Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
1.
Nat Commun ; 15(1): 7654, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227578

RESUMO

Citrullination plays an essential role in various physiological or pathological processes, however, whether citrullination is involved in regulating tumour progression and the potential therapeutic significance have not been well explored. Here, we find that peptidyl arginine deiminase 4 (PADI4) directly interacts with and citrullinates hypoxia-inducible factor 1α (HIF-1α) at R698, promoting HIF-1α stabilization. Mechanistically, PADI4-mediated HIF-1αR698 citrullination blocks von Hippel-Lindau (VHL) binding, thereby antagonizing HIF-1α ubiquitination and subsequent proteasome degradation. We also show that citrullinated HIF-1αR698, HIF-1α and PADI4 are highly expressed in hepatocellular carcinoma (HCC) tumour tissues, suggesting a potential correlation between PADI4-mediated HIF-1αR698 citrullination and cancer development. Furthermore, we identify that dihydroergotamine mesylate (DHE) acts as an antagonist of PADI4, which ultimately suppresses tumour progression. Collectively, our results reveal citrullination as a posttranslational modification related to HIF-1α stability, and suggest that targeting PADI4-mediated HIF-1α citrullination is a promising therapeutic strategy for cancers with aberrant HIF-1α expression.


Assuntos
Carcinoma Hepatocelular , Citrulinação , Progressão da Doença , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Hepáticas , Proteína-Arginina Desiminase do Tipo 4 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Camundongos , Células HEK293 , Estabilidade Proteica/efeitos dos fármacos , Desiminases de Arginina em Proteínas/metabolismo , Desiminases de Arginina em Proteínas/genética , Camundongos Nus , Masculino
2.
Nat Cell Biol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261719

RESUMO

Ammonia is thought to be a cytotoxin and its increase in the blood impairs cell function. However, whether and how this toxin triggers cell death under pathophysiological conditions remains unclear. Here we show that ammonia induces a distinct form of cell death in effector T cells. We found that rapidly proliferating T cells use glutaminolysis to release ammonia in the mitochondria, which is then translocated to and stored in the lysosomes. Excessive ammonia accumulation increases lysosomal pH and results in the termination of lysosomal ammonia storage and ammonia reflux into mitochondria, leading to mitochondrial damage and cell death, which is characterized by lysosomal alkalization, mitochondrial swelling and impaired autophagic flux. Inhibition of glutaminolysis or blocking lysosomal alkalization prevents ammonia-induced T cell death and improves T cell-based antitumour immunotherapy. These findings identify a distinct form of cell death that differs from previously known mechanisms.

3.
Sci Rep ; 14(1): 21414, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271714

RESUMO

Low back pain (LBP) is largely attributed to intervertebral disc degeneration (IVDD), of which the endplate changes are an important component. However, the alterations in cell fate and properties within the endplates during degeneration remain unknown. Here, we firstly performed the single-cell RNA-sequencing analysis (scRNA-seq) of the cells focusing on degenerative human endplates. By unsupervised clustering of the 8,534 single-cell based on the gene expression, we identified nine distinct cell types. We employed Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, and the single-cell regulatory network inference and clustering (SCENIC) to determine the enriched pathways and transcriptional activities across seven chondrocyte subpopulations. Furthermore, two cell fates of chondrocyte differentiation were found by trajectory analysis, one was enriched in inflammation-related genes, and the other was related to extracellular matrix (ECM). Additionally, the intercellular interactions of macrophages (MA) and chondrocytes, T cells/natural killer cells (T/NK) and chondrocytes were examined by ligand-receptor pairs analysis, showing the important regulative function of FN1 from MA and CD74 from T/NK during endplate degeneration. Overall, our findings provide novel perspectives on the endplate degeneration at the single-cell level and a whole-transcriptome size.


Assuntos
Diferenciação Celular , Condrócitos , Degeneração do Disco Intervertebral , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Análise de Célula Única/métodos , Condrócitos/metabolismo , Condrócitos/patologia , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Feminino , Masculino , Redes Reguladoras de Genes , Pessoa de Meia-Idade , Macrófagos/metabolismo , Adulto , Disco Intervertebral/patologia , Disco Intervertebral/metabolismo
4.
Protein Cell ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311688

RESUMO

Deactivation of the mitochondrial pyruvate dehydrogenase complex (PDC) is important for the metabolic switching of cancer cell from oxidative phosphorylation to aerobic glycolysis. Studies examining PDC activity regulation have mainly focused on the phosphorylation of pyruvate dehydrogenase (PDH, E1), leaving other post-translational modifications (PTMs) largely unexplored. Here, we demonstrate that the acetylation of Lys 488 of pyruvate dehydrogenase complex component X (PDHX) commonly occurs in hepatocellular carcinoma (HCC), disrupting PDC assembly and contributing to lactate-driven epigenetic control of gene expression. PDHX, an E3-binding protein (E3BP) in the PDC, is acetylated by the p300 at Lys 488, impeding the interaction between PDHX and dihydrolipoyl transacetylase (DLAT, E2), thereby disrupting PDC assembly to inhibit its activation. PDC disruption results in the conversion of most glucose to lactate, contributing to the aerobic glycolysis and H3K56 lactylation-mediated gene expression, facilitating tumor progression. These findings highlight a previously unrecognized role of PDHX acetylation in regulating PDC assembly and activity, linking PDHX Lys 488 acetylation and histone lactylation during HCC progression and providing a potential biomarker and therapeutic target for further development.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38853707

RESUMO

BACKGROUND: Nucleus pulposus cell (NPC) senescence in intervertebral disc (IVD) tissue is the major pathological cause of intervertebral disc degeneration (IDD). N6-methyladenosine (m6A) methylation and gut microbiota play important roles in the progression of IDD. This study investigated whether methyltransferase-like 3 (METTL3) regulates TLR2 m6A modification and gut microbiota to influence NPC senescence. METHODS: An IDD rat model was established by lumbar IVD puncture and NPCs were challenged with IL-1ß to mimic IVD injury. IDD rats and IL-1ß-exposed NPCs were treated with METTL3-interfering lentivirus and the TLR2 agonist Pam3CSK4. Compositional changes in the rat gut microbiota were analyzed and fecal microbiota transplantation procedures were used. NPC senescence, cell cycle, and the expression of senescence-associated secretory phenotype (SASP) factors were assessed. The m6A enrichment of TLR2 and the binding of IGF2BP1 to TLR2 mRNA were examined. RESULTS: METTL3 and TLR2 were highly expressed in IDD rats. METTL3 silencing attenuated senescent phenotypes and reduced secretion of SASP factors. Pam3CSK4 reversed the beneficial effects of METTL3 silencing on NPC senescence and IVD injury. METTL3 stabilized TLR2 mRNA in an IGF2BP1-dependent manner. METTL3 silencing restored specific gut microbiota levels in IDD rats, which was further reversed by administration of Pam3CSK4. Fecal microbiota from METTL3 silenced IDD rats altered the pathological phenotypes of IDD rats. CONCLUSIONS: These results demonstrate the beneficial effects of METTL3 silencing on NPC senescence and amelioration of IVD injury, involving modulation of TLR2 m6A modification and gut microbiota. These findings support METTL3 silencing as a potential therapeutic target for IDD.


Assuntos
Senescência Celular , Microbioma Gastrointestinal , Degeneração do Disco Intervertebral , Metiltransferases , Núcleo Pulposo , Ratos Sprague-Dawley , Receptor 2 Toll-Like , Animais , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Ratos , Metiltransferases/metabolismo , Metiltransferases/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/microbiologia , Masculino , Modelos Animais de Doenças , Metilação , Adenosina/análogos & derivados , Adenosina/metabolismo
6.
Medicine (Baltimore) ; 103(25): e38661, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905398

RESUMO

This study aims to visualize publications related to venous thromboembolism (VTE) and lower limb joint arthroplasty to identify research frontiers and hotspots, providing references and guidance for further research. We retrieved original articles published from 1985 to 2022 and their recorded information from the Web of Science Core Collection. The search strategy used terms related to knee or hip arthroplasty and thromboembolic events. Microsoft Excel was used to analyze the annual publications and citations of the included literature. The rest of the data were analyzed using the VOSviewer, citespace and R and produced visualizations of these collaborative networks. We retrieved 3543 original articles and the results showed an overall upward trend in annual publications. The United States of America had the most significant number of publications (Np) and collaborative links with other countries. McMaster University had the greatest Np. Papers published by Geerts WH in 2008 had the highest total link strength. Journal of Arthroplasty published the most articles on the research of VTE associated with lower limb joint arthroplasty. The latest research trend mainly involved "general anesthesia" "revision" and "tranexamic acid." This bibliometric study revealed that the research on VTE after lower limb joint arthroplasty is developing rapidly. The United States of America leads in terms of both quantity and quality of publications, while European and Canadian institutions and authors also make significant contributions. Recent research focused on the use of tranexamic acid, anesthesia selection, and the VTE risk in revision surgeries.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Bibliometria , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/etiologia , Artroplastia do Joelho/efeitos adversos , Artroplastia de Quadril/efeitos adversos , Pesquisa Biomédica/tendências , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Extremidade Inferior/cirurgia
7.
J Hepatol ; 81(4): 690-703, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38759889

RESUMO

BACKGROUND & AIMS: The liver is the main organ of ketogenesis, while ketones are mainly metabolized in peripheral tissues via the critical enzyme 3-oxoacid CoA-transferase 1 (OXCT1). We previously found that ketolysis is reactivated in hepatocellular carcinoma (HCC) cells through OXCT1 expression to promote tumor progression; however, whether OXCT1 regulates antitumor immunity remains unclear. METHODS: To investigate the expression pattern of OXCT1 in HCC in vivo, we conducted multiplex immunohistochemistry experiments on human HCC specimens. To explore the role of OXCT1 in mouse HCC tumor-associated macrophages (TAMs), we generated LysMcreOXCT1f/f (OXCT1 conditional knockout in macrophages) mice. RESULTS: Here, we found that inhibiting OXCT1 expression in tumor-associated macrophages reduced CD8+ T-cell exhaustion through the succinate-H3K4me3-Arg1 axis. Initially, we found that OXCT1 was highly expressed in liver macrophages under steady state and that OXCT expression was further increased in TAMs. OXCT1 deficiency in macrophages suppressed tumor growth by reprogramming TAMs toward an antitumor phenotype, reducing CD8+ T-cell exhaustion and increasing CD8+ T-cell cytotoxicity. Mechanistically, high OXCT1 expression induced the accumulation of succinate, a byproduct of ketolysis, in TAMs, which promoted Arg1 transcription by increasing the H3K4me3 level in the Arg1 promoter. In addition, pimozide, an inhibitor of OXCT1, suppressed Arg1 expression as well as TAM polarization toward the protumor phenotype, leading to decreased CD8+ T-cell exhaustion and slower tumor growth. Finally, high expression of OXCT1 in macrophages was positively associated with poor survival in patients with HCC. CONCLUSIONS: In conclusion, our results demonstrate that OXCT1 epigenetically suppresses antitumor immunity, suggesting that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer. IMPACT AND IMPLICATIONS: The intricate metabolism of liver macrophages plays a critical role in shaping hepatocellular carcinoma progression and immune modulation. Targeting macrophage metabolism to counteract immune suppression presents a promising avenue for hepatocellular carcinoma treatment. Herein, we found that the ketogenesis gene OXCT1 was highly expressed in tumor-associated macrophages (TAMs) and promoted tumor growth by reprogramming TAMs toward a protumor phenotype. Pharmacological targeting or genetic downregulation of OXCT1 in TAMs enhances antitumor immunity and slows tumor growth. Our results suggest that suppressing OXCT1 activity in TAMs could be an effective approach for treating liver cancer.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Cetonas , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Camundongos , Humanos , Coenzima A-Transferases/metabolismo , Coenzima A-Transferases/genética , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Knockout
8.
STAR Protoc ; 5(2): 103088, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38787728

RESUMO

OXCT1 acts as a succinyltransferase to promote serine beta-lactamase-like protein (LACTB) K284 succinylation. Here, we present a protocol for detecting OXCT1-mediated LACTB succinylation levels and sites. We describe steps for using western blotting (WB) and mass spectrometry to determine OXCT1-mediated LACTB succinylation levels and sites in vitro. This protocol can be applied to detect and identify succinylation levels and sites on other proteins. For complete details on the use and execution of this protocol, please refer to Ma et al.1.


Assuntos
beta-Lactamases , beta-Lactamases/metabolismo , beta-Lactamases/química , Western Blotting/métodos , Espectrometria de Massas/métodos , Ácido Succínico/metabolismo , Ácido Succínico/química , Processamento de Proteína Pós-Traducional
9.
BMC Musculoskelet Disord ; 25(1): 311, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649911

RESUMO

OBJECTIVE: Clinically, it has been found that patients undergoing knee replacement have a high incidence of concomitant hallux valgus. In this study, we analyzed whether patients with osteoarthritis who underwent surgery and those patient who did not have surgery had an increased risk of hallux valgus by Mendelian randomization and performed reverse causal analysis. DESIGN: Genomewide association study (GWAS) data for osteoarthritis, categorized by knee arthritis with joint replacement, knee arthritis without joint replacement, hip arthritis with joint replacement, and hip arthritis without joint replacement.And acquired hallux valgus were downloaded for Mendelian randomized studies. MR analysis was performed using inverse variance-weighted (IVW), weighted median, and MR-Egger methods. MR-egger regression, MR pleiotropic residuals and outliers (MR-presso), and Cochran's Q statistical methods were used to evaluate heterogeneity and pleiotropy. RESULTS: The IVW results indicate that, compared to healthy individuals, patients who meet the criteria for knee osteoarthritis joint replacement surgery have a significantly higher risk of acquired hallux valgus. There were no significant causal relationships found for the remaining results. No significant heterogeneity or multiplicity was observed in all the Mr analyses. CONCLUSION: Our study supports the increased risk of acquired hallux valgus in patients eligible for knee replacement. There is necessary for clinicians to be concerned about the hallux valgus status of patients undergoing knee arthroplasty.


Assuntos
Artroplastia do Joelho , Estudo de Associação Genômica Ampla , Hallux Valgus , Análise da Randomização Mendeliana , Osteoartrite do Joelho , Humanos , Artroplastia do Joelho/efeitos adversos , Hallux Valgus/cirurgia , Hallux Valgus/genética , Hallux Valgus/epidemiologia , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/epidemiologia , Fatores de Risco , Feminino , Masculino , Osteoartrite do Quadril/cirurgia , Osteoartrite do Quadril/genética , Osteoartrite do Quadril/epidemiologia , Pessoa de Meia-Idade
10.
Nat Commun ; 15(1): 2939, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580630

RESUMO

Endplate sclerosis is a notable aspect of spine degeneration or aging, but the mechanisms remain unclear. Here, we report that senescent macrophages accumulate in the sclerotic endplates of lumbar spine instability (LSI) or aging male mouse model. Specifically, knockout of cdkn2a (p16) in macrophages abrogates LSI or aging-induced angiogenesis and sclerosis in the endplates. Furthermore, both in vivo and in vitro studies indicate that IL-10 is the primary elevated cytokine of senescence-related secretory phenotype (SASP). Mechanistically, IL-10 increases pSTAT3 in endothelial cells, leading to pSTAT3 directly binding to the promoters of Vegfa, Mmp2, and Pdgfb to encourage their production, resulting in angiogenesis. This study provides information on understanding the link between immune senescence and endplate sclerosis, which might be useful for therapeutic approaches.


Assuntos
Senescência Celular , Interleucina-10 , Animais , Masculino , Camundongos , Angiogênese , Células Endoteliais , Interleucina-10/genética , Macrófagos , Esclerose
11.
Proc Natl Acad Sci U S A ; 121(11): e2317658121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437537

RESUMO

Identification of mechanisms that program early effector T cells to either terminal effector T (Teff) or memory T (Tm) cells has important implications for protective immunity against infections and cancers. Here, we show that the cytosolic transcription factor aryl hydrocarbon receptor (AhR) is used by early Teff cells to program memory fate. Upon antigen engagement, AhR is rapidly up-regulated via reactive oxygen species signaling in early CD8+ Teff cells, which does not affect the effector response, but is required for memory formation. Mechanistically, activated CD8+ T cells up-regulate HIF-1α to compete with AhR for HIF-1ß, leading to the loss of AhR activity in HIF-1αhigh short-lived effector cells, but sustained in HIF-1αlow memory precursor effector cells (MPECs) with the help of autocrine IL-2. AhR then licenses CD8+ MPECs in a quiescent state for memory formation. These findings partially resolve the long-standing issue of how Teff cells are regulated to differentiate into memory cells.


Assuntos
Linfócitos T CD8-Positivos , Divisão Celular , Citosol , Espécies Reativas de Oxigênio
12.
Sensors (Basel) ; 24(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38544062

RESUMO

In order to improve the real-time performance of gesture recognition by a micro-Doppler map of mmWave radar, the point cloud based gesture recognition for mmWave radar is proposed in this paper. Two steps are carried out for mmWave radar-based gesture recognition. The first step is to estimate the point cloud of the gestures by 3D-FFT and the peak grouping. The second step is to train the TRANS-CNN model by combining the multi-head self-attention and the 1D-convolutional network so as to extract the features in the point cloud data at a deeper level to categorize the gestures. In the experiments, TI mmWave radar sensor IWR1642 is used as a benchmark to evaluate the feasibility of the proposed approach. The results show that the accuracy of the gesture recognition reaches 98.5%. In order to prove the effectiveness of our approach, a simply 2Tx2Rx radar sensor is developed in our lab, and the accuracy of recognition reaches 97.1%. The results show that our proposed gesture recognition approach achieves the best performance in real time with limited training data in comparison with the existing methods.

13.
Cancer Res ; 84(8): 1270-1285, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335272

RESUMO

Reprogramming of energy metabolism exerts pivotal functions in cancer progression and immune surveillance. Identification of the mechanisms mediating metabolic changes in cancer may lead to improved strategies to suppress tumor growth and stimulate antitumor immunity. Here, it was observed that the secretomes of hypoxic breast cancer cells and breast cancer stem cells (BCSC) induced reprogramming of metabolic pathways, particularly glycolysis, in normoxic breast cancer cells. Screening of the BCSC secretome identified MIF as a pivotal factor potentiating glycolysis. Mechanistically, MIF increased c-MYC-mediated transcriptional upregulation of the glycolytic enzyme aldolase C by activating WNT/ß-catenin signaling. Targeting MIF attenuated glycolysis and impaired xenograft growth and metastasis. MIF depletion in breast cancer cells also augmented intratumoral cytolytic CD8+ T cells and proinflammatory macrophages while decreasing regulatory T cells and tumor-associated neutrophils in the tumor microenvironment. Consequently, targeting MIF improved the therapeutic efficacy of immune checkpoint blockade in triple-negative breast cancer. Collectively, this study proposes MIF as an attractive therapeutic target to circumvent metabolic reprogramming and immunosuppression in breast cancer. SIGNIFICANCE: MIF secreted by breast cancer stem cells induces metabolic reprogramming in bulk tumor cells and engenders an immunosuppressive microenvironment, identifying MIF targeting as a strategy to improve immunotherapy efficacy in breast cancer.


Assuntos
Neoplasias da Mama , Fatores Inibidores da Migração de Macrófagos , Humanos , Feminino , Neoplasias da Mama/patologia , Reprogramação Metabólica , Evasão da Resposta Imune , Glicólise , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Oxirredutases Intramoleculares/metabolismo
14.
Orthop Surg ; 16(3): 733-744, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38384174

RESUMO

OBJECTIVE: Glucocorticoid (GC) overuse is strongly associated with steroid-induced osteonecrosis of the femoral head (SINFH). However, the underlying mechanism of SINFH remains unclear. This study aims to investigate the effect of dexamethasone (Dex)-induced oxidative stress on osteocyte apoptosis and the underlying mechanisms. METHODS: Ten patients with SINFH and 10 patients with developmental dysplasia of the hips (DDH) were enrolled in our study. Sixty rats were randomly assigned to the Control, Dex, Dex + N-Acetyl-L-cysteine (NAC), Dex + Dibenziodolium chloride (DPI), NAC, and DPI groups. Magnetic resonance imaging (MRI) was used to examine edema in the femoral head of rats. Histopathological staining was performed to assess osteonecrosis. Immunofluorescence staining with TUNEL and 8-OHdG was conducted to evaluate osteocyte apoptosis and oxidative damage. Immunohistochemical staining was carried out to detect the expression of NOX1, NOX2, and NOX4. Viability and apoptosis of MLO-Y4 cells were measured using the CCK-8 assay and TUNEL staining. 8-OHdG staining was conducted to detect oxidative stress. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining was performed to measure reactive oxygen species (ROS). The expression of NOX1, NOX2, and NOX4 in MLO-Y4 cells was analyzed by Western blotting. Multiple comparisons were performed using one-way analysis of variance (ANOVA). RESULTS: In patients and the rat model, hematoxylin-eosin (HE) staining revealed a significantly higher rate of empty lacunae in the SINFH group than in the DDH group. Immunofluorescence staining indicated a significant increase in TUNEL-positive cells and 8-OHdG-positive cells in the SINFH group compared to the DDH group. Immunohistochemical staining demonstrated a significant increase in the expression of NOX1, NOX2, and NOX4 proteins in SINFH patients compared to DDH patients. Moreover, immunohistochemical staining showed a significant increase in the proportion of NOX2-positive cells compared to the Control group in the femoral head of rats. In vitro, Dex significantly inhibited the viability of osteocyte cells and induced apoptosis. After Dex treatment, the intracellular ROS level increased. However, Dex treatment did not alter the expression of NOX proteins in vitro. Additionally, NAC and DPI inhibited the generation of intracellular ROS and partially alleviated osteocyte apoptosis in vivo and in vitro. CONCLUSION: This study demonstrates that GC promotes apoptosis of osteocyte cells through ROS-induced oxidative stress. Furthermore, we found that the increased expression of NOXs induced by GC serves as an important source of ROS generation.


Assuntos
Osteócitos , Osteonecrose , Humanos , Ratos , Animais , Dexametasona/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Cabeça do Fêmur , Glucocorticoides/efeitos adversos , Apoptose , Esteroides/efeitos adversos , Esteroides/metabolismo , Estresse Oxidativo
15.
Science ; 383(6684): eadi3332, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359126

RESUMO

The identification of mechanisms to store glucose carbon in the form of glycogen rather than fat in hepatocytes has important implications for the prevention of nonalcoholic fatty liver disease (NAFLD) and other chronic metabolic diseases. In this work, we show that glycogenesis uses its intermediate metabolite uridine diphosphate glucose (UDPG) to antagonize lipogenesis, thus steering both mouse and human hepatocytes toward storing glucose carbon as glycogen. The underlying mechanism involves transport of UDPG to the Golgi apparatus, where it binds to site-1 protease (S1P) and inhibits S1P-mediated cleavage of sterol regulatory element-binding proteins (SREBPs), thereby inhibiting lipogenesis in hepatocytes. Consistent with this mechanism, UDPG administration is effective at treating NAFLD in a mouse model and human organoids. These findings indicate a potential opportunity to ameliorate disordered fat metabolism in the liver.


Assuntos
Lipogênese , Glicogênio Hepático , Fígado , Pró-Proteína Convertases , Serina Endopeptidases , Uridina Difosfato Glucose , Animais , Humanos , Masculino , Camundongos , Carbono/metabolismo , Glucose/metabolismo , Células HEK293 , Hepatócitos/metabolismo , Fígado/metabolismo , Glicogênio Hepático/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Pró-Proteína Convertases/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Uridina Difosfato Glucose/administração & dosagem , Uridina Difosfato Glucose/metabolismo
16.
Nat Commun ; 15(1): 1314, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351096

RESUMO

Immune checkpoint blockade (ICB) has shown considerable promise for treating various malignancies, but only a subset of cancer patients benefit from immune checkpoint inhibitor therapy because of immune evasion and immune-related adverse events (irAEs). The mechanisms underlying how tumor cells regulate immune cell response remain largely unknown. Here we show that hexokinase domain component 1 (HKDC1) promotes tumor immune evasion in a CD8+ T cell-dependent manner by activating STAT1/PD-L1 in tumor cells. Mechanistically, HKDC1 binds to and presents cytosolic STAT1 to IFNGR1 on the plasma membrane following IFNγ-stimulation by associating with cytoskeleton protein ACTA2, resulting in STAT1 phosphorylation and nuclear translocation. HKDC1 inhibition in combination with anti-PD-1/PD-L1 enhances in vivo T cell antitumor response in liver cancer models in male mice. Clinical sample analysis indicates a correlation among HKDC1 expression, STAT1 phosphorylation, and survival in patients with hepatocellular carcinoma treated with atezolizumab (anti-PD-L1). These findings reveal a role for HKDC1 in regulating immune evasion by coupling cytoskeleton with STAT1 activation, providing a potential combination strategy to enhance antitumor immune responses.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Masculino , Camundongos , Antígeno B7-H1 , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Hexoquinase/metabolismo , Evasão da Resposta Imune , Neoplasias Hepáticas/patologia , Fator de Transcrição STAT1/metabolismo , Evasão Tumoral
17.
Nat Commun ; 15(1): 1405, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360940

RESUMO

Mechanical force contributes to perforin pore formation at immune synapses, thus facilitating the cytotoxic T lymphocytes (CTL)-mediated killing of tumor cells in a unidirectional fashion. How such mechanical cues affect CTL evasion of perforin-mediated autolysis remains unclear. Here we show that activated CTLs use their softness to evade perforin-mediated autolysis, which, however, is shared by T leukemic cells to evade CTL killing. Downregulation of filamin A is identified to induce softness via ZAP70-mediated YAP Y357 phosphorylation and activation. Despite the requirements of YAP in both cell types for softness induction, CTLs are more resistant to YAP inhibitors than malignant T cells, potentially due to the higher expression of the drug-resistant transporter, MDR1, in CTLs. As a result, moderate inhibition of YAP stiffens malignant T cells but spares CTLs, thus allowing CTLs to cytolyze malignant cells without autolysis. Our findings thus hint a mechanical force-based immunotherapeutic strategy against T cell leukemia.


Assuntos
Citotoxicidade Imunológica , Linfócitos T Citotóxicos , Perforina/genética , Perforina/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética
18.
Mol Cell ; 84(3): 538-551.e7, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176415

RESUMO

Metabolic reprogramming is an important feature of cancers that has been closely linked to post-translational protein modification (PTM). Lysine succinylation is a recently identified PTM involved in regulating protein functions, whereas its regulatory mechanism and possible roles in tumor progression remain unclear. Here, we show that OXCT1, an enzyme catalyzing ketone body oxidation, functions as a lysine succinyltransferase to contribute to tumor progression. Mechanistically, we find that OXCT1 functions as a succinyltransferase, with residue G424 essential for this activity. We also identified serine beta-lactamase-like protein (LACTB) as a main target of OXCT1-mediated succinylation. Extensive succinylation of LACTB K284 inhibits its proteolytic activity, resulting in increased mitochondrial membrane potential and respiration, ultimately leading to hepatocellular carcinoma (HCC) progression. In summary, this study establishes lysine succinyltransferase function of OXCT1 and highlights a link between HCC prognosis and LACTB K284 succinylation, suggesting a potentially valuable biomarker and therapeutic target for further development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , beta-Lactamases , Humanos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lisina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional
19.
Cell Discov ; 10(1): 11, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291322

RESUMO

Mitochondrial rRNA modifications are essential for mitoribosome assembly and its proper function. The m4C methyltransferase METTL15 maintains mitochondrial homeostasis by catalyzing m4C839 located in 12 S rRNA helix 44 (h44). This modification is essential to fine-tuning the ribosomal decoding center and increasing decoding fidelity according to studies of a conserved site in Escherichia coli. Here, we reported a series of crystal structures of human METTL15-hsRBFA-h44-SAM analog, METTL15-hsRBFA-SAM, METTL15-SAM and apo METTL15. The structures presented specific interactions of METTL15 with different substrates and revealed that hsRBFA recruits METTL15 to mitochondrial small subunit for further modification instead of 12 S rRNA. Finally, we found that METTL15 deficiency caused increased reactive oxygen species, decreased membrane potential and altered cellular metabolic state. Knocking down METTL15 caused an elevated lactate secretion and increased levels of histone H4K12-lactylation and H3K9-lactylation. METTL15 might be a suitable model to study the regulation between mitochondrial metabolism and histone lactylation.

20.
Nat Immunol ; 25(3): 483-495, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177283

RESUMO

Tumor cells and surrounding immune cells undergo metabolic reprogramming, leading to an acidic tumor microenvironment. However, it is unclear how tumor cells adapt to this acidic stress during tumor progression. Here we show that carnosine, a mobile buffering metabolite that accumulates under hypoxia in tumor cells, regulates intracellular pH homeostasis and drives lysosome-dependent tumor immune evasion. A previously unrecognized isoform of carnosine synthase, CARNS2, promotes carnosine synthesis under hypoxia. Carnosine maintains intracellular pH (pHi) homeostasis by functioning as a mobile proton carrier to accelerate cytosolic H+ mobility and release, which in turn controls lysosomal subcellular distribution, acidification and activity. Furthermore, by maintaining lysosomal activity, carnosine facilitates nuclear transcription factor X-box binding 1 (NFX1) degradation, triggering galectin-9 and T-cell-mediated immune escape and tumorigenesis. These findings indicate an unconventional mechanism for pHi regulation in cancer cells and demonstrate how lysosome contributes to immune evasion, thus providing a basis for development of combined therapeutic strategies against hepatocellular carcinoma that exploit disrupted pHi homeostasis with immune checkpoint blockade.


Assuntos
Carcinoma Hepatocelular , Carnosina , Neoplasias Hepáticas , Humanos , Homeostase , Lisossomos , Hipóxia , Concentração de Íons de Hidrogênio , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA