Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
1.
J Am Chem Soc ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324833

RESUMO

Electrochemical CO reduction reaction (CORR) offers a promising approach for sustainable acetate production, the promotion of which requires the control of multiple protonation steps. This paper describes the synthesis of atomically isolated Pd sites onto Cu nanoflakes to regulate the protonation of key intermediates. The Pd sites with moderate water activation capability are found to enhance the protonation of *CO at the neighboring Cu site to *COH, which is confirmed to be the rate-determining step through kinetic isotope effect studies. The formation of *COH-*CO is therefore promoted. Additionally, the Pd sites would preferentially protonate the C-OH group in *COH-*CO due to the spatial approximability and electronic modulation effects, generating *CCO for the selective formation of acetate. An acetate Faradaic efficiency of 59.5% is achieved at -0.78 V vs reversible hydrogen electrode (RHE), with a maximum partial current density of 286 mA cm-2 at -0.86 V vs RHE. The optimized catalyst also exhibits long-term stability for 500 h at 100 mA cm-2 in a membrane electrode assembly. This work reveals a new promoting mechanism for selective CORR with simultaneous tuning of the structural and electronic properties of the proton-supplying sites.

2.
eNeuro ; 11(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39260891

RESUMO

Ca2+-binding proteins (CaBPs; CaBP1-5) are a subfamily of neuronal Ca2+ sensors with high homology to calmodulin. Notably, CaBP4, which is exclusively expressed in rod and cone photoreceptors, is crucial for maintaining normal retinal functions. However, the functional roles of CaBP1, CaBP2, and CaBP5 in the retina remain elusive, primarily due to limited understanding of their expression patterns within inner retinal neurons. In this study, we conducted a comprehensive transcript analysis using single-cell RNA sequencing datasets to investigate the gene expression profiles of CaBPs in mouse and human retinal neurons. Our findings revealed notable similarities in the overall expression patterns of CaBPs across both species. Specifically, nearly all amacrine cell, ganglion cell, and horizontal cell types exclusively expressed CaBP1. In contrast, the majority of bipolar cell types, including rod bipolar (RB) cells, expressed distinct combinations of CaBP1, CaBP2, and CaBP5, rather than a single CaBP as previously hypothesized. Remarkably, mouse rods and human cones exclusively expressed CaBP4, whereas mouse cones and human rods coexpressed both CaBP4 and CaBP5. Our single-cell reverse transcription polymerase chain reaction analysis confirmed the coexpression CaBP1 and CaBP5 in individual RBs from mice of either sex. Additionally, all three splice variants of CaBP1, primarily L-CaBP1, were detected in mouse RBs. Taken together, our study offers a comprehensive overview of the distribution of CaBPs in mouse and human retinal neurons, providing valuable insights into their roles in visual functions.


Assuntos
Proteínas de Ligação ao Cálcio , Análise de Célula Única , Animais , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Camundongos , Neurônios Retinianos/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Feminino , Retina/metabolismo
3.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1866-1876, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39233416

RESUMO

The lower limit temperature in the crop water stress index (CWSI) model refers to the canopy temperature (Tc) or the canopy-air temperature differences (dT) under well-watered conditions, which has significant impacts on the accuracy of the model in quantifying plant water status. At present, the direct estimation of lower limit temperature based on data-driven method has been successfully used in crops, but its applicability has not been tes-ted in forest ecosystems. We collected continuously and synchronously Tc and meteorological data in a Quercus variabilis plantation at the southern foot of Taihang Mountain to evaluate the feasibility of multiple linear regression model and BP neural network model for estimating the lower limit temperature and the accuracy of the CWSI indicating water status of the plantation. The results showed that, in the forest ecosystem without irrigation conditions, the lower limit temperature could be obtained by setting soil moisture as saturation in the multiple linear regression mo-del and the BP neural network model with soil water content, wind speed, net radiation, vapor pressure deficit and air temperature as input parameters. Combining the lower limit temperature and the upper limit temperature determined by the theoretical equation to normalize the measured Tc and dT could realize the non-destructive, rapid, and automatic diagnosis of the water status of Q. variabilis plantation. Among them, the CWSI obtained by combining the lower limit temperature determined by the dT under well-watered condition calculated by the BP neural network model and the upper limit temperature was the most suitable for accurate monitoring water status of the plantation. The coefficient of determination, root mean square error, and index of agreement between the calculated CWSI and measured CWSI were 0.81, 0.08, and 0.90, respectively. This study could provide a reference method for efficient and accurate monitoring of forest ecosystem water status.


Assuntos
Quercus , Temperatura , Água , Quercus/crescimento & desenvolvimento , Água/análise , China , Redes Neurais de Computação , Ecossistema , Modelos Teóricos , Estresse Fisiológico , Florestas
4.
Environ Sci Technol ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39290141

RESUMO

Recovering chemical energy embedded in pollutants is significant in achieving carbon-neutral industrial wastewater treatment. Considering that industrial wastewater is usually treated in a decentralized manner, in situ utilization of chemical energy to achieve waste-to-treasure should be given priority. Herein, the chemical energy released by the electroreduction of Cr(VI) was used to enhance on-site H2O2 generation in a stacked flow-through electrochemical system. The driving force of water flow efficiently coupled O2 evolution with 2-e O2 reduction to facilitate H2O2 generation by transporting anode-produced O2 to the cathode. Meanwhile, the chemical energy released by Cr(VI) promoted O2 evolution and impeded H2 evolution by regulating the electrode potentials, accounting for the enhanced H2O2 generation. The system could completely reduce 10-100 ppm of Cr(VI), reaching the maximum H2O2 concentration of 2.41 mM. In particular, the H2O2 concentrations in the Cr(VI)-containing electrolyte were 10.6-88.1% higher than those in the Cr(VI) free electrolyte at 1.8-2.5 V. A 24-day continuous experiment demonstrated the high efficiency and stability of the system, achieving a 100% reduction efficiency for 100 ppm of Cr(VI) and producing ∼1.5 mM H2O2 at 1.8 V. This study presents a feasible strategy for Cr(VI) detoxification and synchronous on-site H2O2 generation, providing a new perspective for innovative Cr(VI) wastewater treatment toward resource utilization.

6.
Pathol Res Pract ; 262: 155554, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39226803

RESUMO

BACKGROUND: Desmoglein-2 (DSG2) has been reported to play pivotal roles in various diseases. However, its roles in cervical cancer (CC) remain insufficiently elucidated. Here, we aimed to comprehensively explore the functional mechanisms of DSG2 in CC using bioinformatics and experimental methods. METHODS: Several online databases, including Gene Expression Profiling Interactive Analysis (GEPIA), ONCOMINE, LinkedOmics, MetaScape, Human protein atlas (HPA), OMICS and single-cell RNA sequencing (scRNA-seq) data were used to explore the expression, prognosis, gene mutations, and potential signaling pathway of DSG2 in CC. Quantitative real-time PCR (qRT-PCR) and western blotting were used to measure DSG2 expression in collected samples. Experimental assays were conducted to verify the effects of dysregulated DSG2 on cervical cell lines in vitro. RESULTS: Bioinformatic analyses revealed that DSG2 was significantly up-regulated in CC compared to normal cervical tissues at both mRNA and protein levels. Elevated DSG2 levels were also associated with poor prognosis and clinical parameters (e.g., cancer stages, tumor grade, nodal metastasis status, etc.). DSG2 expression was predominantly observed in epithelial cells, increasing with disease progression on a single-cell resolution. Additionally, up-regulation of DSG2 significantly enhanced tumor purity by reducing the infiltration of immune cells (e.g., B cells, T cells, NK cells, etc.). Over-expression of DSG2 was further validated in collected CC samples at both mRNA and protein levels. Knockdown of DSG2 markedly reduced the proliferation and invasion of CC cell lines in vitro. CONCLUSIONS: In summary, elevated levels of DSG2 were significantly associated with poor prognosis and diminished immune infiltration in CC. Thus, DSG2 may serve as a potential therapeutic and diagnostic biomarker for CC.


Assuntos
Desmogleína 2 , Regulação Neoplásica da Expressão Gênica , Regulação para Cima , Neoplasias do Colo do Útero , Desmogleína 2/genética , Desmogleína 2/metabolismo , Humanos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/imunologia , Feminino , Proliferação de Células , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral
7.
J Alzheimers Dis ; 101(3): 761-771, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39213074

RESUMO

Background: Cognitive impairment is a clinical manifestation that occurs in the course of dementia like Alzheimer's disease. The association between cognitive impairment and gut microbiota is unclear. Objective: We aimed to identify gut microbiota characteristics and key gut microbiota biomarkers associated with cognitive impairment in a relatively large cohort of older adults in China. Methods: A total of 229 adults aged ≥60 years from Shenzhen, China were recruited into this cross-sectional study. Participants were divided into cognitive impairment (CI) and no cognitive impairment (NCI) groups according to the results of the Mini-Mental State Examination. Diversity analysis and network analysis were used to characterize the gut microbiota between the two groups. The linear discriminant analysis effect size method and machine learning approaches were sequentially performed to identify gut microbiota biomarkers. The relationship between biomarkers and lifestyle factors was explored using Transformation-based redundancy analysis (tb-RDA). Results: A total of 74 CI participants and 131 NCI participants were included in the analysis. The CI group demonstrated lower α-diversity compared to the NCI group (Shannon: 2.798 versus 3.152, p < 0.001). The density of the gut microbiota interaction network was lower in the CI group (0.074) compared to the NCI group (0.081). Megamonas, Blautia, Pseudomonas, Stenotrophomonas, and Veillonella were key biomarkers for CI. The tb-RDA revealed that increased fruit intake and exercise contribute to a higher abundance of Megamonas, Blautia, and Veillonella. Conclusions: We identified a significantly reduced abundance of certain beneficial gut microbiota in older Chinese adults with cognitive impairment.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Masculino , Feminino , Idoso , Estudos Transversais , Disfunção Cognitiva/microbiologia , China/epidemiologia , Pessoa de Meia-Idade , Biomarcadores , Idoso de 80 Anos ou mais , Aprendizado de Máquina , População do Leste Asiático
9.
Pak J Med Sci ; 40(7): 1367-1371, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092041

RESUMO

Objective: To compare the effectiveness of ultrasound (US)-guided radiofrequency ablation (RFA) and conventional open thyroidectomy (OT) in the treatment of benign thyroid nodules (BTN). Methods: Medical records of 103 patients with BTN undergoing surgical treatment at The Affiliated Jiangning Hospital of Nanjing Medical University from March 2019 to March 2022 were retrospectively analyzed. Records show that 53 patients underwent US-guided RFA (observation group) and 50 patients underwent conventional OT (control group). Perioperative indicators (operation duration, intraoperative blood loss, postoperative hospital stay, incision length, and VAS score 12h and 24h after surgery), complications, thyroid function, and nodule recurrence in both groups were compared and analyzed. Results: Perioperative indicators of patients in the observation group were better, and the visual analogue scale (VAS) scores at 12 and 24 hours after the surgery were lower than those of the control group (p<0.05). The incidence of complications in the observation group was significantly lower than that in the control group (p<0.05). There was no statistically significant difference in the preoperative levels of thyroid-stimulating hormone (TSH), serum free thyroxine (FT4) and serum free triiodothyronine (FT3) between the two groups (p>0.05). The postoperative TSH levels in the observation group increased compared to the preoperative levels and were higher than those in the control group, while FT4 and FT3 levels decreased after surgery and were lower than those in the control group (p<0.05). Conclusions: Compared to conventional open thyroidectomy, US-guided RFA is associated with less trauma, faster recovery, fewer complications, and less impact on thyroid function in the treatment of patients with BTN.

10.
Cell Death Dis ; 15(8): 571, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112478

RESUMO

Endometrial cancer (EC) is a highly heterogeneous malignancy characterized by varied pathology and prognoses, and the heterogeneity of its cancer cells and the tumor microenvironment (TME) remains poorly understood. We conducted single-cell RNA sequencing (scRNA-seq) on 18 EC samples, encompassing various pathological types to delineate their specific unique transcriptional landscapes. Cancer cells from diverse pathological sources displayed distinct hallmarks labeled as immune-modulating, proliferation-modulating, and metabolism-modulating cancer cells in uterine clear cell carcinomas (UCCC), well-differentiated endometrioid endometrial carcinomas (EEC-I), and uterine serous carcinomas (USC), respectively. Cancer cells from the UCCC exhibited the greatest heterogeneity. We also identified potential effective drugs and confirmed their effectiveness using patient-derived EC organoids for each pathological group. Regarding the TME, we observed that prognostically favorable CD8+ Tcyto and NK cells were prominent in normal endometrium, whereas CD4+ Treg, CD4+ Tex, and CD8+ Tex cells dominated the tumors. CXCL3+ macrophages associated with M2 signature and angiogenesis were exclusively found in tumors. Prognostically relevant epithelium-specific cancer-associated fibroblasts (eCAFs) and SOD2+ inflammatory CAFs (iCAFs) predominated in EEC-I and UCCC groups, respectively. We also validated the oncogenic effects of SOD2+ iCAFs in vitro. Our comprehensive study has yielded deeper insights into the pathogenesis of EC, potentially facilitating personalized treatments for its varied pathological types.


Assuntos
Neoplasias do Endométrio , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Humanos , Feminino , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/metabolismo , Transcriptoma/genética , Regulação Neoplásica da Expressão Gênica
11.
J Exp Clin Cancer Res ; 43(1): 242, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169402

RESUMO

Renal cell carcinoma (RCC) is one of the most common tumors that afflicts the urinary system, accounting for 90-95% of kidney cancer cases. Although its incidence has increased over the past decades, its pathogenesis is still unclear. Tumor-associated macrophages (TAMs) are the most prominent immune cells in the tumor microenvironment (TME), comprising more than 50% of the tumor volume. By interacting with cancer cells, TAMs can be polarized into two distinct phenotypes, M1-type and M2-type TAMs. In the TME, M2-type TAMs, which are known to promote tumorigenesis, are more abundant than M1-type TAMs, which are known to suppress tumor growth. This ratio of M1 to M2 TAMs can create an immunosuppressive environment that contributes to tumor cell progression and survival. This review focused on the role of TAMs in RCC, including their polarization, impacts on tumor proliferation, angiogenesis, invasion, migration, drug resistance, and immunosuppression. In addition, we discussed the potential of targeting TAMs for clinical therapy in RCC. A deeper understanding of the molecular biology of TAMs is essential for exploring innovative therapeutic strategies for the treatment of RCC.


Assuntos
Carcinoma de Células Renais , Imunoterapia , Neoplasias Renais , Macrófagos Associados a Tumor , Humanos , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Imunoterapia/métodos , Neoplasias Renais/imunologia , Neoplasias Renais/terapia , Neoplasias Renais/patologia , Microambiente Tumoral/imunologia
12.
Light Sci Appl ; 13(1): 206, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179550

RESUMO

To reduce system complexity and bridge the interface between electronic and photonic circuits, there is a high demand for a non-volatile memory that can be accessed both electrically and optically. However, practical solutions are still lacking when considering the potential for large-scale complementary metal-oxide semiconductor compatible integration. Here, we present an experimental demonstration of a non-volatile photonic-electronic memory based on a 3-dimensional monolithic integrated ferroelectric-silicon ring resonator. We successfully demonstrate programming and erasing the memory using both electrical and optical methods, assisted by optical-to-electrical-to-optical conversion. The memory cell exhibits a high optical extinction ratio of 6.6 dB at a low working voltage of 5 V and an endurance of 4 × 104 cycles. Furthermore, the multi-level storage capability is analyzed in detail, revealing stable performance with a raw bit-error-rate smaller than 5.9 × 10-2. This ground-breaking work could be a key technology enabler for future hybrid electronic-photonic systems, targeting a wide range of applications such as photonic interconnect, high-speed data communication, and neuromorphic computing.

13.
Nat Commun ; 15(1): 6784, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117656

RESUMO

Universal and equitable access to affordable safely managed drinking water (SMDW) is a significant challenge and is highlighted by the United Nations' Sustainable Development Goals-6.1. However, SMDW coverage by 2030 is estimated to reach only 81% of the global population. Solar water evaporation (SWE) represents one potential method to ensure decentralized water purification, but its potential for addressing the global SMDW challenge remains unclear. We use a condensation-enhanced strategy and develop a physics-guided machine learning model for assessing the global potential of SWE technology to meet SMDW demand for unserved populations without external electricity input. We find that a condensation-enhanced SWE device (1 m2) can supply enough drinking water (2.5 L day-1) to 95.8% of the population lacking SMDW. SWE can help fulfill universal SMDW coverage by 2030 with an annual cost of 10.4 billion U.S. dollars, saving 66.7% of the current investment and fulfilling the SDG-6.1 goal.

14.
Int J Biol Macromol ; 278(Pt 2): 134683, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147345

RESUMO

In this study, the active food packaging film were prepared using hydroxypropyltrimethyl ammonium chloride chitosan with different substitution sites (O-HACC & N-HACC) and dialdehyde chitosan (DCS) grafted with protocatechuic acid (PA). To explore the effect of chitosan quaternization positions and crosslinking approaches on the slow-release and antibacterial properties, the double-crosslinked film were fabricated through the self-coupling reaction of PA and Schiff base reaction between amino groups on HACC and aldehyde groups on DCS. The HACC/DCS-based film exhibited stable porous three-dimensional networks with high nisin loading ratios (>90 %). With the participation of the catechol-catechol structure, the dense double-crosslinked film effectively restricted the diffusion of the water molecules, resulting in excellent slow-release properties fitting with the Korsmeyer-Peppas kinetic model. Especially, O-HACC/PA-g-DCS film, which had more reaction sites for Schiff base crosslinking than N-HACC, exhibited the equilibrium swelling ratio of 800 % at 60 h and could sustainably release nisin via non-Fickian diffusion behavior until 48 h. Moreover, the HACC/DCS-based double-crosslinked film performed good long-time antibacterial activity and preservation effects on salmon. On the 10th day of storage, the TVBN of N-HACC/PA-g-DCS and O-HACC/PA-g-DCS groups were only 28.26 ± 1.93 and 29.06 ± 1.68 mg/100 g and still lower than the thresholds.


Assuntos
Antibacterianos , Quitosana , Compostos de Amônio Quaternário , Quitosana/química , Quitosana/análogos & derivados , Antibacterianos/farmacologia , Antibacterianos/química , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Embalagem de Alimentos/métodos , Nisina/química , Nisina/farmacologia , Preparações de Ação Retardada , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Cinética , Bases de Schiff/química , Liberação Controlada de Fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
15.
J Environ Sci (China) ; 146: 118-126, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969440

RESUMO

With the increasing demand of recycling disposal of industrial wastewater, oil-in-water (O/W) emulsion has been paid much attention in recent years owing to its high oil content. However, due to the presence of surfactant and salt, the emulsion was usually stable with complex physicochemical interfacial properties leading to increased processing difficulty. Herein, a novel flow-through electrode-based demulsification reactor (FEDR) was well designed for the treatment of saline O/W emulsion. In contrast to 53.7% for electrical demulsification only and 80.3% for filtration only, the COD removal efficiency increased to 92.8% under FEDR system. Moreover, the pore size of electrode and the applied voltage were two key factors that governed the FEDR demulsification performance. By observing the morphology of oil droplets deposited layer after different operation conditions and the behavior of oil droplets at the electrode surface under different voltage conditions, the mechanism was proposed that the oil droplets first accumulated on the surface of flow-through electrode by sieving effect, subsequently the gathered oil droplets could further coalesce with the promoting effect of the anode, leading to a high-performing demulsification. This study offers an attractive option of using flow-through electrode to accomplish the oil recovery with simultaneous water purification.


Assuntos
Eletrodos , Filtração , Eliminação de Resíduos Líquidos , Purificação da Água , Purificação da Água/métodos , Filtração/métodos , Eliminação de Resíduos Líquidos/métodos , Óleos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Emulsões/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação
16.
Heliyon ; 10(13): e33888, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027487

RESUMO

Background: Single Tumor-associated autoantibodies (TAAbs) and tumor-associated antigens (TAAs) have been found to have lower diagnostic efficacy in lung cancer. Our objective is to develop and validate a lung cancer prediction model that utilizes TAAbs and TAAs and to enhance the accuracy of lung cancer detection. Methods: 1830 subjects were randomly divided into training and validation sets at a 7:3 ratio for this study. Lasso regression analysis was used to remove collinear variables, whereas univariate logistic regression analysis was employed to identify potential independent risk factors for lung cancer. A diagnostic model was constructed using multivariate logistic analysis. The results were presented as a nomogram and assessed for various performance measures, including area under the curve, calibration curve, and decision curve analysis. Results: The diagnostic model was developed using gender, age, GAGE7, MAGE-A1, CA125, and CEA as variables. The training set had an AUC of 0.787, while the validation set had an AUC of 0.750. The calibration curves of the training and validation sets showed a strong agreement between anticipated and observed values. The nomogram performed better than any individual variable in both the training and validation sets in terms of net benefits for lung cancer detection, according to DCA analysis. Conclusions: This study proposes a diagnostic model for lung cancer that uses TAAbs and TAAs and incorporates individual characteristics. This model can be easily applied to personalized diagnosis.

17.
Chem Commun (Camb) ; 60(59): 7638-7641, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38963238

RESUMO

The versatile reactivity of isothiocyanate intermediates enabled the diversity-oriented synthesis (DOS) of N-heterocycles in a DNA-compatible manner. We first reported a mild in situ conversion of DNA-conjugated amines to isothiocyanates. Subsequently, a set of diverse transformations was successfully developed to construct 2-thioxo-quinazolinones, 1,2,4-thiadiazoles, and 2-imino thiazolines. Finally, the feasibility of these approaches in constructing DELs was further demonstrated through enzymatic ligation and mock pool preparation. This study demonstrated the advantages of combining in situ conversion strategies with DOS, which effectively broadened the chemical and structural diversity of DELs.


Assuntos
DNA , Compostos Heterocíclicos , Isotiocianatos , Isotiocianatos/química , DNA/química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química , Estrutura Molecular , Aminas/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química
18.
Artigo em Inglês | MEDLINE | ID: mdl-39020258

RESUMO

BACKGROUND: A major challenge in prevention and early treatment of acute kidney injury (AKI) is the lack of high-performance predictors in critically ill patients. Therefore, we innovatively constructed U-AKIpredTM for predicting AKI in critically ill patients within 12 h of panel measurement. METHODS: The prospective cohort study included 680 patients in the training set and 249 patients in the validation set. After performing inclusion and exclusion criteria, 417 patients were enrolled in the training set and 164 patients were enrolled in the validation set finally. AKI was diagnosed by Kidney Disease Improving Global Outcomes (KDIGO) criteria. RESULTS: Twelve urinary kidney injury biomarkers (mALB, IgG, TRF, α1MG, NAG, NGAL, KIM-1, L-FABP, TIMP2, IGFBP7, CAF22 and IL-18) exhibited good predictive performance for AKI within 12 h in critically ill patients. U-AKIpredTM, combined with three crucial biomarkers (α1MG, L-FABP and IGFBP7) by multivariate logistic regression analysis, exhibited better predictive performance for AKI in critically ill patients within 12 h than the other twelve kidney injury biomarkers. The area under the curve (AUC) of the U-AKIpredTM, as a predictor of AKI within 12 h, was 0.802 (95% CI: 0.771-0.833, P < 0.001) in the training set and 0.844 (95% CI: 0.792-0.896, P < 0.001) in validation cohort. A nomogram based on the results of the training and validation sets of U-AKIpredTM was developed which showed optimal predictive performance for AKI. The fitting effect and prediction accuracy of U-AKIpredTM was evaluated by multiple statistical indicators. To provide a more flexible predictive tool, the dynamic nomogram (https://www.xsmartanalysis.com/model/U-AKIpredTM) was constructed using a web-calculator. Decision curve analysis (DCA) and a clinical impact curve were used to reveal that U-AKIpredTM with the three crucial biomarkers had a higher net benefit than these twelve kidney injury biomarkers respectively. The net reclassification index (NRI) and integrated discrimination index (IDI) were used to improve the significant risk reclassification of AKI compared with the 12 kidney injury biomarkers. The predictive efficiency of U-AKIpredTM was better than the NephroCheck® when testing for AKI and severe AKI. CONCLUSION: U-AKIpredTM is an excellent predictive model of AKI in critically ill patients within 12 h and would assist clinicians in identifying those at high risk of AKI.

19.
Surg Endosc ; 38(9): 4926-4938, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38977502

RESUMO

BACKGROUND: The safety and efficacy of robotic liver resection (RLR) for patients with hepatocellular carcinoma (HCC) have been reported worldwide. However, the exact role of RLR in HCC patients with liver cirrhosis is not sufficiently determined. METHODS: We conducted a retrospective study on consecutive patients with cirrhosis or non-cirrhosis who received RLR for HCC from 2018 to 2023. Data on patients' demographics and perioperative outcomes were collected and analyzed. Propensity score matching (PSM) analysis was performed. Multivariate logistic regression analysis was performed to determine the risk factors of prolonged postoperative length of stay (LOS) and morbidity. RESULTS: Of the 571 patients included, 364 (64%) had cirrhosis. Among the cirrhotic patients, 48 (13%) were classified as Child-Pugh B. After PSM, the cirrhosis and non-cirrhosis group (n = 183) had similar operative time, estimated blood loss, postoperative blood transfusion, LOS, overall morbidity (p > 0.05). In addition, the intraoperative and postoperative outcomes were similar between the two groups in the subgroup analyses of patients with tumor size ≥ 5 cm, major hepatectomy, and high/expert IWATE difficulty grade. However, patients with Child-Pugh B cirrhosis had longer LOS and more overall morbidity than that of Child-Pugh A. Child-Pugh B cirrhosis, ASA score > 2, longer operative time, and multiple tumors were risk factors of prolonged LOS or morbidity in patients with cirrhosis. CONCLUSION: The presence of Child-Pugh A cirrhosis didn't significantly influence the difficulty and perioperative outcomes of RLR for selected patients with HCC. However, even in high-volume center, Child-Pugh B cirrhosis was a risk factor for poor postoperative outcomes.


Assuntos
Carcinoma Hepatocelular , Hepatectomia , Tempo de Internação , Cirrose Hepática , Neoplasias Hepáticas , Complicações Pós-Operatórias , Procedimentos Cirúrgicos Robóticos , Humanos , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/cirurgia , Masculino , Feminino , Estudos Retrospectivos , Cirrose Hepática/complicações , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Robóticos/métodos , Hepatectomia/métodos , Hepatectomia/efeitos adversos , Tempo de Internação/estatística & dados numéricos , Idoso , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Duração da Cirurgia , Pontuação de Propensão , Fatores de Risco , Adulto
20.
Small ; : e2401674, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077956

RESUMO

Electrochemical growth of metal nanocrystals is pivotal for material synthesis, processing, and resource recovery. Understanding the heterogeneous interface between electrolyte and electrode is crucial for nanocrystal nucleation, but the influence of this interaction is still poorly understood. This study employs advanced in situ measurements to investigate the heterogeneous nucleation of metals on solid surfaces. By observing the copper nanocrystal electrodeposition, an interphase interaction-induced nucleation mechanism highly dependent on substrate surface energy is uncovered. It shows that a high-energy (HE) electrode tended to form a polycrystalline structure, while a low-energy (LE) electrode induced a monocrystalline structure. Raman and electrochemical characterizations confirmed that HE interface enhances the interphase interaction, reducing the nucleation barrier for the sturdy nanostructures. This leads to a 30.92-52.21% reduction in the crystal layer thickness and a 19.18-31.78% increase in the charge transfer capability, promoting the formation of a uniform and compact film. The structural compactness of the early nucleated crystals enhances the deposit stability for long-duration electrodeposition. This research not only inspires comprehension of physicochemical processes correlated with heterogeneous nucleation, but also paves a new avenue for high-quality synthesis and efficient recovery of metallic nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA