Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687198

RESUMO

Four couples of 5,6-membered bis(metallacyclic) Pt(II) complexes with acetylide and isocyanide auxiliary ligands have been prepared and characterized. The structures of (-)-2 and (-)-3 are confirmed by single-crystal X-ray diffraction, showing a distorted square-planar coordination environment around the Pt(II) nucleus. Both solutions and solid samples of all complexes are emissive at RT. Acetylide-coordinated Pt(II) complexes have a lower energy emission than those isocyanide-coordinated ones. The emission spectra of N^N'*C-coordinated Pt(II) derivatives show a lower energy emission maximum relative to N^C*N'-coordinated complexes with the same auxiliary ligand. Moreover, the difference between cyclometalated N^N'*C and N^C*N' ligands exerts a more remarkable effect on the emission than the auxiliary ligands acetylide and isocyanide. Cytotoxicity and cell imaging of luminescent 5,6-membered bis(metallacyclic) Pt(II) complexes have been evaluated.

2.
J Fluoresc ; 33(3): 1183-1189, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36622493

RESUMO

A novel fluorescent probe SHK for Zn2+ detection was designed based on the hydrazone Schiff base, successfully synthesized by Suzuki coupling and condensation reactions. The probe SHK in DMSO/H2O showed extremely weak fluorescence. However, the solution exhibited an intensive yellow-green emission with the introduction of Zn2+. In contrast, negligible fluorescence change was observed when other metal ions were added, suggesting a high selectivity of SHK for Zn2+ detection. The Job's Plot analysis revealed that a 1:1 stoichiometric adduct SHK-Zn2+ formed during the Zn2+ sensing. The binding constant of the complex was determined to be 184 M- 1, and the detection limit for Zn2+ was calculated to be 112 µM. Moreover, the probe SHK achieved selective fluorescence sensing for Zn2+ on test strips, which guaranteed its practical application prospect.

3.
Heliyon ; 8(11): e11358, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36387510

RESUMO

In this study, a couple of tetradentate Pt(II) enantiomers ((-)-1 and (+)-1) and a couple of tetradentate Pt(IV) enantiomers ((-)-2 and (+)-2) containing fused 5/6/6 metallocycles have been synthesized by controlling reaction conditions. Two valence forms could transform into each other through mild chemical oxidants and reductants. Single-crystal X-ray diffraction confirms the structures of (-)-1 and (-)-2. The coordination sphere of the Pt(II) cation in (-)-1 displays a distorted square-planar geometry and a platinum centroid helix chirality. In contrast, the structure of (-)-2 reveals a distorted octahedral geometry. The solution and the solid of (-)-1 are highly luminescent. Complex (-)-1 shows a prominent aggregation-induced emission enhancement (AIEE) behavior in DMSO/water solution with emission quantum yield (Φ em) up to 73.2%. Furthermore, highly phosphorescent Pt(II) enantiomers exhibit significant circularly polarized luminescence (CPL) with a dissymmetry factor (g lum) of order 10-3 in CH2Cl2 solutions at room temperature. Symmetrically appreciable CPL signals are observed for the enantiomers (-)-1 and (+)-1.

4.
Dalton Trans ; 50(25): 8938-8946, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34109961

RESUMO

The structure-mechanochromism relationship is explored with respect to packing patterns and corresponding intermolecular interactions that are affected by the number and location of -F. The distinct and reversible mechanochormic luminescence (Δλem up to ca. 90 nm) of yellow solids (-)-1-Yg, (-)-2-Yg, and (-)-3-Yg was displayed with a simultaneous crystal-to-amorphous transformation. The change of multiple triplet excited states accounted for the mechanochormic luminescence, and a switch from the 3π,π* monomer to the excimer/3MMLCT occurred in the grinding process. The mechanical force led to perturbation in the molecular packing, and aggregates with effective PtPt and π-π interactions were formed in the amorphous phase, leading to the variation of excited states. The mechanochromic luminescence could be reverted by dropping in CH2Cl2 and could be cycled multiple times without perceivable performance degradation. This work gives a reference for designing mechanochromic luminescent materials toward multicolor and multicomponent responses.

5.
Front Chem ; 8: 303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391328

RESUMO

Distinct circularly polarized luminescence (CPL) activity was observed in chiral (C∧N∧N)Pt(II) [(C∧N∧N) = 4,5-pinene-6'-phenyl-2,2'-bipyridine] complexes with bis- or triphenylphosphine ligands. Compared to the pseudo-square-planar geometry of chiral (C∧N∧N)Pt(II) complexes with chloride, phenylacetylene (PPV) and 2,6-dimethylphenyl isocyanide (Dmpi) ligands, the coordination configuration around the Pt(II) nucleus of chiral (C∧N∧N)Pt(II) complexes with bulk phosphine ligands is far more distorted. The geometry is straightforwardly confirmed by X-ray crystallography. The phosphines' participation enhanced the CPL signal of Pt(II) complexes profoundly, with the dissymmetry factor (g lum) up to 10-3. The distorted structures and enhanced chiroptical signals were further confirmed by time-dependent density functional theory (TD-DFT) calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA