Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Int J Biol Macromol ; 277(Pt 3): 134399, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098682

RESUMO

The effect of ball milling on the physicochemical properties and gut microbiota regulation of Poria cocos pachyman (PAC) was investigated. Ball milling reduced the particle size of PAC from 102 µm to 25.19 µm after 12 h, resulting in increasing particle uniformity. Scanning electron microscopy (SEM) revealed surface roughening and fragmentation of PAC after ball milling. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) indicated reduced crystallinity and increased hydroxyl group exposure in ball-milled PAC (BMP). Thermogravimetric analysis (TGA) showed decreased thermal stability in BMP. The optimal ball milled time was 7 h. Moisture contents in PAC and BMP-7 h were 10.30 ± 0.47 % and 10.72 ± 0.12 %, and carbohydrate contents were 81.02 ± 2.27 % and 74.54 ± 1.46 %. In vivo studies on mice demonstrated that both PAC and BMP-7 h increased diversity and reshaped the composition of gut microbiota, with BMP-7 h showing a more pronounced effect. BMP-7 h reduced the Firmicutes/Bacteroidetes ratio, and raised the abundance of Bacteroides, suggesting enhanced prebiotic potential. These findings highlight the role of ball milling in improving the physicochemical properties and prebiotic potential of water-insoluble polysaccharides and provide a theoretical basis for its broader application in the food and biopharmaceutical industries.

2.
Microbiol Spectr ; : e0069224, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145626

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an enteropathogenic coronavirus that causes substantial economic loss to the global pig industry. The emergence of PEDV variants has increased the need for new vaccines, as commercial vaccines confer inferior protection against currently circulating strains. It is well established that the induction of mucosal immunity is crucial for PEDV vaccines to provide better protection against PEDV infection. In this study, we constructed a recombinant adenovirus expressing the core neutralization epitope (COE) of G2b PEDV based on human adenovirus serotype 5 (Ad5). We evaluated the effects of different administration routes and doses of vaccine immunogenicity in Balb/c mice. Both intramuscular (IM) and intranasal (IN) administration elicited significant humoral responses, including COE-specific IgG in serum and mucosal secretions, along with serum-neutralizing antibodies. Moreover, IN delivery was more potent than IM in stimulating IgA in serum and mucosal samples and in dampening the immune response to the Ad5 vector. The immune response was stronger after high versus low dose IM injection, whereas no significant difference was observed between high and low IN doses. In summary, our findings provide important insights for developing novel PEDV vaccines.IMPORTANCEPorcine epidemic diarrhea (PED) is a highly contagious disease that has severe economic implications for the pork industry. Developing an effective vaccine against PEDV remains a necessity. Here, we generated a recombinant adenovirus vaccine based on Ad5 to express the COE protein of PEDV (rAd5-PEDV-COE) and systematically evaluated the immunogenicity of the adenovirus-vectored vaccine using different administration routes (intramuscular and intranasal) and doses in a mouse model. Our results show that rAd5-PEDV-COE induced potent systemic humoral response regardless of the dose or immunization route. Notably, intranasal delivery was superior to induce peripheral and mucosal IgA antibodies compared with intramuscular injection. Our data provide valuable insights into designing novel PEDV vaccines.

3.
PLoS Pathog ; 20(7): e1012415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39078847

RESUMO

Like all coronaviruses, infectious bronchitis virus, the causative agent of infectious bronchitis in chickens, exhibits a high mutation rate. Adaptive mutations that arise during the production of live attenuated vaccines against IBV often decrease virulence. The specific impact of these mutations on viral pathogenicity, however, has not been fully elucidated. In this study, we identified a mutation at the 3' end of the S gene in an IBV strain that was serially passaged in chicken embryos, and showed that this mutation resulted in a 9-aa truncation of the cytoplasmic tail (CT) of the S protein. This phenomenon of CT truncation has previously been observed in the production of attenuated vaccines against other coronaviruses such as the porcine epidemic diarrhea virus. We next discovered that the 9-aa truncation in the S protein CT resulted in the loss of the endoplasmic-reticulum-retention signal (KKSV). Rescue experiments with recombinant viruses confirmed that the deletion of the KKSV motif impaired the localization of the S protein to the endoplasmic-reticulum-Golgi intermediate compartment (ERGIC) and increased its expression on the cell surface. This significantly reduced the incorporation of the S protein into viral particles, impaired early subgenomic RNA and protein synthesis, and ultimately reduced viral invasion efficiency in CEK cells. In vivo experiments in chickens confirmed the reduced pathogenicity of the mutant IBV strains. Additionally, we showed that the adaptive mutation altered the TRS-B of ORF3 and impacted the transcriptional regulation of this gene. Our findings underscore the significance of this adaptive mutation in the attenuation of IBV infection and provide a novel strategy for the development of live attenuated IBV vaccines.


Assuntos
Galinhas , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Glicoproteína da Espícula de Coronavírus , Vacinas Atenuadas , Animais , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/patogenicidade , Embrião de Galinha , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Infecções por Coronavirus/virologia , Vacinas Atenuadas/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Virulência , Vacinas Virais/genética , Vacinas Virais/imunologia , Mutação
4.
J Virol ; 98(7): e0083024, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38940559

RESUMO

Viruses have evolved a range of strategies to utilize or manipulate the host's cellular translational machinery for efficient infection, although the mechanisms by which infectious bronchitis virus (IBV) manipulates the host translation machinery remain unclear. In this study, we firstly demonstrate that IBV infection causes host shutoff, although viral protein synthesis is not affected. We then screened 23 viral proteins, and identified that more than one viral protein is responsible for IBV-induced host shutoff, the inhibitory effects of proteins Nsp15 were particularly pronounced. Ribosome profiling was used to draw the landscape of viral mRNA and cellular genes expression model, and the results showed that IBV mRNAs gradually dominated the cellular mRNA pool, the translation efficiency of the viral mRNAs was lower than the median efficiency (about 1) of cellular mRNAs. In the analysis of viral transcription and translation, higher densities of RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) reads were observed for structural proteins and 5' untranslated regions, which conformed to the typical transcriptional characteristics of nested viruses. Translational halt events and the number of host genes increased significantly after viral infection. The translationally paused genes were enriched in translation, unfolded-protein-related response, and activation of immune response pathways. Immune- and inflammation-related mRNAs were inefficiently translated in infected cells, and IBV infection delayed the production of IFN-ß and IFN-λ. Our results describe the translational landscape of IBV-infected cells and demonstrate new strategies by which IBV induces host gene shutoff to promote its replication. IMPORTANCE: Infectious bronchitis virus (IBV) is a γ-coronavirus that causes huge economic losses to the poultry industry. Understanding how the virus manipulates cellular biological processes to facilitate its replication is critical for controlling viral infections. Here, we used Ribo-seq to determine how IBV infection remodels the host's biological processes and identified multiple viral proteins involved in host gene shutoff. Immune- and inflammation-related mRNAs were inefficiently translated, the translation halt of unfolded proteins and immune activation-related genes increased significantly, benefitting IBV replication. These data provide new insights into how IBV modulates its host's antiviral responses.


Assuntos
Galinhas , Infecções por Coronavirus , Interações Hospedeiro-Patógeno , Vírus da Bronquite Infecciosa , Biossíntese de Proteínas , Ribossomos , Replicação Viral , Vírus da Bronquite Infecciosa/fisiologia , Vírus da Bronquite Infecciosa/genética , Animais , Ribossomos/metabolismo , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Interações Hospedeiro-Patógeno/genética , Galinhas/virologia , RNA Viral/genética , RNA Viral/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/genética , Linhagem Celular , Humanos
5.
Viruses ; 16(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38932177

RESUMO

Newcastle disease virus (NDV) is an avian pathogen with an unsegmented negative-strand RNA genome that belongs to the Paramyxoviridae family. While primarily pathogenic in birds, NDV presents no threat to human health, rendering it a safe candidate for various biomedical applications. Extensive research has highlighted the potential of NDV as a vector for vaccine development and gene therapy, owing to its transcriptional modularity, low recombination rate, and lack of a DNA phase during replication. Furthermore, NDV exhibits oncolytic capabilities, efficiently eliciting antitumor immune responses, thereby positioning it as a promising therapeutic agent for cancer treatment. This article comprehensively reviews the biological characteristics of NDV, elucidates the molecular mechanisms underlying its oncolytic properties, and discusses its applications in the fields of vaccine vector development and tumor therapy.


Assuntos
Vetores Genéticos , Neoplasias , Vírus da Doença de Newcastle , Terapia Viral Oncolítica , Vírus Oncolíticos , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Animais , Humanos , Vetores Genéticos/genética , Neoplasias/terapia , Neoplasias/imunologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Terapia Genética/métodos , Vacinas Virais/imunologia , Vacinas Virais/genética , Doença de Newcastle/prevenção & controle , Doença de Newcastle/terapia , Doença de Newcastle/virologia , Doença de Newcastle/imunologia , Desenvolvimento de Vacinas/métodos
6.
J Cell Mol Med ; 28(12): e18494, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890797

RESUMO

Stress triggers a comprehensive pathophysiological cascade in organisms. However, there is a substantial gap in the research regarding the effects of stress on liver function. This study aimed to investigate the impact of restraint stress on hepatocellular damage and elucidate the underlying molecular mechanisms. An effective mouse restraint stress model was successfully developed, and liver function analysis was performed using laser speckle imaging, metabolomics and serum testing. Alterations in hepatocyte morphology were assessed using haematoxylin and eosin staining and transmission electron microscopy. Oxidative stress in hepatocytes was assessed using lipid reactive oxygen species and malondialdehyde. The methylation status and expression of GSTP1 were analysed using DNA sequencing and, real-time PCR, and the expression levels of GPX4, TF and Nrf2 were evaluated using real-time quantitative PCR, western blotting, and immunohistochemical staining. A stress-induced model was established in vitro by using dexamethasone-treated AML-12 cells. To investigate the underlying mechanisms, GSTP1 overexpression, small interfering RNA, ferroptosis and Nrf2 inhibitors were used. GSTP1 methylation contributes to stress-induced hepatocellular damage and dysfunction. GSTP1 is involved in ferroptosis-mediated hepatocellular injury induced by restraint stress via the TF/Nrf2 pathway. These findings suggest that stress-induced hepatocellular injury is associated with ferroptosis, which is regulated by TF/Nrf2/GSTP1.

7.
Vaccines (Basel) ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38932359

RESUMO

Inactivated and live attenuated vaccines are the mainstays of preventing viral poultry diseases. However, the development of recombinant DNA technology in recent years has enabled the generation of recombinant virus vector vaccines, which have the advantages of preventing multiple diseases simultaneously and simplifying the vaccination schedule. More importantly, some can induce a protective immune response in the presence of maternal antibodies and offer long-term immune protection. These advantages compensate for the shortcomings of traditional vaccines. This review describes the construction and characterization of primarily poultry vaccine vectors, including fowl poxvirus (FPV), fowl adenovirus (FAdV), Newcastle disease virus (NDV), Marek's disease virus (MDV), and herpesvirus of turkey (HVT). In addition, the pathogens targeted and the immunoprotective effect of different poultry recombinant virus vector vaccines are also presented. Finally, this review discusses the challenges in developing vector vaccines and proposes strategies for improving immune efficacy.

8.
PLoS Pathog ; 20(5): e1012232, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743760

RESUMO

Infectious bronchitis virus (IBV) is a coronavirus that infects chickens, which exhibits a broad tropism for epithelial cells, infecting the tracheal mucosal epithelium, intestinal mucosal epithelium, and renal tubular epithelial cells. Utilizing single-cell RNA sequencing (scRNA-seq), we systematically examined cells in renal, bursal, and tracheal tissues following IBV infection and identified tissue-specific molecular markers expressed in distinct cell types. We evaluated the expression of viral RNA in diverse cellular populations and subsequently ascertained that distal tubules and collecting ducts within the kidney, bursal mucosal epithelial cells, and follicle-associated epithelial cells exhibit susceptibility to IBV infection through immunofluorescence. Furthermore, our findings revealed an upregulation in the transcription of proinflammatory cytokines IL18 and IL1B in renal macrophages as well as increased expression of apoptosis-related gene STAT in distal tubules and collecting duct cells upon IBV infection leading to renal damage. Cell-to-cell communication unveiled potential interactions between diverse cell types, as well as upregulated signaling pathways and key sender-receiver cell populations after IBV infection. Integrating single-cell data from all tissues, we applied weighted gene co-expression network analysis (WGCNA) to identify gene modules that are specifically expressed in different cell populations. Based on the WGCNA results, we identified seven immune-related gene modules and determined the differential expression pattern of module genes, as well as the hub genes within these modules. Our comprehensive data provides valuable insights into the pathogenesis of IBV as well as avian antiviral immunology.


Assuntos
Comunicação Celular , Galinhas , Infecções por Coronavirus , Redes Reguladoras de Genes , Vírus da Bronquite Infecciosa , Análise de Célula Única , Animais , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/fisiologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Análise de Sequência de RNA , Células Epiteliais/virologia , Células Epiteliais/metabolismo
9.
Nat Cancer ; 5(7): 1063-1081, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38609488

RESUMO

Tumor-specific T cells are crucial in anti-tumor immunity and act as targets for cancer immunotherapies. However, these cells are numerically scarce and functionally exhausted in the tumor microenvironment (TME), leading to inefficacious immunotherapies in most patients with cancer. By contrast, emerging evidence suggested that tumor-irrelevant bystander T (TBYS) cells are abundant and preserve functional memory properties in the TME. To leverage TBYS cells in the TME to eliminate tumor cells, we engineered oncolytic virus (OV) encoding TBYS epitopes (OV-BYTE) to redirect the antigen specificity of tumor cells to pre-existing TBYS cells, leading to effective tumor inhibition in multiple preclinical models. Mechanistically, OV-BYTE induced epitope spreading of tumor antigens to elicit more diverse tumor-specific T cell responses. Remarkably, the OV-BYTE strategy targeting human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory efficiently inhibited tumor progression in a human tumor cell-derived xenograft model, providing important insights into the improvement of cancer immunotherapies in a large population with a history of SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) vaccination.


Assuntos
Epitopos de Linfócito T , Imunoterapia , Neoplasias , Vírus Oncolíticos , SARS-CoV-2 , Microambiente Tumoral , Humanos , Animais , Camundongos , Vírus Oncolíticos/imunologia , Imunoterapia/métodos , Epitopos de Linfócito T/imunologia , Microambiente Tumoral/imunologia , SARS-CoV-2/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , COVID-19/imunologia , COVID-19/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Antígenos de Neoplasias/imunologia , Linfócitos T/imunologia
10.
Front Cell Infect Microbiol ; 14: 1376289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577620

RESUMO

Introduction: Kluyvera is a Gram-negative, flagellated, motile bacillus within the Enterobacteriaceae. The case reports of clinical infections shed light on the importance of this organism as an emerging opportunistic pathogen. The genus Phytobacter, which often be misidentified with Kluyvera, is also an important clinically relevant member of the Enterobacteriaceae. However, the identification of Kluyvera and Phytobacter is problematic, and their phylogenetic relationship remains unclear. Methods: Here, 81 strains of Kluyvera and 16 strains of Phytobacter were collected. A series of comparative genomics approaches were applied to the phylogenetic relationship reconstruction, virulence related genes profiles description, and antibiotic resistance genes prediction. Results: Using average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH), we offered reliable species designations of 97 strains, in which 40 (41.24%) strains were incorrectly labeled. A new Phytobacter genomospecies-1 were defined. Phytobacter and Kluyvera show great genome plasticity and inclusiveness, which may be related to their diverse ecological niches. An intergenomic distances threshold of 0.15875 was used for taxonomy reassignments at the phylogenomic-group level. Further principal coordinates analysis (PCoA) revealed 11 core genes of Kluyvera (pelX, mdtL, bglC, pcak-1, uhpB, ddpA-2, pdxY, oppD-1, cptA, yidZ, csbX) that could be served as potential identification targets. Meanwhile, the Phytobacter specific virulence genes clbS, csgA-C, fliS, hsiB1_vipA and hsiC1_vipB, were found to differentiate from Kluyvera. We concluded that the evolution rate of Kluyvera was 5.25E-6, approximately three times higher than that of Phytobacter. Additionally, the co-existence of ESBLs and carbapenem resistance genes were present in approximately 40% strains, suggesting the potential development of extensively drug-resistant or even fully drug-resistant strains. Discussion: This work provided a better understanding of the differences between closely related species Kluyvera and Phytobacter. Their genomes exhibited great genome plasticity and inclusiveness. They not only possess a potential pathogenicity threat, but also a risk of multi-drug resistance. The emerging pathogens Kluyvera and Phytobacter warrant close attention.


Assuntos
Kluyvera , Kluyvera/genética , Virulência/genética , Filogenia , Enterobacteriaceae/genética , Genômica , DNA
11.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474189

RESUMO

Coronary artery spasm (CAS) plays an important role in the pathogeneses of various ischemic heart diseases and has gradually become a common cause of life-threatening arrhythmia. The specific molecular mechanism of CAS has not been fully elucidated, nor are there any specific diagnostic markers for the condition. Therefore, this study aimed to examine the specific molecular mechanism underlying CAS, and screen for potential diagnostic markers. To this end, we successfully constructed a rat CAS model and achieved in vitro culture of a human coronary-artery smooth-muscle cell (hCASMC) contraction model. Possible molecular mechanisms by which protein kinase C (PKC) regulated CAS through the C kinase-potentiated protein phosphatase 1 inhibitor of 17 kDa (CPI-17)/myosin II regulatory light chain (MLC2) pathway were studied in vivo and in vitro to screen for potential molecular markers of CAS. We performed hematoxylin and eosin staining, myocardial zymogram, and transmission electron microscopy to determine myocardial and coronary artery injury in CAS rats. Then, using immunohistochemical staining, immunofluorescence staining, and Western blotting, we further demonstrated a potential molecular mechanism by which PKC regulated CAS via the CPI-17/MLC2 pathway. The results showed that membrane translocation of PKCα occurred in the coronary arteries of CAS rats. CPI-17/MLC2 signaling was observably activated in coronary arteries undergoing CAS. In addition, in vitro treatment of hCASMCs with angiotensin II (Ang II) increased PKCα membrane translocation while consistently activating CPI-17/MLC2 signaling. Conversely, GF-109203X and calphostin C, specific inhibitors of PKC, inactivated CPI-17/MLC2 signaling. We also collected the coronary artery tissues from deceased subjects suspected to have died of CAS and measured their levels of phosphorylated CPI-17 (p-CPI-17) and MLC2 (p-MLC2). Immunohistochemical staining was positive for p-CPI-17 and p-MLC2 in the tissues of these subjects. These findings suggest that PKCα induced CAS through the CPI-17/MLC2 pathway; therefore, p-CPI-17 and p-MLC2 could be used as potential markers for CAS. Our data provide novel evidence that therapeutic strategies against PKC or CPI-17/MLC2 signaling might be promising in the treatment of CAS.


Assuntos
Vasoespasmo Coronário , Animais , Humanos , Ratos , Biomarcadores/metabolismo , Morte Súbita Cardíaca , Fosfoproteínas/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa/metabolismo
12.
Lipids Health Dis ; 23(1): 68, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431645

RESUMO

BACKGROUND: Stress is implicated in various pathological conditions leading to liver injury. Existing evidence suggests that excessive stress can induce mitochondrial damage in hepatocytes, yet the underlying mechanism remains unclear. Ceramide synthase 6 (CerS6)-derived C16:0 ceramide is recognised as a lipotoxic substance capable of causing mitochondrial damage. However, the role of CerS6 in stress has received insufficient attention. This study aimed to explore the involvement of CerS6 in stress-induced hepatic damage and its associated mechanisms. METHODS: The rat restraint stress model and a corticosterone (CORT)-induced hepatocyte stress model were employed for in vivo and in vitro experimental analyses, respectively. Changes in mitochondrial damage and ceramide metabolism in hepatocytes induced by stress were evaluated. The impact of CORT on mitochondrial damage and ceramide metabolism in hepatocytes was assessed following CerS6 knockdown. Mitochondria were isolated using a commercial kit, and ceramides in liver tissue and hepatocytes were detected by LC-MS/MS. RESULTS: In comparison to the control group, rats subjected to one week of restraint exhibited elevated serum CORT levels. The liver displayed significant signs of mitochondrial damage, accompanied by increased CerS6 and mitochondrial C16:0 ceramide, along with activation of the AMPK/p38 MAPK pathway. In vitro studies demonstrated that CORT treatment of hepatocytes resulted in mitochondrial damage, concomitant with elevated CerS6 and mitochondrial C16:0 ceramide. Furthermore, CORT induced sequential phosphorylation of AMPK and p38 MAPK proteins, and inhibition of the p38 MAPK pathway using SB203580 mitigated the CORT-induced elevation in CerS6 protein. Knocking down CerS6 in hepatocytes inhibited both the increase in C16:0 ceramide and the release of mitochondrial cytochrome c induced by CORT. CONCLUSIONS: CerS6-associated C16:0 ceramide plays a mediating role in stress-induced mitochondrial damage in hepatocytes. The molecular mechanism is linked to CORT-induced activation of the AMPK/p38 MAPK pathway, leading to upregulated CerS6.


Assuntos
Proteínas Quinases Ativadas por AMP , Espectrometria de Massas em Tandem , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Cromatografia Líquida , Ceramidas/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismo
13.
Brain Sci ; 14(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38391735

RESUMO

The amygdala is a core region in the limbic system that is highly sensitive to stress. Astrocytes are key players in stress disorders such as anxiety and depression. However, the effects of stress on the morphology and function of amygdala astrocytes and its potential mechanisms remain largely unknown. Hence, we performed in vivo and in vitro experiments using a restraint stress (RS) rat model and stress-induced astrocyte culture, respectively. Our data show that norepinephrine (NE) content increased, cytotoxic edema occurred, and aquaporin-4 (AQP4) expression was up-regulated in the basolateral amygdala (BLA) obtained from RS rats. Additionally, the p38 mitogen-activated protein kinase (MAPK) pathway was also observed to be significantly activated in the BLA of rats subjected to RS. The administration of NE to in vitro astrocytes increased the AQP4 level and induced cell edema. Furthermore, p38 MAPK signaling was activated. The NE inhibitor alpha-methyl-p-tyrosine (AMPT) alleviated cytotoxic edema in astrocytes, inhibited AQP4 expression, and inactivated the p38 MAPK pathway in RS rats. Meanwhile, in the in vitro experiment, the p38 MAPK signaling inhibitor SB203580 reversed NE-induced cytotoxic edema and down-regulated the expression of AQP4 in astrocytes. Briefly, NE-induced activation of the p38 MAPK pathway mediated cytotoxic edema in BLA astrocytes from RS rats. Thus, our data provide novel evidence that NE-induced p38 MAPK pathway activation may be one of the mechanisms leading to cytotoxic edema in BLA under stress conditions, which also could enable the development of an effective therapeutic strategy against cytotoxic edema in BLA under stress and provide new ideas for the treatment of neuropsychiatric diseases.

14.
Heliyon ; 10(2): e24502, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298613

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease with sporadic occurrence and high mortality. Herein, we report an example of the in-hospital transmission of SFTS virus (SFTSV) infections with familial and nosocomial clustering in Zhejiang Province, eastern China, from March to April 2023. The epidemiological investigation and genomic analysis revealed that at least eight suspected cases of SFTS occurred in this cluster, including one death and one asymptomatic case. Our report reemphasizes the risk of familial and nosocomial SFTSV infections in healthcare settings and the urgent need for the long-term systematic surveillance of SFTSV evolution in humans and animals in the eastern coastal regions of China.

15.
J Virol ; 98(2): e0137723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38197629

RESUMO

Gut microbiota-derived metabolites are important for the replication and pathogenesis of many viruses. However, the roles of bacterial metabolites in swine enteric coronavirus (SECoV) infection remain poorly understood. Recent studies show that SECoVs infection in vivo significantly alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota. This prompted us to investigate whether and how SCFAs impact SECoV infection. Employing alphacoronavirus transmissible gastroenteritis virus (TGEV), a major cause of diarrhea in piglets, as a model, we found that SCFAs, particularly butyrate, enhanced TGEV infection both in porcine intestinal epithelial cells and swine testicular (ST) cells at the late stage of viral infection. This effect depended on the inhibited productions of virus-induced type I interferon (IFN) and downstream antiviral IFN-stimulated genes (ISGs) by butyrate. Mechanistically, butyrate suppressed the expression of retinoic acid-inducible gene I (RIG-I), a key viral RNA sensor, and downstream mitochondrial antiviral-signaling (MAVS) aggregation, thereby impairing type I IFN responses and increasing TGEV replication. Using pharmacological and genetic approaches, we showed that butyrate inhibited RIG-I-induced type I IFN signaling by suppressing class I histone deacetylase (HDAC). In summary, we identified a novel mechanism where butyrate enhances TGEV infection by suppressing RIG-I-mediated type I IFN responses. Our findings highlight that gut microbiota-derived metabolites like butyrate can be exploited by SECoV to dampen innate antiviral immunity and establish infection in the intestine.IMPORTANCESwine enteric coronaviruses (SECoVs) infection in vivo alters the composition of short-chain fatty acids (SCFAs)-producing gut microbiota, but whether microbiota-derived SCFAs impact coronavirus gastrointestinal infection is largely unknown. Here, we demonstrated that SCFAs, particularly butyrate, substantially increased alphacoronavirus TGEV infection at the late stage of infection, without affecting viral attachment or internalization. Furthermore, enhancement of TGEV by butyrate depended on impeding virus-induced type I interferon (IFN) responses. Mechanistically, butyrate suppressed the cytoplasmic viral RNA sensor RIG-I expression and downstream type I IFN signaling activation by inhibiting class I HDAC, thereby promoting TGEV infection. Our work reveals novel functions of gut microbiota-derived SCFAs in enhancing enteric coronavirus infection by impairing RIG-I-dependent type I IFN responses. This implies that bacterial metabolites could be therapeutic targets against SECoV infection by modulating antiviral immunity in the intestine.


Assuntos
Butiratos , Infecções por Coronavirus , Coronavirus , Microbioma Gastrointestinal , Interferon Tipo I , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Butiratos/metabolismo , Coronavirus/fisiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Interferon Tipo I/imunologia , RNA Viral , Suínos , Vírus da Gastroenterite Transmissível/fisiologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia
16.
Mol Genet Genomic Med ; 12(1): e2334, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38069551

RESUMO

BACKGROUND: MSX1 (OMIM #142983) is crucial to normal dental development, and variants in MSX1 are associated with dental anomalies. The objective of this study was to characterize the pathogenicity of novel MSX1 variants in Chinese families with non-syndromic oligodontia (NSO). METHODS: Genomic DNA was extracted from individuals representing 35 families with non-syndromic oligodontia and was analyzed by Sanger sequencing and whole-exome sequencing. Pathogenic variants were screened via analyses involving PolyPhen-2, Sorting-Intolerant from Tolerant, and MutationTaster, and conservative analysis of variants. Patterns of MSX1-related NSO were analyzed. MSX1 structural changes suggested functional consequences in vitro. RESULTS: Three previously unreported MSX1 heterozygous variants were identified: one insertion variant (c.576_577insTAG; p.Gln193*) and two missense variants (c. 871T>C; p.Tyr291His and c. 644A>C; p.Gln215Pro). Immunofluorescence analysis revealed abnormal subcellular localization of the p.Gln193* MSX1 variant. In addition, we found that these MSX1 variants likely lead to the loss of second premolars. CONCLUSION: Three novel MSX1 variants were identified in Chinese Han families with NSO, expanding the MSX1 variant spectrum and presenting a genetic origin for the pathogenesis detected in patients and their families.


Assuntos
Anodontia , Fator de Transcrição MSX1 , Humanos , Anodontia/genética , China , Heterozigoto , Fator de Transcrição MSX1/genética , Mutação de Sentido Incorreto
17.
Front Psychol ; 14: 1284193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094698

RESUMO

Interdisciplinary collaboration is an emerging imperative in music education, but current understanding of global practices remains limited. Prior studies have focused narrowly on specific programs within limited geographic areas. However, there is minimal quantitative mapping of initiatives across institutions and regions. Contextual insights explaining regional variations are also scarce. Hence, this study aims to address these gaps by conducting a comprehensive analysis of interdisciplinary programs, partnerships, events, and publications across leading global music institutions using a mixed methods approach. The analysis reveals significant diversity in models and determinants of productivity across regions. For instance, while Europe leads in formal integration and research output, North America prioritizes technology-enabled innovation through media and emerging tools. Partnerships are ubiquitous but focus areas and curricular integration vary. The findings reveal significant diversity in interdisciplinary education practices and formats worldwide, implying a need for contextualized implementation aligned to institutional strengths rather than a one-size-fits-all approach. Therefore, as music education evolves, tailored interdisciplinary strategies that blend local priorities with global best practices are recommended to creatively nurture multifaceted skills and maximize potential for innovation. Thus, this research contributes an invaluable knowledge base to inform evidence-based, nimble policies and frameworks for cultivating cutting-edge, socially engaged musicians and ventures worldwide.

18.
Bioeng Transl Med ; 8(4): e10534, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476057

RESUMO

Formation of functional and perfusable vascular network is critical to ensure the long-term survival and functionality of the engineered tissue tracheae after transplantation. However, the greatest challenge in tracheal-replacement therapy is the promotion of tissue regeneration by rapid graft vascularization. Traditional prevascularization methods for tracheal grafts typically utilize omentum or muscle flap wrapping, which requires a second operation; vascularized segment tracheal orthotopic transplantation in one step remains difficult. This study proposes a method to construct a tissue-engineered tracheal graft, which directly forms the microvascular network after orthotopic transplantation in vivo. The focus of this study was the preparation of a hybrid tracheal graft that is non-immunogenic, has good biomechanical properties, supports cell proliferation, and quickly vascularizes. The results showed that vacuum-assisted decellularized trachea-polycaprolactone hybrid scaffold could match most of the above requirements as closely as possible. Furthermore, endothelial progenitor cells (EPCs) were extracted and used as vascularized seed cells and seeded on the surfaces of hybrid grafts before and during the tracheal orthotopic transplantation. The results showed that the microvascularized tracheal grafts formed maintained the survival of the recipient, showing a satisfactory therapeutic outcome. This is the first study to utilize EPCs for microvascular construction of long-segment trachea in one-step; the approach represents a promising method for microvascular tracheal reconstruction.

19.
One Health Adv ; 1(1): 12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521533

RESUMO

Potent neutralizing antibodies (nAbs) against SARS-CoV-2 are a promising therapeutic against the ongoing COVID-19 pandemic. However, the continuous emergence of neutralizing antibody escape variants makes it challenging for antibody therapeutics based on monospecific nAbs. Here, we generated an IgG-like bispecific antibody (bsAb), Bi-Nab, based on a pair of human neutralizing antibodies targeting multiple and invariant sites of the spike receptor binding domain (RBD): 35B5 and 32C7. We demonstrated that Bi-Nab exhibited higher binding affinity to the Delta spike protein than its parental antibodies and presented an extended inhibition breadth of preventing RBD binding to angiotensin-converting enzyme 2 (ACE2), the cellular receptor of SARS-CoV-2. In addition, pseudovirus neutralization results showed that Bi-Nab improved the neutralization potency and breadth with a lower half maximum inhibitory concentration (IC50) against wild-type SARS-CoV-2, variants being monitored (VBMs) and variants of concern (VOCs). Notably, the IgG-like Bi-Nab enhanced the neutralizing activity against Omicron variants with potent capabilities for transmission and immune evasion in comparison with its parental monoclonal antibody (mAb) 32C7 and a cocktail (with the lowest IC50 values of 31.6 ng/mL against the Omicron BA.1 and 399.2 ng/mL against the Omicron BA.2), showing evidence of synergistic neutralization potency of Bi-Nab against the Omicron variants. Thus, Bi-Nab represents a feasible and effective strategy against SARS-CoV-2 variants of concern.

20.
Pathogens ; 12(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37242368

RESUMO

Infectious bronchitis virus (IBV) is an enveloped and positive-sense single-stranded RNA virus. IBV was the first coronavirus to be discovered and predominantly causes respiratory disease in commercial poultry worldwide. This review summarizes several important aspects of IBV, including epidemiology, genetic diversity, antigenic diversity, and multiple system disease caused by IBV as well as vaccination and antiviral strategies. Understanding these areas will provide insight into the mechanism of pathogenicity and immunoprotection of IBV and may improve prevention and control strategies for the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA