Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 937: 173504, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38797411

RESUMO

Studying the relationship between biodiversity and ecosystem multifunctionality (the ability of ecosystems to provide multiple ecosystem functions) (BEMF) is a current hotspot in ecology research. Previous studies on BEMF emphasized the role of plant and microbial diversity but rarely mention stand spatial structure. To investigate the effect of stand spatial structure on BEMF, this study established 30 forest dynamic plots in three natural restoration stages (shrubbery, secondary growth forest, and old-growth forest) in Maolan National Nature Reserve, Guizhou province, China. A positive response in soil multifunctionality (SMF), plant species diversity, stand spatial structure, and fungal ß diversity (p < 0.05) followed natural restoration. However, bacterial ß diversity showed a negative response (p < 0.05), while microbial α diversity remained unchanged (p > 0.05). These results based on a structural equation model showed that plant species diversity had no direct or indirect effect on SMF, soil microbial diversity was the only direct driver of SMF, and stand spatial structure indirectly affected SMF through soil microbial diversity. The random forest model showed that soil microbial ß diversity and the Shannon-Wiener index of the diameter at breast height for woody plant species were the optimal variables to characterize SMF and soil microbial diversity, respectively. These results suggested that natural restoration promoted SMF, and microbial diversity had a direct positive effect on SMF. In the meantime, stand spatial structure had a significant indirect effect on SMF, while plant species diversity did not. Future work on degraded karst forest restoration should direct more attention to the role of the stand spatial structure and emphasize the importance of biodiversity.


Assuntos
Biodiversidade , Florestas , Microbiologia do Solo , Solo , China , Solo/química , Microbiota , Ecossistema , Fungos , Monitoramento Ambiental , Conservação dos Recursos Naturais
2.
Front Plant Sci ; 15: 1338596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455729

RESUMO

The various vegetation types in the karst landscape have been considered the results of heterogeneous habitats. However, the lack of a comprehensive understanding of regional biodiversity patterns and the underlying ecological processes limits further research on ecological management. This study established forest dynamic plots (FDPs) of the dominant vegetation types (shrubland, SL; mixed tree and shrub forest, MTSF; coniferous forest, CF; coniferous broadleaf mixed forest, CBMF; and broadleaf forest, BF) in the karst landscape and quantified the species diversity patterns and potential ecological processes. The results showed that in terms of diversity patterns, the evenness and species richness of the CF community were significantly lower than other vegetation types, while the BF community had the highest species richness. The other three vegetation types showed no significant variation in species richness and evenness. However, when controlling the number of individuals of FDPs, the rarefied species richness showed significant differences and ranked as BF > SL > MTSF > CBMF > CF, highlighting the importance of considering the impacts of abundance. Additionally, the community assembly of climax communities (CF or BF) was dominated by stochastic processes such as species dispersal or species formation, whereas deterministic processes (habitat filtering) dominated the secondary forests (SL, MTSF, and CBMF). These findings proved that community assembly differs mainly between the climax community and other communities. Hence, it is crucial to consider the biodiversity and of the potential underlying ecological processes together when studying regional ecology and management, particularly in heterogeneous ecosystems.

3.
J Exp Bot ; 75(10): 2951-2964, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38426564

RESUMO

Vessel traits contribute to plant water transport from roots to leaves and thereby influence how plants respond to soil water availability, but the sources of variation in fine root anatomical traits remain poorly understood. Here, we explore the variations of fine root vessel traits along topological orders within and across tropical tree species. Anatomical traits were measured along five root topological orders in 80 individual trees of 20 species from a tropical forest in southwestern China. We found large variations for most root anatomical traits across topological orders, and strong co-variations between vessel traits. Within species, theoretical specific xylem hydraulic conductivity (Kth) increased with topological order due to increased mean vessel diameter, size heterogeneity, and decreased vessel density. Across species, Kth was associated with vessel fraction in low-order roots and correlated with mean vessel diameter and vessel density in high-order roots, suggesting a shift in relative anatomical contributors to Kth from the second- to fifth-order roots. We found no clear relationship between Kth and stele: root diameter ratios. Our study shows strong variations in root vessel traits across topological orders and species, and highlights shifts in the anatomical underpinnings by varying vessel-related anatomical structures for an optimized water supply.


Assuntos
Raízes de Plantas , Árvores , Xilema , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Árvores/fisiologia , Árvores/anatomia & histologia , Xilema/fisiologia , Xilema/anatomia & histologia , Água/metabolismo , Água/fisiologia , Clima Tropical , China
4.
J Environ Manage ; 354: 120265, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382441

RESUMO

Giant habitat heterogeneity is an important factor contributing to the high species richness (SR) in karst forests. Yet, the driving factor behind the alterations in SR patterns during natural restoration remains unclear. In this study, we established the forest dynamics plots along the natural restoration sequence (including shrub-tree mixed forest stage (SC), secondary forest stage (SG) and old-growth forest sage (OG)) in degraded karst forests to compare the SR and the dependence on its components (including total community abundance, species abundance distribution (SAD), and conspecific spatial aggregation (CSA)) among stages of natural restoration. By evaluating the degree of contribution of the components to local SR and rarefied SR, we found that the SG exhibited the highest local SR, while the rarefied SR remained increasing along the restoration sequence after controlling the sample size. At SC-SG stage, SAD and CSA contributed negatively to the differences in SR, while abundance made a positive contribution to SR differences. At SG-OG, abundance contributed positively to the difference in SR at all scales, while SAD contributed negatively at small scales. No significant contribution of CSA was found at observed scales. In addition, local SR varied more significantly with PIE than with abundance. Our research emphasizes the importance of eliminating the influence of abundance on species richness in forest ecology and management, as well as the significance of separately evaluating the components that shape the diversity patterns.


Assuntos
Ecossistema , Florestas , Árvores , Ecologia , Biodiversidade
5.
Front Plant Sci ; 14: 1305535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089789

RESUMO

Forest gaps play an important role during forest succession in temperate forest ecosystems. However, the differences in spatial distribution and replacement patterns of woody plants (trees and shrubs) between primary and secondary forests remain unclear during the gap-filling processes, especially for temperate forests in Northeast China. We recorded 45,619 regenerated trees and shrubs in young gaps (<10 years), old gaps (10~20 years), and closed forest stands (i.e., filled gaps) in the primary broadleaved Korean pine (Pinus koraiensis Sieb. Rt Zucc.) forests vs. secondary forests (degraded from primary forests). The gap-filling processes along horizontal (Cartesian coordinate system) and vertical (lower layer: 0~5 m, medium layer: 5~10 m, and upper layer: >10 m) dimensions were quantified by shade tolerance groups of trees and shrubs. We found that gap age, competition between species, and pre-existing regeneration status resulted in different species replacement patterns within gaps in primary vs. secondary forests. Gap formation in both primary and secondary forests increased species richness, with 33, 38, 39, and 41 in the primary closed stands, primary forest gaps, secondary closed stands, and secondary forest gaps, respectively. However, only 35.9% of species in primary forest gaps and 34.1% in secondary forest gaps successfully reached the upper layer. Based on the importance values (IVs) of tree species across different canopy heights, light-demanding trees in the upper layer of the secondary forests were gradually replaced by intermediate and shade-tolerant trees. In the primary forests, Korean pine exhibited intermittent growth patterns at different canopy heights, while it had continuous regeneration along vertical height gradients in the secondary forests. The differences in Korean pine regeneration between the primary and secondary forests existed before gap formation and continued during the gap-filling processes. The interspecific competition among different tree species gradually decreased with increasing vertical height, and compared to the primary forests, the secondary forests showed an earlier occurrence of competition exclusion within gaps. Our findings revealed the species replacement patterns within gaps and provided a further understanding of the competition dynamics among tree species during the gap-filling processes.

6.
J Environ Manage ; 345: 118889, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37666128

RESUMO

The impacts of natural restoration projects on soil microbial carbon (C) cycling functions have not been well recognized despite their wide implementation in the degraded karst areas of southwest China. In this study, metagenomic sequencing assays were conducted on functional genes and microorganisms related to soil C-cycling at three natural restoration stages (shrubbery, TG; secondary forest, SG; old-growth forest, OG) in the southeast of Guizhou Province, China. The aims were to investigate the changes in microbial potentials responsible for soil C cycling and the underlying driving forces. The natural restoration resulted in vegetation establishment at all three restoration stages, rendering alterations of soil microbial C cycle functions as indicated by metagenomic gene assays. When TG was restored into OG, the number and diversity of genes and microorganisms involved in soil C cycling remained unchanged, but their composition underwent significant shifts. Specifically, microbial potentials for soil C decomposition exhibited an increase driven by the collaborative efforts of plants and soils, while microbial potentials for soil C biosynthesis displayed an initial upswing followed by a subsequent decline which was primarily influenced by plants alone. In comparison to soil nutrients, it was determined that plant diversities served as the primary driving factor for the alterations in microbial carbon cycle potentials. Soil microbial communities involved in C cycling were predominantly attributed to Proteobacteria (31.87%-40.25%) and Actinobacteria (11.29%-26.07%), although their contributions varied across the three restoration stages. The natural restoration of degraded karst vegetation thus influences soil microbial C cycle functions by enhancing C decomposition potentials and displaying a nuanced pattern of biosynthesis potentials, primarily influenced by above-ground plants. These results provide valuable new insights into the regulation of soil C cycling during the restoration of degraded karst vegetation from genetic and microbial perspectives.


Assuntos
Ecossistema , Microbiota , Solo , Microbiologia do Solo , Plantas , China , Carbono
7.
New Phytol ; 240(3): 1162-1176, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37485789

RESUMO

Wood performs several functions to ensure tree survival and carbon allocation to a finite stem volume leads to trade-offs among cell types. It is not known to what extent these trade-offs modify functional trade-offs and if they are consistent across climates and evolutionary lineages. Twelve wood traits were measured in stems and coarse roots across 60 adult angiosperm tree species from temperate, Mediterranean and tropical climates. Regardless of climate, clear trade-offs occurred among cellular fractions, but did not translate into specific functional trade-offs. Wood density was negatively related to hydraulic conductivity (Kth ) in stems and roots, but was not linked to nonstructural carbohydrates (NSC), implying a functional trade-off between mechanical integrity and transport but not with storage. NSC storage capacity was positively associated with Kth in stems and negatively in roots, reflecting a potential role for NSC in the maintenance of hydraulic integrity in stems but not in roots. Results of phylogenetic analyses suggest that evolutionary histories cannot explain covariations among traits. Trade-offs occur among cellular fractions, without necessarily modifying trade-offs in function. However, functional trade-offs are driven by coordinated changes among xylem cell types depending on the dominant role of each cell type in stems and roots.


Assuntos
Magnoliopsida , Madeira , Madeira/fisiologia , Filogenia , Xilema/fisiologia , Clima Tropical , Carboidratos , Água/fisiologia
8.
ACS Nano ; 17(5): 4564-4573, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36847653

RESUMO

Reconfigurable logic circuits implemented by two-dimensional (2D) ambipolar semiconductors provide a prospective solution for the post-Moore era. It is still a challenge for ambipolar nanomaterials to realize reconfigurable polarity control and rectification with a simplified device structure. Here, an air-gap barristor based on an asymmetric stacking sequence of the electrode contacts was developed to resolve these issues. For the 2D ambipolar channel of WSe2, the barristor can not only be reconfigured as an n- or p-type unipolar transistor but also work as a switchable diode. The air gap around the bottom electrode dominates the reconfigurable behaviors by widening the Schottky barrier here, thus blocking the injection of both electrons and holes. The electrical performances can be improved by optimizing the electrode materials, which achieve an on/off ratio of 104 for the transistor and a rectifying ratio of 105 for the diode. A complementary inverter and a switchable AND/OR logic gate were constructed by using the air-gap barristors as building blocks. This work provides an efficient approach with great potential for low-dimensional reconfigurable electronics.

9.
Nat Commun ; 14(1): 111, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611034

RESUMO

Two-dimensional (2D) semiconductors are promising in channel length scaling of field-effect transistors (FETs) due to their excellent gate electrostatics. However, scaling of their contact length still remains a significant challenge because of the sharply raised contact resistance and the deteriorated metal conductivity at nanoscale. Here, we construct a 1D semimetal-2D semiconductor contact by employing single-walled carbon nanotube electrodes, which can push the contact length into the sub-2 nm region. Such 1D-2D heterostructures exhibit smaller van der Waals gaps than the 2D-2D ones, while the Schottky barrier height can be effectively tuned via gate potential to achieve Ohmic contact. We propose a longitudinal transmission line model for analyzing the potential and current distribution of devices in short contact limit, and use it to extract the 1D-2D contact resistivity which is as low as 10-6 Ω·cm2 for the ultra-short contacts. We further demonstrate that the semimetal nanotubes with gate-tunable work function could form good contacts to various 2D semiconductors including MoS2, WS2 and WSe2. The study on 1D semimetal contact provides a basis for further miniaturization of nanoelectronics in the future.

10.
Food Chem ; 410: 135299, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608546

RESUMO

The sweetness of blueberry fruit increases over time, as acids are converted to sugars, and full flavor development is formed by harvest. We comprehensively analyzed the changes and correlation in physiological and biochemical characteristics of blueberries at different maturity stages, including texture, quality, taste and energy change. Our analysis revealed that total anthocyanin content increased and firmness decreased as fruit ripened. Percent moisture, titratable acid (TA), chlorophyll and carotenoid content also decreased, while total soluble solids (TSS), pH, TSS/TA ratio, vitamin C, soluble proteins, and ethylene production all increased. Antioxidant enzyme activity gradually increased during ripening but energy-related metabolites decreased. The flavor attributes of sweetness, bitterness, and sourness were readily perceived using an electronic tongue and a total of 76 volatile compounds were detected by GC-MS. In summary, the maturation of blueberries was correlated with increases of anthocyanins, nutrients, antioxidant activity, taste and aroma, but negatively correlated with energy metabolism.


Assuntos
Mirtilos Azuis (Planta) , Mirtilos Azuis (Planta)/química , Antocianinas/análise , Frutas/química , Paladar , Ácido Ascórbico/análise , Antioxidantes/análise , Ácidos/análise
11.
Nano Lett ; 23(2): 726-734, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36515654

RESUMO

Low-dimensional materials are bringing significant innovations to in situ TEM characterization. Here a new graphene microheater chip for TEM was developed by stacking graphene on a suspended SiNx membrane as the Joule heating element. It could be heated up to 800 °C within 26.31 ms with a low power consumption of 0.025 mW/1000 µm2. The bulging was only ∼50 nm at 650 °C, which is 2 orders of magnitude smaller than those of conventional MEMS heaters at similar temperatures. The performances benefit from the employment of graphene, since its monolayer structure greatly reduces the heat capacity, and the vdW contact significantly reduces the interfacial interaction. The TEM observation on the Sn melting process verifies its great potential in resolving thermodynamic processes. Moreover, more multifunctional in situ chips could be developed by integrating other stimuli to such chips. This work opens a new frontier for both graphene and in situ characterization techniques.

12.
BMC Res Notes ; 15(1): 251, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840995

RESUMO

OBJECTIVES: Carbon fixed during photosynthesis is exported from leaves towards sink organs as non-structural carbohydrates (NSC), that are a key energy source for metabolic processes in trees. In xylem, NSC are mostly stored as soluble sugars and starch in radial and axial parenchyma. The multi-functional nature of xylem means that cells possess several functions, including water transport, storage and mechanical support. Little is known about how NSC impacts xylem multi-functionality, nor how NSC vary among species and climates. We collected leaves, stem and root xylem from tree species growing in three climates and estimated NSC in each organ. We also measured xylem traits linked to hydraulic and mechanical functioning. DATA DESCRIPTION: The paper describes functional traits in leaves, stems and roots, including NSC, carbon, nitrogen, specific leaf area, stem and root wood density and xylem traits. Data are provided for up to 90 angiosperm species from temperate, Mediterranean and tropical climates. These data are useful for understanding the trade-offs in resource allocation from a whole-plant perspective, and to better quantify xylem structure and function related to water transportation, mechanical support and storage. Data will also give researchers keys to understanding the ability of trees to adjust to a changing climate.


Assuntos
Árvores , Xilema , Carboidratos , Carbono/metabolismo , Folhas de Planta/metabolismo , Clima Tropical , Água , Xilema/metabolismo
13.
Proc Natl Acad Sci U S A ; 119(17): e2119016119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35452312

RESUMO

Low-dimensional semimetal­semiconductor (Sm-S) van der Waals (vdW) heterostructures have shown their potentials in nanoelectronics and nano-optoelectronics recently. It is an important scientific issue to study the interfacial charge transfer as well as the corresponding Fermi-level shift in Sm-S systems. Here we investigated the gate-tunable contact-induced Fermi-level shift (CIFS) behavior in a semimetal single-walled carbon nanotube (SWCNT) that formed a heterojunction with a transition-metal dichalcogenide (TMD) flake. A resistivity comparison methodology and a Fermi-level catch-up model have been developed to measure and analyze the CIFS, whose value is determined by the resistivity difference between the naked SWCNT segment and the segment in contact with the TMD. Moreover, the relative Fermi-level positions of SWCNT and two-dimensional (2D) semiconductors can be efficiently reflected by the gate-tunable resistivity difference. The work function change of the semimetal, as a result of CIFS, will naturally introduce a modified form of the Schottky­Mott rule, so that a modified Schottky barrier height can be obtained for the Sm-S junction. The methodology and physical model should be useful for low-dimensional reconfigurable nanodevices based on Sm-S building blocks.

14.
Am J Bot ; 109(4): 535-549, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35266560

RESUMO

PREMISE: Nonstructural carbohydrates (NSCs) play a key role in tree performance and functioning and are stored in radial and axial parenchyma (RAP) cells. Whether this relationship is altered among species and climates or is linked to functional traits describing xylem structure (wood density) and tree stature is not known. METHODS: In a systematic review, we collated data for NSC content and the proportion of RAP in stems for 68 tree species. To examine the relationships of NSCs and RAP with climatic factors and other functional traits, we also collected climatic data at each tree's location, as well as wood density and maximum height. A phylogenetic tree was constructed to examine the influence of species' evolutionary relationships on the associations among NSCs, RAP, and functional traits. RESULTS: Across all 68 tree species, NSCs were positively correlated with RAP and mean annual temperature, but relationships were only weakly significant in temperate species and angiosperms. When separating RAP into radial parenchyma (RP) and axial parenchyma (AP), both NSCs and wood density were positively correlated with RP but not with AP. Wood in taller trees was less dense and had lower RAP than in shorter trees, but height was not related to NSCs. CONCLUSIONS: In trees, NSCs are stored mostly in the RP fraction, which has a larger surface area in warmer climates. Additionally, NSCs were only weakly linked to wood density and tree height. Our analysis of evolutionary relationships demonstrated that RAP fractions and NSC content were always closely related across all 68 tree species, suggesting that RAP can act as a reliable proxy for potential NSC storage capacity in tree stems.


Assuntos
Magnoliopsida , Xilema , Carboidratos , Filogenia , Madeira
15.
Nano Lett ; 21(16): 6843-6850, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34347482

RESUMO

Low-dimensional semiconductors have shown great potential in switches for their atomically thin geometries and unique properties. It is significant to achieve new tunneling transistors by the efficient stacking methodology with low-dimensional building blocks. Here, we report a one-dimensional (1D)-two-dimensional (2D) mixed-dimensional van der Waals (vdW) heterostructure, which was efficiently fabricated by stacking an individual semiconducting carbon nanotube (CNT) and 2D MoS2. The CNT-MoS2 heterostructure shows specific reconfigurable electrical transport behaviors and can be set as a nn junction, pn diode, and band-to-band tunneling (BTBT) transistor by gate voltage. The transport properties, especially BTBT, could be attributed to the electron transfer from MoS2 to CNT through the ideal vdW interface and the 1D nature of the CNT. The progress suggests a new solution for tunneling transistors by making 1D-2D heterostructures from the rich library of low-dimensional nanomaterials. Furthermore, the reconfigurable functions and nanoscaled junction show that it is prospective to apply CNT-MoS2 heterostructures in future nanoelectronics and nano-optoelectronics.

16.
Sci Rep ; 11(1): 16582, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400675

RESUMO

Oxygen therapy has been widely used in clinical practice, especially in anesthesia and emergency medicine. However, the risks of hyperoxemia caused by excessive O2 supply have not been sufficiently appreciated. Because nasal inhalation is mostly used for oxygen therapy, the pulmonary capillaries are often the first to be damaged by hyperoxia, causing many serious consequences. Nevertheless, the molecular mechanism by which hyperoxia injures pulmonary capillary endothelial cells (LMECs) has not been fully elucidated. Therefore, we systematically investigated these issues using next-generation sequencing and functional research techniques by focusing on non-coding RNAs. Our results showed that hyperoxia significantly induced apoptosis and profoundly affected the transcriptome profiles of LMECs. Hyperoxia significantly up-regulated miR-181c-5p expression, while down-regulated the expressions of NCAPG and lncRNA-DLEU2 in LMECs. Moreover, LncRNA-DLEU2 could bind complementarily to miR-181c-5p and acted as a miRNA sponge to block the inhibitory effect of miR-181c-5p on its target gene NCAPG. The down-regulation of lncRNA-DLEU2 induced by hyperoxia abrogated its inhibition of miR-181c-5p function, which together with the hyperoxia-induced upregulation of miR-181c-5p, all these significantly decreased the expression of NCAPG, resulting in apoptosis of LMECs. Our results demonstrated a ceRNA network consisting of lncRNA-DLEU2, miR-181c-5p and NCAPG, which played an important role in hyperoxia-induced apoptosis of vascular endothelial injury. Our findings will contribute to the full understanding of the harmful effects of hyperoxia and to find ways for effectively mitigating its deleterious effects.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , MicroRNAs/fisiologia , Oxigênio/farmacologia , Apoptose/fisiologia , Sequência de Bases , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Linhagem Celular , Biologia Computacional , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Genes Reporter , Humanos , Pulmão/irrigação sanguínea , MicroRNAs/biossíntese , MicroRNAs/genética , Conformação de Ácido Nucleico , RNA Longo não Codificante/biossíntese , RNA Longo não Codificante/genética , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
17.
J Biomater Appl ; 35(8): 1034-1042, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33487069

RESUMO

Lidocaine is widely used as a local anesthetic for alleviation of post-operative pain and for management of acute and chronic painful conditions. Although several approaches are currently used to prolong the duration of action, an effective strategy to achieve neural blockage for several hours remains to be identified. In this study, a lidocaine-loaded Pluronic® F68-reduced graphene oxide hydrogel was developed to achieve sustained release of lidocaine. Fourier transform infrared spectroscopy, X-ray diffraction, and Raman spectroscopy confirmed the synthesis of Pluronic® F68-reduced graphene oxide. Transmission electron microscopy showed wrinkled, flat nanosheets with micelles attached. The developed hydrogel showed desirable pH, viscosity, adhesiveness, hardness, and cohesiveness for topical application. The ex vivo release study demonstrated the ability of the Pluronic® F68-reduced graphene oxide hydrogel to prolong release up to 10 h, owing to the strong π-π interactions between the graphene oxide and the lidocaine. In comparison with a commercial lidocaine ointment, the developed graphene oxide hydrogel showed sustained anesthetic effect in the radiant heat tail flick test and sciatic nerve block model. Thus, this study demonstrates the potential of using Pluronic® F68-reduced graphene oxide nanocarriers to realize prolonged effects of local anesthesia for effective pain management.


Assuntos
Anestesia Local/métodos , Grafite/química , Hidrogéis/química , Lidocaína/química , Administração Tópica , Animais , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Grafite/administração & dosagem , Grafite/farmacologia , Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Lidocaína/administração & dosagem , Lidocaína/farmacologia , Poloxâmero/administração & dosagem , Poloxâmero/química , Poloxâmero/farmacologia , Coelhos , Ratos , Nervo Isquiático/efeitos dos fármacos , Testes de Irritação da Pele , Viscosidade
18.
Bioact Mater ; 6(6): 1663-1675, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33313446

RESUMO

Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent onto a Mg sheet. In this study, we present three stages of creating and validating a stent prototype, which includes design and simulation using finite element analysis (FEA), followed by fabrication based on AZ31 alloy and, finally, in vivo testing in peripheral arteries of domestic pigs. Due to the preliminary character of this study, only six stents were implanted in two domestic farm pigs weighing 25-28 kg and they were evaluated after 28 days, with an interim follow-up on day 14. The left and right superficial femoral, the left iliac, and the right renal artery were selected for this study. The diameters of the stented artery segments were evaluated at the time of implantation, on day 14 and then, finally, on day 28, by quantitative vessel analysis (QVA) using fluoroscopic imaging. Optical Coherence Tomography (OCT) imaging displayed some malposition, breaks, stacking, and protrusion into the lumen at the proximal, distal, and mid-sections of the stented arteries. The stents degraded with time, but simultaneously became embedded in the intima. After 28 days, the animals were euthanized, and explanted vessels were fixed for micro-CT imaging and histology studies. Micro-CT imaging revealed stent morphological and volumetric changes due to the in-body degradation. An in vivo corrosion rate of 0.75 mm/year was obtained by the CT evaluation. The histology suggested no-life threatening effects, although moderate injury, inflammation, and endothelialization scores were observed.

19.
Sci Total Environ ; 737: 140299, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783867

RESUMO

Fine roots (≤2 mm in diameter) play a more significant role in regulating the biogeochemical cycles of forest ecosystems, but our current knowledge of fine root stoichiometry and its driving factors is extremely limited. In this study, fine root biomass (FRB) and their carbon (C), nitrogen (N) and phosphorus (P) concentrations were measured from dominant forests along environmental gradients in Northwestern China. The results showed that forest type (coniferous vs. broadleaved, and plantation vs. secondary forest) and climatic factors had no effects on FRB. FRB was only correlated with soil P, C:P and N:P in coniferous forests and N:P in secondary forests. Thus, forest type, soil C:N:P stoichiometry and climatic factors were less important to FRB. The fine root C and C:N and C:P were higher, and N and P were lower in coniferous than in broadleaved forests. Only fine root N concentration was higher in plantations than in secondary forests. The fine root C was positively correlated with soil C, N and C:N, C:P and N:P except in coniferous forests. The fine root N was negatively correlated soil C:N, C:P and N:P in plantations and C:N in broadleaved forests, but positively correlated with soil C, N, C:P and N:P in secondary forests. The fine root P was positively correlated with soil P in plantations and in coniferous forests, but negatively correlated with soil C:N, C:P and N:P in all forest types. The fine root C in broadleaved and in secondary forests was positively correlated with mean annual precipitation (MAP) and fine root N and N:P in plantations were negatively correlated with MAP. Only the fine root P and C:P in broadleaved forests were correlated with mean annual temperature (MAT). Collectively, forest type, soil C:N:P stoichiometry and climatic factors explained 29, 13 and 12% of the variation in the fine root C, N and P, and their most important explanatory variables were leaf form, soil C:N and soil C:P, respectively. These results advance our knowledge about the regional fine root stoichiometry and its driving factors and provide basic data for improving the key below-ground parameters for biogeochemical models.


Assuntos
Ecossistema , Florestas , Biomassa , Carbono/análise , China , Nitrogênio , Solo
20.
ACS Omega ; 5(1): 487-497, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956795

RESUMO

This work describes the design and fabrication of free-standing carbon nanotube-palladium (CNT-Pd) composite sheets for hydrogen gas sensing. The CNT-Pd composites were made by electroplating palladium onto a solvent-densified and oxygen plasma-treated CNT sheet. The latter was prepared using high purity CNTs drawn from a dense, vertically aligned array grown by chemical vapor deposition on silicon substrates. The CNT-Pd sheets were characterized by energy-dispersive spectroscopy, scanning electron microscopy, and X-ray diffraction. The amount of palladium in the composite was 16.5 wt % as measured via thermogravimetric analysis. Thin strips of the CNT-Pd sheets were assembled as chemiresistor sensors and tested for hydrogen gas detection. The sensors demonstrated a limit of detection of 0.1 mol % and displayed signal reversibility without the need for oxygen removal or heat treatment. A decrease in signal reversibility was observed after multiple exposure cycles; however, redensification with ethanol significantly restored the original reversibility. The sensor showed the Freundlich adsorption isotherm behavior when exposed to hydrogen. The material's potential application toward a wearable, flexible sensor was demonstrated by integrating the chemiresistor onto a fabric material using hot-press processing and testing the composite for hydrogen sensitivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA