Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4208-4214, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802789

RESUMO

In this study, the transmittance of tanshinone Ⅱ_A(Tan Ⅱ_A) and cryptotanshinone(CTS) through the blood-prostate barrier and their distributions in the prostate tissue were compared between tanshinone extract(Tan E) treatment group and the corresponding monomer composition group under the equivalent dose conversion in vitro and in vivo. First, the human prostate epithelial cell line RWPE-1 was cultured in vitro for 21 days for the establishment of a blood-prostate barrier model, and the transmission of Tan Ⅱ_A and CTS through the barrier model was investigated after administration of Tan E and corresponding single active components. Second, SD rats were administrated with 700 mg·kg~(-1) Tan E, 29 mg·kg~(-1) CTS, and 50 mg·kg~(-1) Tan Ⅱ_A by gavage, and plasma and prostate tissue samples were collected at the time points of 2, 4, 8, 12, and 24 h. The Tan Ⅱ_A and CTS concentrations in the samples were determined. The results showed that in the cell model, the cumulative transmission amounts of CTS and Tan Ⅱ_A in the extract at each time point were higher than those of the corresponding single active components(P<0.01). In rats, after the administration of Tan E, the concentrations of Tan Ⅱ_A and CTS in rat plasma and prostate were higher than those of the corresponding single active components. This study demonstrated that the coexisting components in Tan E promoted the penetration of its main pharmacological components Tan Ⅱ_A and CTS through the blood-prostate barrier. The findings provide a theoretical and experimental basis for the application of Tan E in the clinical treatment of prostate-related diseases.


Assuntos
Abietanos , Próstata , Masculino , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Abietanos/farmacologia , Permeabilidade
2.
Nat Commun ; 14(1): 5041, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598217

RESUMO

Molecular ferroelectric materials consist of organic and inorganic ions held together by hydrogen bonds, electrostatic forces, and van der Waals interactions. However, ionically tailored multifunctionality in molecular ferroelectrics has been a missing component despite of their peculiar stimuli-responsive structure and building blocks. Here we report molecular ionic ferroelectrics exhibiting the coexistence of room-temperature ionic conductivity (6.1 × 10-5 S/cm) and ferroelectricity, which triggers the ionic-coupled ferroelectric properties. Such ionic ferroelectrics with the absorbed water molecules further present the controlled tunability in polarization from 0.68 to 1.39 µC/cm2, thermal conductivity by 13% and electrical resistivity by 86% due to the proton transfer in an ionic lattice under external stimuli. These findings enlighten the development of molecular ionic ferroelectrics towards multifunctionality.

3.
Phytomedicine ; 118: 154945, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437414

RESUMO

BACKGROUND: Triptolide (TP) is an important active compound from Tripterygium wilfordii Hook F (TwHF), however, it is greatly limited in clinical practice due to its severe toxicity, especially testicular injury. Melatonin is an endogenous hormone and has beneficial effects on the reproductive system. However, whether triptolide-induced testicular injury can be alleviated by melatonin and the underlying mechanism are not clear. PURPOSE: In this study, we aimed to explore whether triptolide-induced testicular Sertoli cells toxicity can be mitigated by melatonin and the underlying mechanisms involved. METHODS: Cell apoptosis was assessed by flow cytometry, western blot, immunofluorescence and immunohistochemistry. Fluorescent probe Mito-Tracker Red CMXRos was used to observe the mitochondria morphology. Mitochondrial membrane potential and Ca2+ levels were used to investigate mitochondrial function by confocal microscope and flow cytometry. The expression levels of SIRT1/Nrf2 pathway were detected by western blot, immunofluorescence and immunohistochemistry. Small interfering RNA of NRF2 and SIRT1 inhibitor EX527 was used to confirm the role of SIRT1/NRF2 pathway in the mitigation of triptolide-induced Sertoli cell damage by melatonin. Co-Immunoprecipitation assay was used to determine the interaction between SIRT1 and NRF2. RESULTS: Triptolide-induced dysfunction of testicular Sertoli cells was significantly improved by melatonin treatment. Specifically, triptolide-induced oxidative stress damage and changes of mitochondrial morphology, mitochondrial membrane potential, and BTB integrity were alleviated by melatonin. Mechanistically, triptolide inhibited SIRT1 and then reduced the activation of NRF2 pathway via regulating the interaction between SIRT1 and NRF2, thereby downregulating the downstream antioxidant genes, which was reversed by melatonin. Nevertheless, knockdown of NRF2 or inhibition of SIRT1 abolished the protective effect of melatonin. CONCLUSION: Triptolide-induced testicular Sertoli cell damage could be alleviated by melatonin via regulating the crosstalk between SIRT1 and NRF2, which is helpful for developing a new strategy to alleviate triptolide-induced toxicity.


Assuntos
Melatonina , Fenantrenos , Masculino , Humanos , Células de Sertoli , Melatonina/farmacologia , Melatonina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Estresse Oxidativo , Fenantrenos/farmacologia
4.
ACS Appl Mater Interfaces ; 15(29): 35543-35551, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440697

RESUMO

Thin-film composite membranes are a leading technology for post-combustion carbon capture, and the key challenge is to fabricate defect-free selective nanofilms as thin as possible (100 nm or below) with superior CO2/N2 separation performance. Herein, we developed high-performance membranes based on an unusual choice of semi-crystalline blends of amorphous poly(ethylene oxide) (aPEO) and 18-crown-6 (C6) using two nanoengineering strategies. First, the crystallinity of the nanofilms decreases with decreasing thickness and completely disappears at 500 nm or below because of the thickness confinement. Second, polydimethylsiloxane is chosen as the gutter layer between the porous support and selective layer, and its surface is modified with bio-adhesive polydopamine (<10 nm) with an affinity toward aPEO, enabling the formation of the thin, defect-free, amorphous aPEO/C6 layer. For example, a 110 nm film containing 40 mass % C6 in aPEO exhibits CO2 permeability of 900 Barrer (much higher than a thick film with 420 Barrer), rendering a membrane with a CO2 permeance of 2200 GPU and CO2/N2 selectivity of 27 at 35 °C, surpassing Robeson's upper bound. This work shows that engineering at the nanoscale plays an important role in designing high-performance membranes for practical separations.

5.
J Ethnopharmacol ; 304: 116055, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36539070

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tripterygium wilfordii polyglycoside tablet (TWP), a traditional Chinese medicine preparation, has multiple pharmacological properties, including anti-inflammatory, immune-modulatory and anti-proliferative activities. However, the reproductive toxicity of TWP greatly limits its clinical application and the mechanism of TWP-induced reproductive toxicity is not fully understood yet. AIM OF THE STUDY: This study was designed to explore the mechanism of TWP-induced testis injury in male rats. MATERIALS AND METHODS: The mechanism underlying TWP-induced rat testicular injury was firstly investigated by integration of metabolomics and transcriptomics. Meanwhile, histopathological analysis, Western blot and RT-qPCR were performed to confirm the damaging effects and mechanisms of TWP on rat testis. RESULTS: Histopathological analysis revealed that TWP had significant testicular damage, which severely reduced the testis's tubular diameter and epithelium height. Further, TWP caused the protein level of ZO-1, CLDN11, PLZF, and OCT4 significantly downregulate, suggesting the blood-testis barrier function and spermatogenesis were damaged. Differentially expressed genes (DEGs), including 4952 upregulated and 2626 downregulated, were found in TWP-exposed testis compared to the normal group. Moreover, 77 changed metabolites were identified from testis samples. With integrated analysis of DEGs and changed metabolites, we found that glutathione metabolism and ferroptosis played an essential role in testicular injury. Additionally, the levels of ferroptosis-related protein GPX4, SLC7A11, and NRF2 were significantly downregulated, and the protein level of 4-HNE, a leading product of lipid peroxidation and oxidative stress, was upregulated. The changes in ferroptosis-related genes indicated that TWP might promote ferroptosis in rat testis. CONCLUSION: These results suggested that ferroptosis was involved in the testicular damage caused by TWP, which might provide a new strategy to alleviate TWP- induced testicular injury.


Assuntos
Ferroptose , Tripterygium , Ratos , Masculino , Animais , Transcriptoma , Testículo , Comprimidos
6.
Toxicol In Vitro ; 86: 105487, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36272531

RESUMO

Triptolide (TP) is one of the major components of Tripterygium wilfordii, which is a traditional Chinese medicine widely used in the treatment of various autoimmune and inflammatory diseases. However, the cardiotoxicity induced by TP greatly limits its widespread clinical application. In view of the role of ROS-mediated oxidative stress in TP-induced cardiotoxicity, mitoQ, a mitochondria-targeted ROS scavenger, was used in this study to investigate its protective effect against TP-induced cardiomyocyte toxicity and its possible underlying mechanism. Here we demonstrated that mitoQ could significantly attenuate TP-induced cardiotoxicity in cardiomyocyte H9c2 cells, with a remarkable improvement in cell viability and reduction in ROS levels. P62-Nrf2 signaling pathway has been reported to play a critical role in regulating oxidative stress and protecting cells from harmful stimuli. In this study, we found that mitoQ significantly activated p62-Nrf2 signaling pathway in H9c2 cells with or without TP treatment. Moreover, knockdown of p62 or Nrf2 could block the protective effect of mitoQ against TP in H9c2 cells. Taken together, our study demonstrates that mitoQ can alleviate TP-induced cardiotoxicity via the activation of p62-Nrf2 signaling pathway, which provides new potential strategies to combat TP-induced cardiomyocyte toxicity.


Assuntos
Cardiotoxicidade , Fator 2 Relacionado a NF-E2 , Ubiquinona , Humanos , Apoptose , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
7.
ACS Nano ; 16(8): 13232-13240, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35938918

RESUMO

Two-dimensional (2D) magnetic layered materials have revolutionized size dependent magnetism to manipulate spin-based devices. However, it has been challenging to artificially create 2D magnetic materials from three-dimensional (3D) crystal structures with a variety of material groups. Here, we present the dimensionality manipulation via cation exchange of a 3D Prussian blue analogue [RbMnFe(CN)6] toward a 2D magnetic sheet [(K,Rb)(V,Mn)(Cr,Fe)(CN)6] with the magnetic ordering temperature rising from 12 to 330 K. Such a 2D magnetic sheet achieves crystalline V-Cr coordination in the Prussian blue lattice with pronounced anisotropy and stimuli responsiveness. The pressure dependent magnetic tunability of such 2D networks is predicted using first-principles calculations and demonstrated using the phase transitions of the hydrogel. This previously unobserved phenomenon of dimensional manipulation of a bulk crystal structure provides a rational strategy to expand the diversity and chemical compositions of 2D molecular magnetic material libraries.

8.
Sci Adv ; 8(10): eabl8160, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263122

RESUMO

Carbon molecular sieve (CMS) membranes prepared by carbonization of polymers containing strongly size-sieving ultramicropores are attractive for high-temperature gas separations. However, polymers need to be carbonized at extremely high temperatures (900° to 1200°C) to achieve sub-3.3 Å ultramicroporous channels for H2/CO2 separation, which makes them brittle and impractical for industrial applications. Here, we demonstrate that polymers can be first doped with thermolabile cross-linkers before low-temperature carbonization to retain the polymer processability and achieve superior H2/CO2 separation properties. Specifically, polybenzimidazole (PBI) is cross-linked with pyrophosphoric acid (PPA) via H bonding and proton transfer before carbonization at ≤600°C. The synergistic PPA doping and subsequent carbonization of PBI increase H2 permeability from 27 to 140 Barrer and H2/CO2 selectivity from 15 to 58 at 150°C, superior to state-of-the-art polymeric materials and surpassing Robeson's upper bound. This study provides a facile and effective way to tailor subnanopore size and porosity in CMS membranes with desirable molecular sieving ability.

9.
ACS Appl Mater Interfaces ; 11(11): 10933-10940, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30794744

RESUMO

Membrane materials for CO2 removal from natural gas are based on glassy polymers with a high CO2/CH4 diffusivity selectivity. However, these polymers suffer from competitive sorption by heavy hydrocarbons that decreases CO2 permeability and physical aging that reduces gas permeability with time. We circumvent these issues by designing rubbery, solubility-selective polymers with a ratio of ether/ester oxygen to carbon as high as 0.8 through the use of 1,3-dioxolane and 1,3,5-trioxane. The ether/ester oxygen groups interact favorably with CO2 but do not interact with CH4, leading to a high CO2/gas solubility selectivity that is unaffected by heavy hydrocarbons in the raw natural gas. These polar groups are incorporated in short branches to yield an amorphous and rubbery nature, leading to high gas permeability that is stable over time. A polymer with an O/C ratio of 0.71 (P71) shows a mixed-gas CO2 permeability of 320 Barrers and a CO2/CH4 selectivity of 21 in the simulated natural gas at 50 °C, which is independent of the hexane content and above the upper bound for CO2/CH4 separation at 50 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA