Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174535, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38972403

RESUMO

The role and mechanisms of DEP exposure on thyroid injury are not yet clear. This study explores thyroid damage induced by in vivo DEP exposure using a mouse model. This study has observed alterations in thyroid follicular architecture, including rupture, colloid overflow, and the formation of voids. Additionally, there was a significant decrease in the expression levels of proteins involved in thyroid hormone synthesis, such as thyroid peroxidase and thyroglobulin, their trend of change is consistent with the damage to the thyroid structure. Serum levels of triiodothyronine and tetraiodothyronine were raise. However, the decrease in TSH expression suggests that the function of the HPT axis is unaffected. To delve deeper into the intrinsic mechanisms of thyroid injury, we performed KEGG pathway enrichment analysis, which revealed notable alterations in the cell adhesion signaling pathway. Our immunofluorescence results show that DEP exposure impairs thyroid adhesion, and integrin α3ß1 plays an important role. CD151 binds to α3ß1, promoting multimolecular complex formation and activating adhesion-dependent small GTPases. Our in vitro model has confirmed the pivotal role of integrin α3ß1 in thyroid cell adhesion, which may be mediated by the CD151/α3ß1/Rac1 pathway. In summary, exposure to DEP disrupts the structure and function of the thyroid, a process that likely involves the regulation of cell adhesion through the CD151/α3ß1/Rac1 pathway, leading to glandular damage.


Assuntos
Integrina alfa3beta1 , Glândula Tireoide , Emissões de Veículos , Animais , Camundongos , Glândula Tireoide/efeitos dos fármacos , Emissões de Veículos/toxicidade , Integrina alfa3beta1/metabolismo , Adesão Celular/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Células Epiteliais da Tireoide/efeitos dos fármacos , Células Epiteliais da Tireoide/metabolismo , Transdução de Sinais
2.
Environ Sci Technol ; 58(16): 6890-6899, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38606954

RESUMO

Halogenated organic compounds (HOCs) are a class of contaminants showing high toxicity, low biodegradability, and high bioaccumulation potential, especially chlorinated and brominated HOCs (Cl/Br-HOCs). Knowledge gaps exist on whether novel Cl/Br-HOCs could penetrate the placental barrier and cause adverse birth outcomes. Herein, 326 cord blood samples were collected in a hospital in Jinan, Shandong Province from February 2017 to January 2022, and 44 Cl/Br-HOCs were identified with communicating confidence level above 4 based on a nontarget approach, covering veterinary drugs, pesticides, and their transformation products, pharmaceutical and personal care products, disinfection byproducts, and so on. To our knowledge, the presence of closantel, bromoxynil, 4-hydroxy-2,5,6-trichloroisophthalonitrile, 2,6-dibromo-4-nitrophenol, and related components in cord blood samples was reported for the first time. Both multiple linear regression (MLR) and Bayesian kernel machine regression (BKMR) models were applied to evaluate the relationships of newborn birth outcomes (birth weight, length, and ponderal index) with individual Cl/Br-HOC and Cl/Br-HOCs mixture exposure, respectively. A significantly negative association was observed between pentachlorophenol exposure and newborn birth length, but the significance vanished after the false discovery rate correction. The BKMR analysis showed that Cl/Br-HOCs mixture exposure was significantly associated with reduced newborn birth length, indicating higher risks of fetal growth restriction. Our findings offer an overview of Cl/Br-HOCs exposome during the early life stage and enhance the understanding of its exposure risks.

3.
J Am Chem Soc ; 146(19): 13438-13444, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687695

RESUMO

The Baeyer-Villiger oxidation of ketones is a crucial oxygen atom transfer (OAT) process used for ester production. Traditionally, Baeyer-Villiger oxidation is accomplished by thermally oxidizing the OAT from stoichiometric peroxides, which are often difficult to handle. Electrochemical methods hold promise for breaking the limitation of using water as the oxygen atom source. Nevertheless, existing demonstrations of electrochemical Baeyer-Villiger oxidation face the challenges of low selectivity. We report in this study a strategy to overcome this challenge. By employing a well-known water oxidation catalyst, Fe2O3, we achieved nearly perfect selectivity for the electrochemical Baeyer-Villiger oxidation of cyclohexanone. Mechanistic studies suggest that it is essential to produce surface hydroperoxo intermediates (M-OOH, where M represents a metal center) that promote the nucleophilic attack on ketone substrates. By confining the reactions to the catalyst surfaces, competing reactions (e.g., dehydrogenation, carboxylic acid cation rearrangements, and hydroxylation) are greatly limited, thereby offering high selectivity. The surface-initiated nature of the reaction is confirmed by kinetic studies and spectroelectrochemical characterizations. This discovery adds nucleophilic oxidation to the toolbox of electrochemical organic synthesis.

4.
Sci Total Environ ; 929: 172652, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653146

RESUMO

Airway epithelium is extraordinary vulnerable to damage owning to continuous environment exposure. Subsequent repair is therefore essential to restore the homeostasis of respiratory system. Disruptions in respiratory epithelial repair caused by nanoparticles exposure have been linked to various human diseases, yet implications in repair process remain incompletely elucidated. This study aims to elucidate the key stage in epithelial repair disturbed by carbon black (CB) nanoparticles, highlighting the pivotal role of ΔNp63 in mediating the epithelium repair. A competitive-like binding between CB and beta-catenin 1 (CTNNB1) to ΔNp63 is proposed to elaborate the underlying toxicity mechanism. Specifically, CB exhibits a remarkable inhibitory effect on cell proliferation, leading to aberrant airway epithelial repair, as validated in air-liquid culture. ΔNp63 drives efficient epithelial proliferation during CB exposure, and CTNNB1 was identified as a target of ΔNp63 by bioinformatics analysis. Further molecular dynamics simulation reveals that oxygen-containing functional groups on CB disrupt the native interaction of CTNNB1 with ΔNp63 through competitive-like binding pattern. This process modulates CTNNB1 expression, ultimately restraining proliferation during respiratory epithelial repair. Overall, the current study elucidates that the diminished interaction between CTNNB1 and ΔNp63 impedes respiratory epithelial repair in response to CB exposure, thereby enriching the public health risk assessment on CB-related respiratory diseases.


Assuntos
Fuligem , beta Catenina , Fuligem/toxicidade , beta Catenina/metabolismo , Humanos , Mucosa Respiratória , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proliferação de Células , Células Epiteliais , Nanopartículas/toxicidade
5.
J Am Chem Soc ; 146(1): 878-883, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38154046

RESUMO

Molecular Ir catalysts have emerged as an important class of model catalysts for understanding structure-activity relationships in water oxidation, a reaction that is central to renewable fuel synthesis. Prior efforts have mostly focused on controlling and elucidating the emergence of active species from prepared precursors. However, the development of efficient and stable molecular Ir catalysts also necessitates probing of reaction intermediates. To date, relatively little is known about the key intermediates in the cycles of the molecular Ir catalysts. Herein, we probed the catalytic cycle of a homogeneous Ir catalyst ("blue dimer") at a Au electrode/aqueous electrolyte interface by combining surface-enhanced infrared absorption spectroscopy (SEIRAS) with phase-sensitive detection (PSD). Cyclic voltammograms (CVs) from 1.4 to 1.7 VRHE (RHE = reversible hydrogen electrode) give rise to a band at ∼818 cm-1, whereas CVs from 1.4 to ≥1.85 VRHE generate an additional band at ∼1146 cm-1. Isotope labeling experiments indicate that the bands at ∼818 and ∼1146 cm-1 are attributable to oxo (IrV═O) and superoxo (IrIV-OO•) moieties, respectively. This study establishes PSD-SEIRAS as a sensitive tool for probing water oxidation cycles at electrode/electrolyte interfaces and demonstrates that the relative abundance of two key intermediates can be tuned by the thermodynamic driving force of the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA