Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Sci Rep ; 14(1): 99, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167939

RESUMO

Identifying potential prognostic factors of CSM patients could improve doctors' clinical decision-making ability. The study retrospectively collected the baseline data of population characteristics, clinical symptoms, physical examination, neurological function and quality of life scores of patients with CSM based on the clinical big data research platform. The modified Japanese Orthopedic Association (mJOA) score and SF-36 score from the short-term follow-up data were entered into the cluster analysis to characterize postoperative residual symptoms and quality of life. Four clusters were yielded representing different patterns of residual symptoms and quality of patients' life. Patients in cluster 2 (mJOA RR 55.8%) and cluster 4 (mJOA RR 55.8%) were substantially improved and had better quality of life. The influencing factors for the better prognosis of patients in cluster 2 were young age (50.1 ± 11.8), low incidence of disabling claudication (5.0%) and pathological signs (63.0%), and good preoperative SF36-physiological function score (73.1 ± 24.0) and mJOA socre (13.7 ± 2.8); and in cluster 4 the main influencing factor was low incidence of neck and shoulder pain (11.7%). We preliminarily verified the reliability of the clustering results with the long-term follow-up data and identified the preoperative features that were helpful to predict the prognosis of the patients. This study provided reference and research basis for further study with a larger sample data, extracting more patient features, selecting more follow-up nodes, and improving clustering algorithm.


Assuntos
Doenças da Medula Espinal , Espondilose , Humanos , Prognóstico , Qualidade de Vida , Estudos Retrospectivos , Reprodutibilidade dos Testes , Resultado do Tratamento , Estudos Prospectivos , Análise por Conglomerados , Vértebras Cervicais/patologia , Espondilose/diagnóstico
2.
Front Surg ; 9: 885599, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034349

RESUMO

Due to its obvious advantages in processing big data and image information, the combination of artificial intelligence and medical care may profoundly change medical practice and promote the gradual transition from traditional clinical care to precision medicine mode. In this artical, we reviewed the relevant literatures and found that artificial intelligence was widely used in spine surgery. The application scenarios included etiology, diagnosis, treatment, postoperative prognosis and decision support systems of spinal diseases. The shift to artificial intelligence model in medicine constantly improved the level of doctors' diagnosis and treatment and the development of orthopedics.

3.
RSC Adv ; 12(28): 17689-17700, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35765328

RESUMO

A huge quantity of dark-colored waste cotton fabrics with a high content of dye powder is dumped in landfills and incinerated, which is a waste of resources and pollutes the land and atmosphere. Also, it is meaningful to effectively strip the color from these dark-colored waste cotton fabrics with minimal damage to the strength of the textiles. In this study, a dark-colored waste cotton fabric dyed with reactive dyes was subjected to chemical treatment with redox decoloring agents. The effects of various treatments on the coloration and mechanical properties of the fabric were compared. This work developed an effective Na2S2O4-H2O2 system for decolorizing waste cotton fabric, with numerous advantages over conventional physicochemical approaches including achieving a CIE whiteness index of 74.1, tensile strength loss of 24.0%, weight loss of 1.2%, decoloration rate of 97.8%, and a degree of polymerization of 735.3. Furthermore, a mechanism was proposed to explain the two-step synergistic decolorization process.

4.
Inorg Chem ; 61(19): 7286-7295, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35500301

RESUMO

When a multicarboxylate aromatic ligand, 3,5-di(2',4'-dicarboxylphenyl)benzoic acid (H5L), was employed, five structurally similar lanthanide metal-organic frameworks (Ln-MOFs), {[Pr10L6(OH)3Cl(H2O)6]·4C2H8N}n (1), {[Nd10L6(OH)4 (H2O)9]·4C2H8N}n (2), {[Gd10L6(OH)4(H2O)3]·4C2H8N}n (3), {[Ho10L6(OH)4 (H2O)3]·4C2H8N}n (4) and {[Er10L6(OH)4(H2O)6]·4C2H8N}n (5), were synthesized and characterized. Single-crystal X-ray structural analyses disclosed that all five Ln-MOFs crystallize in the trigonal R3 space group. They have three-dimensional mesoporous structure featuring the coexistence of binuclear and tetranuclear species as inorganic building units. The mesoporous structure of 3 was verified by the gas adsorption experiment of N2. Fluorescence analysis showed that 3 can selectively detect Fe3+, Cr2O72-, and H2O2; furthermore, it can be used for the electrochemical detection of trinitrophenol. With the merit of an excellent highly sensitive detection performance, 3 has unpredictable application prospects in future research fields.

5.
Cellulose (Lond) ; 28(8): 4991-5003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33846673

RESUMO

With the outbreak of coronavirus disease (COVID-19) which has incalculable disasters and economic losses, people have given increasing attention to the health and safety of textile and fiber materials. In this study, an eco-friendly, facile, and cost-effective wet-spinning cellulose carbamate fiber technology was developed, and N-halamine regenerated cellulose fiber (RCC-Cl) with rechargeable and rapid bactericidal properties were prepared by the Lewis acid-assisted chlorination method. The chemical properties of the fibers were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, and energy-dispersive X-ray spectroscopy. The mechanical and surface topography of the treated fiber was investigated by tensile testing and scanning electron microscopy. The results showed that the mechanical properties of RCC-Cl fibers can reach a breaking strength of 12.1 cN/tex and a breaking elongation of 41.4% with the optimized spinning process. Furthermore, RCC-Cl showed excellent antimicrobial activities, which can inactivate Escherichia coli and Staphylococcus aureus at a concentration of 107 CFU/mL within 1 min. This work provided a novel approach to produce regenerated cellulose fibers with antibacterial properties, showing great potential in the field of functional textiles.

6.
ACS Omega ; 6(10): 6810-6816, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33748594

RESUMO

A novel Sm-metal-organic framework (MOF) sensor with the molecular formula Sm8(HDBA)6·H2O has been prepared based on a penta-carboxyl organic ligand (H5DBA = 3,5-di(2',4'-dicarboxylphenyl)benzoic acid) and samarium nitrate under solvothermal conditions. Sm-MOF is characterized by single-crystal X-ray diffraction analysis, elemental analysis, thermogravimetric analysis, and powder X-ray diffraction analysis. Structural analysis shows that the dimer metal units are alternately connected to form a one-dimensional chain, and this chain is connected by the bridging carboxyl oxygen of the ligand H5DBA to form a two-dimensional double-layer plane, which then expands into a three-dimensional microporous framework. Fluorescence detection studies show that Sm-MOF can detect Ag+ ions, MnO4 - anions, and cimetidine tablets with high sensitivity and selectivity and can also be used to electrochemically detect o-nitrophenol in water. High-sensitivity detection capability of the Sm-MOF can enrich the application of samarium complexes in multifunctional sensors.

7.
Polymers (Basel) ; 13(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546460

RESUMO

The surface porous ultrahigh molecular weight polyethylene (UHMWPE) composites were successfully fabricated with NaCl and graphene oxide (GO) in the hot-pressing procedure. The GO sheets were evenly dispersed in UHMWPE with the sedimentation method of GO in saturated NaCl. The morphologies, chemical compositions, mechanical, and tribological properties of GO and surface porous GO/NaCl/UHMWPE were investigated. The results show that GO sheet and NaCl could be evenly dispersed in UHMWPE. The regular pores are present on the surface of UHMWPE after NaCl dissolution in distilled water. The wear resistance properties are improved significantly, and the friction properties increased slightly with the addition of GO and NaCl.

8.
Sensors (Basel) ; 21(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374144

RESUMO

The launch of GRACE satellites has provided a new avenue for studying the terrestrial water storage anomalies (TWSA) with unprecedented accuracy. However, the coarse spatial resolution greatly limits its application in hydrology researches on local scales. To overcome this limitation, this study develops a machine learning-based fusion model to obtain high-resolution (0.25°) groundwater level anomalies (GWLA) by integrating GRACE observations in the North China Plain. Specifically, the fusion model consists of three modules, namely the downscaling module, the data fusion module, and the prediction module, respectively. In terms of the downscaling module, the GRACE-Noah model outperforms traditional data-driven models (multiple linear regression and gradient boosting decision tree (GBDT)) with the correlation coefficient (CC) values from 0.24 to 0.78. With respect to the data fusion module, the groundwater level from 12 monitoring wells is incorporated with climate variables (precipitation, runoff, and evapotranspiration) using the GBDT algorithm, achieving satisfactory performance (mean values: CC: 0.97, RMSE: 1.10 m, and MAE: 0.87 m). By merging the downscaled TWSA and fused groundwater level based on the GBDT algorithm, the prediction module can predict the water level in specified pixels. The predicted groundwater level is validated against 6 in-situ groundwater level data sets in the study area. Compare to the downscaling module, there is a significant improvement in terms of CC metrics, on average, from 0.43 to 0.71. This study provides a feasible and accurate fusion model for downscaling GRACE observations and predicting groundwater level with improved accuracy.

9.
Polymers (Basel) ; 12(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32708037

RESUMO

With the development of fine surgery and desire for low-injury methods, the frictional properties of surgical sutures are one of the crucial factors that can cause damage to tissue, especially for some fragile and sensitive human tissues such as the eyeball. In this study, dopamine hydrochloride and graphene oxide were used as external application agents to prepare a biological coating for the surface of multifilament surgical sutures. The effects of this biocoating on the surface morphology, chemical properties, mechanical properties, and tribological properties of surgical sutures were studied. The friction force and the coefficient of friction of surgical sutures penetrating through a skin substitute were evaluated using a penetration friction apparatus and a linear elastic model. The tribological mechanism of the coating on the multifilament surgical sutures was investigated according to the results of the tribological test. The results showed that there were uniform dopamine and graphene oxide films on the surface of the surgical sutures, and that the fracture strength and yield stress of the coated sutures both increased. The surface wettability of the surgical sutures was improved after the coating treatment. The friction force and the coefficient of friction of the multifilament surgical sutures with the dopamine hydrochloride and graphene oxide coating changed little compared to those of the untreated multifilament surgical sutures.

10.
J Mech Behav Biomed Mater ; 109: 103823, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32543395

RESUMO

The grain structure and surface morphology of bio-implants act as a pivotal part in altering cell behavior. Titanium alloy bone screws, as common implants, are prone to screws loosening and complications threat in the physiological environment due to their inferior anti-wear and surface inertia. Manufacturing bone screws with high wear resistance and ideal biocompatibility has always been a challenge. In this study, a series of overlapping morphologies inspired by the hierarchical structure of fish scales and micro bulges of shrimp were structured on Ti-6Al-4V implant by laser texturing. The results indicate that the textured patterns could improve cell attachment, proliferation, and osteogenic differentiation. The short-term response of human bone marrow-derived mesenchymal stem cells (hBMSCs) on the textured surface are more sensitive to the microstructure than the surface roughness, wettability, grain size and surface chemical elements of the textured surfaces. More importantly, the friction-increasing and friction-reducing type overlapping structures exhibit excellent friction stability at different stages of modified simulated body fluid (m-SBF) soaking. The overlapping structure (Micro-smooth stacked ring: MSSR) is more beneficial to promote the formation of apatite. Deposited spherical-like apatite particles can act as a "lubricant" on the MSSR surface during the friction process to alleviate the adhesion wear of the surface. Meanwhile, apatite particles participate in the formation of friction film, which plays an effective role in reducing friction and antiwear in corrosion solution (m-SBF) for a long time. These features show that the combination of soaking treatment in m-SBF solution with laser-textured MSSR structure is expected to be an efficient and environmentally friendly strategy to prolong the service life of bone screws and reducing the complications of mildly osteoporotic implants.


Assuntos
Osteogênese , Titânio , Ligas , Animais , Fricção , Humanos , Lasers , Propriedades de Superfície
11.
Carbohydr Polym ; 232: 115693, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952621

RESUMO

In order to improve the mechanical properties of alginate fiber and enrich its application properties, the metal-alginate fibers were produced with wet spinning in the coagulation bath of Zn2+, Ba2+, Cu2+, Al3+ ions blended with Ca2+ ions. FT-IR and 13C NMR were used to characterize the binding mode of alginic acid with metal ions and the arrangement of G and M groups in the molecular chain. The flame retardancy, mechanical and antibacterial properties of metal-alginate fiber were improved, while its water absorption was decreased. The results of Thermogravimetric (TG) and Limiting oxygen index (LOI) showed that the flame retardancy of metal-alginate fibers was better than that of calcium alginate fibers. The combination of metal ions and alginic acid has different improvement effect of mechanical strength and antimicrobial activity against Escherichia coli and Staphylococcus aureus. The multi-functional fiber is expected to be used in medical textiles and new textile fibers.

12.
ACS Omega ; 5(51): 33039-33046, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403265

RESUMO

A novel three-dimensional microporous terbium(III) metal-organic framework (Tb-MOF) named as [Tb10 (DBA)6(OH)4(H2O)5]·(H3O)4 (1), was successfully obtained by a solvothermal method based on terbium nitrate and 5-di(2',4'-dicarboxylphenyl) benzoic acid (H5DBA). The Tb-MOF has been characterized by single crystal X-ray diffraction, elemental analysis, thermogravimetry, and fluorescence properties, and the purity was further confirmed by powder X-ray diffraction (PXRD) analysis. Structural analysis shows that there are two kinds of metal cluster species: binuclear and tetranuclear, which are linked by H5DBA ligands in two µ7 high coordination fashions into a three-dimensional microporous framework. Fluorescence studies show that the Tb-MOF can detect H2O2, Fe3+, and Cr2O7 2- with high sensitivity and selectivity and can also be used for electrochemical detection of exposed 2,4,6-trinitrophenylamine (TPA) in water. The highly selective and sensitive detection ability of the Tb-MOF might make it a potential multifunctional sensor in the future.

13.
ACS Appl Mater Interfaces ; 11(43): 39470-39483, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31594306

RESUMO

Rapid and effective osseointegration, as a critical factor in affecting the success rate of titanium (Ti) implants in orthopedic applications, is significantly affected by their surface microstructure and chemical composition. In this work, surface microgrooved Ti-6Al-4V alloys with graphene oxide coating (Ti-G-GO) were fabricated by a combination of laser processing and chemical assembly techniques. The osteogenic capability in vitro and new bone formation in vivo of the implants were systematically investigated, and biomechanical pull-out tests of the screws were also performed. First, in vitro studies indicated that the optimal microgroove width of the titanium alloy surface was 45 µm (Ti-G), and the optimum GO concentration was 1 mg/mL. Furthermore, the effects of the surface microstructure and GO coating on the in vitro bioactivity were investigated through culturing bone marrow mesenchymal stem cells (BMSCs) on the surface of titanium alloy plates. The results showed that the BMSCs cultured on the Ti-G-GO group exhibited the best adhesion, proliferation, and differentiation, compared with that on the Ti-G and Ti groups. Micro-computed tomography evaluation, histological analysis, and pull-out testing demonstrated that both Ti-G and Ti-G-GO implants had the higher osseointegration than the untreated Ti implant. Moreover, the osteogenic capability of the Ti-G-GO group appeared to be superior to that of the Ti-G group, which could be attributed to the improvement of surface wettability and apatite formation by the GO coatings. These results suggest that the combination of the microgroove structure and GO coatings exhibits considerable potential for enhancing the surface bioactivation of materials, and the combination modification is expected to be used on engineered titanium alloy surfaces to enhance osseointegration for orthopedic applications.


Assuntos
Células da Medula Óssea/metabolismo , Prótese Ancorada no Osso , Materiais Revestidos Biocompatíveis , Grafite , Células-Tronco Mesenquimais/metabolismo , Osseointegração , Titânio , Ligas , Animais , Células da Medula Óssea/citologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Feminino , Grafite/química , Grafite/farmacologia , Células-Tronco Mesenquimais/citologia , Camundongos , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
14.
Data Brief ; 24: 103467, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30976630

RESUMO

The lubrication states between the friction pairs in lubrications have an important effect on its tribological behavior. Therefore, the aim of this complementary data article is to identify the corresponding lubrication states between bone and Ti-6Al-4V interface in three biolubricants in reciprocation sliding by the Stribeck theory. Among that, three biolubricated film thicknesses at the stroke center and stroke end were separately calculated using the elastohydrodynamic theory. The current data are considered as a complementary for the main work "Tribological behavior of Ti-6Al-4V against cortical bone in different biolubricants" (Wang et al., 2018).

15.
J Mech Behav Biomed Mater ; 90: 460-471, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30448560

RESUMO

Titanium alloys (Ti-6Al-4V) are promising materials as bone implants in clinical surgeries owing to their excellent performances. However, wear debris caused by the tribological behavior of the cortical bone and titanium alloy interface were found to be paramount for implant stability. The contact environment between the cortical bone and Ti-6Al-4V in vivo has been considered to affect the tribological behavior. Currently, the tribological behaviors of bone and Ti-6Al-4V in different biolubricants remain elusive. Therefore, in this work, the tribological behaviors of Ti-6Al-4V plates sliding against bovine cortical bone were investigated in dry sliding and in biolubricants of physiological saline (PS), simulated body fluids (SBF), and fetal bovine serum (FBS). Results show that the friction coefficient and wear rate of the bovine cortical bone and Ti-6Al-4V interface exhibit the same sequence as follows: FBS > SBF > PS > dry sliding. These results are attributed to bone hardness variation and corrosion of different biolubricants. Meanwhile, the effects of normal load and velocity on the tribological behavior of bone and Ti-6Al-4V interface were also investigated in dry sliding and three different biolubricants. Results show that as the normal load is increased and the sliding velocity is decreased, the friction coefficient decreases in dry condition, adhering to the Hertz contact theory. However, according to the boundary lubrication theory, the friction coefficient in three biolubricants correlates positively to the normal load and negatively to the sliding velocity. Moreover, the wear rates of the bone samples increase with the increase in normal load and sliding velocity under dry and biolubrication conditions. Finally, the characterization results indicate that the wear mechanisms of the cortical bone and Ti-6Al-4V interface in dry friction are primarily adhesive and abrasive wear. Further, corrosive wear occurs in biolubrications, apart from adhesive and abrasive wear.


Assuntos
Materiais Biocompatíveis/farmacologia , Osso Cortical/efeitos dos fármacos , Lubrificantes/farmacologia , Titânio/farmacologia , Ligas , Animais , Materiais Biocompatíveis/química , Bovinos , Corrosão , Eletroquímica , Fricção , Dureza/efeitos dos fármacos , Lubrificantes/química , Fenômenos Mecânicos , Propriedades de Superfície , Titânio/química
16.
J Mech Behav Biomed Mater ; 80: 171-179, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29427933

RESUMO

The frictional performances of surgical sutures have been found to play a vital role in their functionality. The purpose of this paper is to understand the frictional performance of multifilament surgical sutures interacting with skin substitute, by means of a penetration friction apparatus (PFA). The influence of the size of the surgical suture was investigated. The relationship between the friction force and normal force was considered, in order to evaluate the friction performance of a surgical suture penetrating a skin substitute. The friction force was measured by PFA. The normal force applied to the surgical suture was estimated based on a Hertzian contact model, a finite element model (FEM), and a uniaxial deformation model (UDM). The results indicated that the penetration friction force increased as the size of the multifilament surgical suture increased. In addition, when the normal force was predicted by UDM, it was found that the ratio between the friction force and normal force decreased as the normal force increased. A comparison of the results suggested that the UDM was appropriate in predicting the frictional behavior of surgical suturing.


Assuntos
Pele Artificial , Suturas , Resistência à Tração , Fricção , Humanos , Teste de Materiais
17.
Colloids Surf B Biointerfaces ; 162: 228-235, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29202414

RESUMO

Surgical sutures have different sizes, structures, whereas they are being used for various surgeries. The high friction performance of surgical sutures in the suturing process may cause inflammation and pain, leading to a longer recovery time. This paper presents an understanding of the tribological behavior of surgical suture with monofilament and multifilament structures, by means of a penetration friction apparatus (PFA). The results indicated that structure and surface topography of the surgical suture had a pronounced effect on the tribological interactions. It was found that the friction force and abrasion area of skin substitute with the penetration of polyglycolic acid (PGA) multifilament surgical suture were larger than that of Nylon monofilament surgical suture. Meanwhile, more abrasion at the pull-in boundary of skin substitute was observed compared with that at the pull-out boundary.


Assuntos
Nylons/química , Ácido Poliglicólico/química , Pele Artificial , Técnicas de Sutura/instrumentação , Suturas , Fenômenos Biomecânicos , Fricção , Humanos , Teste de Materiais/instrumentação , Resistência à Tração
18.
J Mech Behav Biomed Mater ; 74: 392-399, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28692906

RESUMO

Nowadays there is a wide variety of surgical sutures available in the market. Surgical sutures have different sizes, structures, materials and coatings, whereas they are being used for various surgeries. The frictional performances of surgical sutures have been found to play a vital role in their functionality. The high friction force of surgical sutures in the suturing process may cause inflammation and pain to the person, leading to a longer recovery time, and the second trauma of soft or fragile tissue. Thus, the investigation into the frictional performance of surgical suture is essential. Despite the unquestionable fact, little is actually known on the friction performances of surgical suture-tissue due to the lack of appropriate test equipment. This study presents a new penetration friction apparatus (PFA) that allowed for the evaluation of the friction performances of various surgical needles and sutures during the suturing process, under different contact conditions. It considered the deformation of tissue and can realize the puncture force measurements of surgical needles as well as the friction force of surgical sutures. The developed PFA could accurately evaluate and understand the frictional behaviour of surgical suture-tissue in the simulating clinical conditions. The forces measured by the PFA showed the same trend as that reported in literatures.


Assuntos
Fricção , Suturas , Humanos , Agulhas
19.
Exp Ther Med ; 12(5): 3087-3092, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27882122

RESUMO

Gan-Dan-Liang-Yi-Tang (GDLYT) is a Traditional Chinese Medicine that has been historically used for the treatment of insomnia. However, investigations into its pharmacological ingredients and the mechanism underlying its sedative and hypnotic effects remain limited. The present study reported the detailed mechanisms underlying the sedative and hypnotic effects of GDLYT. Kunming mice were administered GDLYT at various sub-hypnotic doses, which underwent sodium pentobarbital treatment test, pentetrazole induced convulsant studies and p-chlorophenylalanine (PCPA) induced insomnia model. Potentiated hypnotic and sedative effects in mice was studied, and also the changes in related neurotransmitter and immune factors were evaluated. The results suggested that GDLYT possessed weak sedative effects on pentetrazole-induced convulsive activity in normal mice at a dose of 1.3 mg/kg, with an increase in sleep onset in subhypnotic dose of sodium pentobarbital-treated mice. GDLYT was also able to alleviate insomnia induced by PCPA in the rodent models, and increased 5-hydroxytryptamine levels in the prefrontal cortex, hippocampus, hypothalamus and corpus striatum of PCPA-treated rats. Furthermore, the hypnotic effects of GDLYT were modified, which allowed for PCPA-induced immune system changes, including increased interleukin (IL)-1ß, tumor necrosis factor-α and IL-2 expression levels. The results of the present study indicated that GDLYT induced sedative and hypnotic bioactivity by regulating serotonergic activity in the central nervous system and immune system.

20.
J Ethnopharmacol ; 150(3): 1053-61, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24184266

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ding-Zhi-Xiao-Wan (DZ, also known as Kai-Xin-San) is a famous traditional Chinese medicine used for the treatment of emotional disease. Previously, we have found that in a variety of animal models of depression (such as tail suspension model, model of chronic fatigue and forced swimming model) DZ demonstrated significant antidepressant behavior and promoted the production of 5-hydroxytryptamine (5-HT). However, the mechanisms of 5-HT regulation are still unclear. Therefore, the current study is designed to further investigate the antidepressant effect of DZ by observing its influence on 5-HT synthesis, metabolism, transport and other key links, so as to clarify the molecular mechanism of its 5-HT regulation. MATERIALS AND METHODS: Solitary rising combined with the chronic unpredictable mild stress (CMS) was used to establish the rat model of depression. The rats were given DZ for 3 weeks, the behavior change and the following items in hippocampus and prefrontal cortex were detected simultaneously: 5-HT, 5-hydroxyindoleacetic acid (5-HIAA), tryptophan hydroxylase (TPH), aromatic amino acid decarboxylase (AADC), monoamine oxidase (MAO) and 5-HT transporter (5-HTT) were observed. RESULTS: Our results showed that treatment with the DZ significantly improved the behavior and simultaneously increased the 5-HT level in the hippocampus, prefrontal cortex tissues and hippocampus extracellular of depressive rats. In future studies revealed that DZ could significantly increase the protein and mRNA expression of the key enzymes TPH during the 5-HT synthesis process in the hippocampus and prefrontal cortex of the depressed rats, and suppress the expression of 5-HTT protein and mRNA at the same time. But it had no effects on MAO-A and MAO-B activities. CONCLUSION: We believe that antidepressant effect of DZ is caused by the increase of 5-HT synthesis and reduction of 5-HT re-uptake, and eventually increase the content of 5-HT in the brain and the synaptic gaps.


Assuntos
Antidepressivos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Serotonina/metabolismo , Estresse Psicológico/metabolismo , Animais , Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Preferências Alimentares , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Monoaminoxidase/metabolismo , Atividade Motora/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estresse Fisiológico/fisiologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/fisiopatologia , Sacarose , Triptofano Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA