainly occurred from Great Mekong Subregion-China (GMS-China), Southeast Asia (SEA), South Asia Subcontinent (SASC), and Oceania (OCE) to coastal and land border cities respectively in southeastern and southwestern China. Specially, Guangzhou was found to be the most dominant receipting hub, where DENV-1 diffused to other cities within the province and even other parts of the country. Genome phylogeny combined with epidemiological investigation demonstrated a clear local consecutive transmission process of a 5C1 transmission cluster (5C1-CN4) of DENV-1 in Guangzhou from 2013 to 2015, while the two provinces of Guangdong and Yunnan played key roles in ongoing transition of dengue epidemic patterns. In contextualizing within Invasion Biology theories, we have proposed a derived three-stage model encompassing the stages of invasion, colonization, and dissemination, which is supposed to enhance our understanding of dengue spreading patterns. CONCLUSIONS: This study demonstrates the invasion and diffusion process of DENV-1 in Chinese mainland within a global genotyping framework, characterizing the genetic diversities of viral populations, multiple sources of importation, and periodic dynamics of the epidemic. These findings highlight the potential ongoing transition trends from epidemic to endemic status offering a valuable insight into early warning, prevention and control of rapid spreading of dengue both in China and worldwide.
Assuntos
Vírus da Dengue , Dengue , Genótipo , Filogenia , Sorogrupo , Vírus da Dengue/genética , Vírus da Dengue/classificação , Vírus da Dengue/fisiologia , China/epidemiologia , Dengue/epidemiologia , Dengue/virologia , Dengue/transmissão , Humanos , Surtos de Doenças , Filogeografia , Genoma ViralRESUMO
We present a novel target-driven methodology devised to predict the Heyd-Scuseria-Ernzerhof (HSE) band gap of two-dimensional (2D) materials leveraging the comprehensive C2DB database. This innovative approach integrates machine learning and density functional theory (DFT) calculations to predict the HSE band gap, conduction band minimum (CBM), and valence band maximum (VBM) of 2176 types of 2D materials. Subsequently, we collected a comprehensive data set comprising 3539 types of 2D materials, each characterized by its HSE band gaps, CBM, and VBM. Considering the lattice disparities between MoSi2N4 (MSN) and 2D materials, our analysis predicted 766 potential MSN/2D heterostructures. These heterostructures are further categorized into four distinct types based on the relative positions of their CBM and VBM: Type I encompasses 230 variants, Type II comprises 244 configurations, Type III consists of 284 permutations, and 0 band gap comprises 8 types.
RESUMO
Guangzhou has been the city most affected by the dengue virus (DENV) in China, with a predominance of DENV serotype 1 (DENV-1). Viral factors such as dengue serotype and genotype are associated with severe dengue (SD). However, none of the studies have investigated the relationship between DENV-1 genotypes and SD. To understand the association between DENV-1 genotypes and SD, the clinical manifestations of patients infected with different genotypes were investigated. A total of 122 patients with confirmed DENV-1 genotype infection were recruited for this study. The clinical manifestations, laboratory tests, and levels of inflammatory mediator factors were statistically analyzed to investigate the characteristics of clinical manifestations and immune response on the DENV-1 genotype. In the case of DENV-1 infection, the incidence of SD with genotype V infection was significantly higher than that with genotype I infection. Meanwhile, patients infected with genotype V were more common in ostealgia and bleeding significantly. In addition, levels of inflammatory mediator factors including IFN-γ, TNF-α, IL-10, and soluble vascular cell adhesion molecule 1 were higher in patients with SD infected with genotype V. Meanwhile, the concentrations of regulated upon activation normal T-cell expressed and secreted and growth-related gene alpha were lower in patients with SD infected with genotype V. The higher incidence of SD in patients infected with DENV-1 genotype V may be attributed to elevated cytokines and adhesion molecules, along with decreased chemokines.
Assuntos
Vírus da Dengue , Genótipo , Sorogrupo , Dengue Grave , Humanos , Vírus da Dengue/genética , Vírus da Dengue/classificação , China/epidemiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Dengue Grave/virologia , Dengue Grave/epidemiologia , Adulto Jovem , Citocinas/sangue , Adolescente , Idoso , Incidência , Criança , Dengue/virologia , Dengue/epidemiologiaRESUMO
BACKGROUND: Dengue is an important public health problem, which caused by the dengue virus (DENV), a single-stranded RNA virus consisted of four serotypes. Central nervus system (CNS) impairment in dengue usually results from DENV-2 or DENV-3 infection, which lead to life-threatening outcomes. Furthermore, neurological complications due to DENV-1 was rare especially in adult patients. CASE PRESENTATION: A 44-year-old man without comorbidities had lethargy after hyperpyrexia and a positive DENV NS1 antigen was detected for confirming the diagnosis of dengue on day 8 of onset. Then logagnosia, decreased muscle strength, delirium and irritability were occurred even radiographic examination were normal. He was treated with low-dose hormone, sedatives and gamma goblin with a short duration of 6 days. The cerebrospinal fluid (CSF) tests were persistent normal. However, presence of DENV-1 RNA was confirmed both in CSF and serum. Furthermore, the complete sequence of the DENV isolated from the patient's serum was performed (GenBank No.: MW261838). The cytokines as IL-6, IL-10 and sVCAM-1 were increased in critical phase of disease. Finally, the patient was discharged on day 24 of onset without any neurological sequelae. CONCLUSION: Encephalopathy caused by a direct CNS invasion due to DENV-1 during viremia was described in an adult patient. Treatment with low-dose hormone and gamma goblin was helpful for admission.
Assuntos
Encefalopatias , Vírus da Dengue , Dengue , Adulto , Masculino , Humanos , Dengue/complicações , Dengue/diagnóstico , Sorogrupo , Hormônios , Anticorpos AntiviraisRESUMO
BACKGROUND: Postprocedural anticoagulation (PPA) is frequently administered after primary percutaneous coronary intervention in ST-segment-elevation myocardial infarction, although no conclusive data support this practice. METHODS: The RIGHT trial (Comparison of Anticoagulation Prolongation vs no Anticoagulation in STEMI Patients After Primary PCI) was an investigator-initiated, multicenter, randomized, double-blind, placebo-controlled, superiority trial conducted at 53 centers in China. Patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention were randomly assigned by center to receive low-dose PPA or matching placebo for at least 48 hours. Before trial initiation, each center selected 1 of 3 PPA regimens (40 mg of enoxaparin once daily subcutaneously; 10 U·kg·h of unfractionated heparin intravenously, adjusted to maintain activated clotting time between 150 and 220 seconds; or 0.2 mg·kg·h of bivalirudin intravenously). The primary efficacy objective was to demonstrate superiority of PPA to reduce the primary efficacy end point of all-cause death, nonfatal myocardial infarction, nonfatal stroke, stent thrombosis (definite), or urgent revascularization (any vessel) within 30 days. The key secondary objective was to evaluate the effect of each specific anticoagulation regimen (enoxaparin, unfractionated heparin, or bivalirudin) on the primary efficacy end point. The primary safety end point was Bleeding Academic Research Consortium 3 to 5 bleeding at 30 days. RESULTS: Between January 10, 2019, and September 18, 2021, a total of 2989 patients were randomized. The primary efficacy end point occurred in 37 patients (2.5%) in both the PPA and placebo groups (hazard ratio, 1.00 [95% CI, 0.63 to 1.57]). The incidence of Bleeding Academic Research Consortium 3 to 5 bleeding did not differ between the PPA and placebo groups (8 [0.5%] vs 11 [0.7%] patients; hazard ratio, 0.74 [95% CI, 0.30 to 1.83]). CONCLUSIONS: Routine PPA after primary percutaneous coronary intervention was safe but did not reduce 30-day ischemic events. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03664180.