Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 637
Filtrar
1.
Int J Biol Macromol ; 281(Pt 2): 136315, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39370069

RESUMO

Deep eutectic solvents (DESs) are renowned in chemical and food industries for their eco-friendly extraction efficacy. Silver carp swim bladders, a collagen-rich byproduct of surimi production, are underutilized, resulting in considerable protein waste. Traditionally, collagen extraction has relied on harsh acids, contributing to environmental pollution and producing collagens with limited solubility, thus constraining their applications. This study evaluated DESs compared to conventional acids in extracting collagen, focusing on structural and solubility variations. Notably, urea-based DESs (urea-lactic acid: U-LA, 1:10, w/v) achieved the highest hydroxyproline recovery rates (∼ 94 %), comparable to acetic acid (AA, 1:20, w/v), but with half the solid-liquid ratio. Unlike acid-extracted collagen, which preserved the triple-helical structure, urea-based DESs partially disrupted this configuration by reducing intramolecular hydrogen bonding within collagen. However, these solvents simultaneously increased intermolecular hydrogen bonding. This alteration significantly enhanced collagen's solubility, maintaining over 60 % across a broad pH range (1-10) and various NaCl concentrations (0-6 %, w/v). Furthermore, urea-acetic acid (U-AA) extracted collagen exhibited the highest maximum transition temperature (solid state, Tmax = 101.94 °C) and gel strength (165 g). The findings suggest that urea-based DESs not only enhance collagen recovery rates but also its solubility and gelation properties, broadening its potential applications in cosmetics, food products, and biomaterials.

2.
Mol Med Rep ; 30(6)2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39422026

RESUMO

The LMNA gene, which is responsible for encoding lamin A/C proteins, is recognized as a primary constituent of the nuclear lamina. This protein serves crucial roles in various cellular physiological activities, including the maintenance of cellular structural stability, regulation of gene expression, mechanosensing and cellular motility. A significant association has been established between the LMNA gene and several major human diseases. Mutations, dysregulated expression of the LMNA gene, and improper processing of its encoded protein can result in a spectrum of pathological conditions. These diseases, collectively termed laminopathies, are directly attributed to LMNA gene dysfunction. The present review examines the recent advancements in research concerning the LMNA gene and its association with human diseases, while exploring its pathological roles. Particular emphasis is placed on the current status of LMNA gene research in the context of tumors. This includes an analysis of the abundance of LMNA alterations in cancer and its interplay with various signaling pathways. The aim of the present review was to provide novel perspectives for studying the development of LMNA­related diseases and additional theoretical insights for basic and clinical translational research in this field.


Assuntos
Lamina Tipo A , Neoplasias , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Mutação , Predisposição Genética para Doença , Transdução de Sinais , Animais , Laminopatias/genética , Laminopatias/metabolismo
3.
ACS Nano ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417602

RESUMO

The p-n junction, a widely studied semiconductor material structure, offers only limited improvements in photoelectrochemical (PEC) efficiency. Herein, a three-dimensional (3D) p-n junction h-Ta3N5@CoN featuring a stable chestnut shell hollow sphere structure and photothermal effect was synthesized by using an epitaxial growth strategy. The fine fibers within the sphere induce Rayleigh scattering, which scatters unabsorbed light, thereby enabling secondary absorption and enhancing light utilization. The quantum confinement effects generated by CoN fine fibers, which are sized in a few nanometers, inhibit the recombination of electron-hole pairs. Moreover, the lattice matching between Ta3N5 and CoN allows for smoother movement of carriers and nonradiative relaxation phonons along the lattice, thereby enhancing the transport of both carriers and heat. The obtained h-Ta3N5@CoN/FTO p-n junction photoanode, under near-infrared (NIR) auxiliary irradiation, demonstrates a photocurrent of 8.71 mA cm-2 at 1.23 VRHE. Moreover, the h-Ta3N5@CoN+NIR/FTO photoanode can sustain operation for 168 h, which, to my knowledge, surpasses the operational durations of all other Ta3N5-based photoanodes. This study synthesizes three-dimensional hollow chestnut shell photothermal p-n heterojunctions through an epitaxial growth strategy, endowing the material with a more efficient carrier separation and photothermal transfer efficiency.

4.
Acta Physiol (Oxf) ; : e14240, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39404508

RESUMO

Fibrosis is characterized by excessive extracellular matrix (ECM) deposition resulting from dysregulated wound healing and connective tissue repair mechanisms. Excessive accumulation of ECM leads to fibrous tissue formation, impairing organ function and driving the progression of various fibrotic diseases. Recently, the role of small ubiquitin-like modifiers (SUMO) in fibrotic diseases has attracted significant attention. SUMO-mediated SUMOylation, a highly conserved posttranslational modification, participates in a variety of biological processes, including nuclear-cytosolic transport, cell cycle progression, DNA damage repair, and cellular metabolism. Conversely, SUMO-specific proteases cleave the isopeptide bond of SUMO conjugates, thereby regulating the deSUMOylation process. Mounting evidence indicates that SUMOylation and deSUMOylation regulate the functions of several proteins, such as Smad3, NF-κB, and promyelocytic leukemia protein, which are implicated in fibrotic diseases like liver fibrosis, myocardial fibrosis, and pulmonary fibrosis. This review summarizes the role of SUMO in fibrosis-related pathways and explores its pathological relevance in various fibrotic diseases. All evidence suggest that the SUMO pathway is important targets for the development of treatments for fibrotic diseases.

5.
Biomed Opt Express ; 15(8): 4390-4405, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39346987

RESUMO

In this study, we implemented an unsupervised deep learning method, the Noise2Noise network, for the improvement of linear-array-based photoacoustic (PA) imaging. Unlike supervised learning, which requires a noise-free ground truth, the Noise2Noise network can learn noise patterns from a pair of noisy images. This is particularly important for in vivo PA imaging, where the ground truth is not available. In this study, we developed a method to generate noise pairs from a single set of PA images and verified our approach through simulation and experimental studies. Our results reveal that the method can effectively remove noise, improve signal-to-noise ratio, and enhance vascular structures at deeper depths. The denoised images show clear and detailed vascular structure at different depths, providing valuable insights for preclinical research and potential clinical applications.

6.
Nat Commun ; 15(1): 8328, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333517

RESUMO

The redox state of a planetary mantle affects its thermal evolution. The redox evolution of lunar mantle, however, remains unclear due to limited oxygen fugacity (fO2) constraints from young lunar samples. Here, we report vanadium (V) oxybarometers on olivine and spinel conducted on 27 Chang'e-5 basalt fragments from 2.0 billion years ago. These fragments yield an average fO2 of ΔIW -0.84 ± 0.65 (2σ), which closely aligns with the Apollo samples from 3.6-3.0 billion years ago. This temporal uniformity indicates the lunar mantle remained reduced. This observation reveals that the processes responsible for oxidizing mantles of Earth and Mars either did not occur or had negligible oxidizing effects on the Moon. The long-term reduced mantle may lead to a distinctive volatile degassing pathway for the Moon. It could also make the lunar mantle more difficult to melt, preventing internal heat dissipation and consequently resulting in a slow cooling rate.

7.
Acta Pharmacol Sin ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349766

RESUMO

ß-arrestin2, a pivotal protein within the arrestin family, is localized in the cytoplasm, plasma membrane and nucleus, and regulates G protein-coupled receptors (GPCRs) signaling. Recent evidence shows that ß-arrestin2 plays a dual role in regulating GPCRs by mediating desensitization and internalization, and by acting as a scaffold for the internalization, kinase activation, and the modulation of various signaling pathways, including NF-κB, MAPK, and TGF-ß pathways of non-GPCRs. Earlier studies have identified that ß-arrestin2 is essential in regulating immune cell infiltration, inflammatory factor release, and inflammatory cell proliferation. Evidently, ß-arrestin2 is integral to the pathological mechanisms of inflammatory immune diseases, such as inflammatory bowel disease, sepsis, asthma, rheumatoid arthritis, organ fibrosis, and tumors. Research on the modulation of ß-arrestin2 offers a promising strategy for the development of pharmaceuticals targeting inflammatory immune diseases. This review meticulously describes the roles of ß-arrestin2 in cells associated with inflammatory immune responses and explores its pathological relevance in various inflammatory immune diseases.

8.
Sci Total Environ ; 954: 176255, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276993

RESUMO

Air pollution, particularly fine particulate matter (PM2.5) with <2.5 µm in diameter, is a major public health concern. Studies have consistently linked PM2.5 exposure to a heightened risk of cardiovascular diseases (CVDs) such as ischemic heart disease (IHD), heart failure (HF), and cardiac arrhythmias. Notably, individuals with pre-existing age-related cardiometabolic conditions appear more susceptible. However, the specific impact of PM2.5 on CVDs susceptibility in older adults remains unclear. Therefore, this review addresses this gap by discussing the factors that make the elderly more vulnerable to PM2.5-induced CVDs. Accordingly, we focused on physiological aging, increased susceptibility, cardiometabolic risk factors, CVDs, and biological mechanisms. This review concludes by examining potential interventions to reduce exposure and the adverse health effects of PM2.5 in the elderly population. The latter includes dietary modifications, medications, and exploration of the potential benefits of supplements. By comprehensively analyzing these factors, this review aims to provide a deeper understanding of the detrimental effects of PM2.5 on cardiovascular health in older adults. This knowledge can inform future research and guide strategies to protect vulnerable populations from the adverse effects of air pollution.

9.
BMC Cancer ; 24(1): 1082, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223545

RESUMO

BACKGROUND: Colorectal cancer is the third most common cancer and the second leading cause of cancer death. There are limited therapeutic options for the treatment of locally advanced or metastatic colorectal cancers which fail first-line chemotherapy. Phase I/II studies showed that the combined application of the raltitrexed and irinotecan has significant synergistic effect and acceptable toxicity. However, most of these previous studies have relatively small sample size. METHODS: This is a prospective open-label, single-arm, multi-center, Phase II trial. Brief inclusion criteria: patients were aged 18 to 75 years with locally advanced or metastatic colorectal cancer after failure of 5-FU and oxaliplatin therapy. Enrolled patients received raltitrexed (3 mg/m2, d1) and irinotecan (180 mg/m2, d1) each 21-day cycle until disease progression or unacceptable toxicity. The primary endpoint was progression-free survival, and the secondary endpoints were disease control rate, objective response rate, overall survival and safety. RESULTS: A total of 108 patients were enrolled between September 2016 and May 2020. The median age was 61 years, ECOG 1 score accounts for 67.6%, the rest were ECOG 0. A total of 502 cycles were completed, with an average of 4.6 cycles and a median of 4 cycles. 108 patients were evaluated, with an objective response rate of 17.6%, and disease control rate of 76.9%. The median follow-up time was 27 months (range:3.1-61.0 m) at data cut-off on March 2023. Median progression-free survival was 4.9 months (95% CI 4.1-5.7) and median overall survival was 13.1 months (95% CI 12.2-15.5). The most common adverse events that were elevated are alanine aminotransferase increased, aspartate aminotransferase increased, fatigue, diarrhoea, neutrocytopenia, thrombocytopenia, hypohemoglobin, and leukocytopenia. Most of the adverse events were Grade I/II, which were relieved after symptomatic treatment, and there were no treatment-related cardiotoxicities and deaths. CONCLUSIONS: The combination of raltitrexed and irinotecan as second-line treatment for mCRC could be a reliable option after failure of standard 5-Fu-first-line chemotherapy in locally advanced or metastatic colorectal cancers, especially for patients with 5-FU intolerance (cardiac events or DPD deficiency patients). TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03053167, registration date was 14/2/2017.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Colorretais , Irinotecano , Quinazolinas , Tiofenos , Humanos , Pessoa de Meia-Idade , Quinazolinas/uso terapêutico , Quinazolinas/efeitos adversos , Masculino , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Irinotecano/uso terapêutico , Irinotecano/administração & dosagem , Idoso , Feminino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Tiofenos/uso terapêutico , Tiofenos/administração & dosagem , Tiofenos/efeitos adversos , Estudos Prospectivos , Adulto , Intervalo Livre de Progressão , Adulto Jovem
10.
Ecotoxicol Environ Saf ; 284: 116992, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39244882

RESUMO

Indole-3-acetic acid (IAA) can regulate plant growth and thus modulate the accumulation of polycyclic aromatic hydrocarbons (PAHs). However, the effect of endogenous IAA on PAHs accumulation and its influencing factors remains unclear. To unravel this, two different IAA expression genotypes of Arabidopsis thaliana, i.e., IAA-underproducing yucca1D [YUC1] mutant and wild type [WT]) were selected and treated with different fluoranthene (Flu) concentrations (0 mg/L [CK], 5 mg/L [Flu5], and 20 mg/L [Flu20]) to reveal the impact mechanism of endogenous IAA on Flu uptake by plants. The results indicated that under Flu5 treatment, the bioconcentration factors (BCF) and translocation factors (TF) of Flu in WT were 41.4 % and 14.3 % higher than those in YUC1. Similarly, under Flu20 treatment, the BCF and TF of Flu in WT were also 42.2 % and 8.2 % higher than those in YUC1. In addition, the BCF and TF were 72.5 % and 35.8 % higher under Flu5 treatment compared to Flu20 treatment for WT, and 73.4 % and 28.6 % higher respectively for YUC1. Moreover, WT exhibited higher plant growth (biomass, root morphology indicators [root length, root area and number of tips]) and IAA content compared to YUC1 under identical Flu treatments. Plant growth and IAA content declined with the increase of Flu concentration in both YUC1 and WT leaves compared with CK treatment. Conversely, in WT roots, root biomass and morphology indicators promoted followed by a decrease as the concentration of Flu increased. Additionally, the antioxidant enzyme activities (SOD, POD, and CAT) of WT were 11.1 %, 16.7 %, and 28.9 % higher than those of YUC1 under Flu5 treatment, and 13.6 %, 12.9 %, and 26.5 % higher under Flu20 treatment. Compared with CK treatment, SOD and POD activities promoted with increasing Flu concentration, whereas CAT activities decreased. Variability separation analysis revealed that level of IAA primarily influenced Flu accumulation in WT or under Flu5 treatments, whereas antioxidant enzyme activity primarily affected Flu accumulation in YUC1 or under Flu20 treatments. Exploring the relationship between the IAA synthesis gene YUCCA and IAA levels, alongside Flu accumulation, could yield novel insights into the regulation of PAH accumulation in plants.


Assuntos
Arabidopsis , Fluorenos , Ácidos Indolacéticos , Arabidopsis/efeitos dos fármacos , Fluorenos/toxicidade , Ácidos Indolacéticos/metabolismo , Antioxidantes/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
11.
Soc Cogn Affect Neurosci ; 19(1)2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39238223

RESUMO

Understanding the mechanisms behind the interaction of empathy for pain (EfP) and working memory (WM), particularly how they are influenced by social factors like perceived social distance (SD), is vital for comprehending how humans dynamically adapt to the complexities of social life. However, there is very little known about these mechanisms. Accordingly, we recruited 116 healthy participants to investigate the bidirectional influence and electrophysiological responses between WM and EfP, including the role of SD. Our research results revealed that the interaction between WM load and SD significantly influenced the processing of EfP. Specifically, high WM load and distant SD facilitated early processing of EfP. Conversely, low WM load and close SD promoted late processing of EfP. Furthermore, the interaction between EfP and SD significantly influenced the performance of ongoing WM tasks. Specifically, the kin's pain, compared to kin's nonpain, improved the participant's performance on low-load WM tasks; however, it diminished the participant's performance on tasks with high WM load. Overall, these results provide evidence at both behavioral and neural levels for the mutual influence of WM and EfP during the same temporal process, and SD emerged as a crucial moderating factor during these mutual influences.


Assuntos
Empatia , Memória de Curto Prazo , Dor , Distância Psicológica , Humanos , Empatia/fisiologia , Memória de Curto Prazo/fisiologia , Masculino , Feminino , Adulto Jovem , Dor/psicologia , Dor/fisiopatologia , Adulto , Eletroencefalografia , Encéfalo/fisiologia , Potenciais Evocados/fisiologia
12.
Inorg Chem ; 63(38): 17955-17966, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39258813

RESUMO

Insight into the modulation effect of oxygen reduction reaction (ORR) active centers is of profound significance but remains a great challenge. Here, we designed Co, Fe dual-metal single-atom sites (CoFe-DSAs/NC) uniformly anchored on nitrogen-doped multiwalled carbon nanotubes for boosting ORR performance through regulating the 4d electronic orbitals of the Co-N4 active site. Mechanism studies revealed that for the first time the neighboring Fe-N4 atomic sites were able to regulate the d-band center of Co-N4 single-atom active centers while maintaining the balance of adsorption-desorption affinity for O2 and oxygen-containing species on Co-N4, thereby resulting in a superior ORR performance with a positive half-wave potential (0.90 V vs RHE). The assembled zinc-air battery based on CoFe-DSAs/NC exhibited an increased open-circuit voltage (1.48 V) and an elevated specific capacity (782.33 mAh·g-1). The work provides a new clue for reasonably designing high-performance ORR catalysts through adjusting the d-band center of active sites.

13.
Front Cell Infect Microbiol ; 14: 1440017, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220287

RESUMO

Background: Microbial community dynamics have been involved in numerous diseases, including cancer. The diversity of intertumoral microbiota in human papillomavirus independent endocervical adenocarcinoma (HPVI ECA) is not well-characterized. Objective: Our objective is to delineate the intratumoral microbiota profile in HPVI ECA and investigate its potential influence on oncogenesis. Methods: We analyzed 45 HPVI ECA cases, comprising 36 gastric-type ECA (GEA) and 9 clear cell carcinomas (CCC). We compared the microbial composition within cancerous and adjacent noncancerous tissue samples using 5R-16S ribosomal DNA sequencing. Further, we investigated the correlation between specific microbes and clinical-pathological metrics as well as patient outcomes. Results: Our findings demonstrate notable differences in the microbial spectra between cancerous and adjacent noncancerous tissues. Amongst HPVI ECA subtypes, GEAs exhibit more microbial variations compared to CCCs. Using the Random Forest algorithm, we identified two distinct microbial signatures that could act as predictive biomarkers for HPVI ECA and differentiate between GEA and CCC. Varied microbial abundances was related to clinical characteristics of HPVI ECA patients. In addition, high levels of Micrococcus and low levels of unknown genus75 from the Comamonadaceae family were associated with poorer outcomes in HPVI ECA patients. Similarly, an abundance of Microbacterium correlated with reduced overall survival (OS), and a high presence of Streptococcaceae family microbes was linked to reduced recurrence-free survival (RFS) in GEA patients. Intriguingly, a high abundance of Micrococcus was also associated with a worse OS in GEA patients. Conclusion: The study reveals distinct microbial signatures in HPVI ECA, which have potential as biomarkers for disease prognosis. The correlation between these tumor-associated microbiota features and clinicopathological characteristics underscores the possibility of microbiome-based interventions. Our research provides a foundation for more in-depth studies into the cervical microbiome's role in HPVI ECA.


Assuntos
Adenocarcinoma , Microbiota , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/microbiologia , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/diagnóstico , Microbiota/genética , Adenocarcinoma/microbiologia , Adenocarcinoma/virologia , Prognóstico , Pessoa de Meia-Idade , Adulto , RNA Ribossômico 16S/genética , Idoso , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/microbiologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico
14.
Psych J ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285647

RESUMO

Patients undergoing lower-limb orthopedic surgery may experience multiple postoperative complications. Although peripheral nerve stimulation (PNS) is a promising non-pharmacological approach that has been used in lower-limb postoperative recovery, the clinical efficacy of PNS remains inconclusive. This study systematically searched three databases (PubMed, Embase, and Cochrane Library) for randomized controlled trials (RCTs) that examined the treatment effects of PNSs in patients who underwent lower-limb orthopedic surgery up to September 29, 2023. Two investigators independently identified studies, extracted data, and conducted meta-analyses with Review Manager 5.4. The outcomes were pain relief (measured by reductions in pain intensity and analgesic consumption) and functional improvements (range of motion [ROM] and length of hospitalization [LOH]). A total of 633 patients including 321 in the experimental groups and 312 in the control groups from eight RCTs were included. PNS showed no significant effect on pain intensity, while analgesic consumption was marginally significantly reduced in the experimental group. Furthermore, no significant differences were observed regarding functional improvements in ROM or LOH after the intervention. Although PNS had no significant effect on pain relief or functional improvements, the intervention exhibited a marginally significant reduction in analgesic consumption. Future trials should be conducted with larger sample sizes, longer follow-up periods, and more varied stimulation parameters.

15.
Food Res Int ; 192: 114797, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147492

RESUMO

Research on the content of polyphenolic compounds in fruits and vegetables, the extraction of bioactive compounds, and the study of their impact on the human body has received growing attention in recent years. This is due to the great interest in bioactive compounds and their health benefits, resulting in increased market demand for natural foods. Bioactive compounds from plants are generally categorized as natural antioxidants with health benefits such as anti-inflammatory, antioxidant, anti-diabetic, anti-carcinogenic, etc. Thermal processing has been used in the food sector for a long history. Implementing different thermal processing methods could be essential in retaining the quality of the natural antioxidant compounds in plant-based foods. A comprehensive review is presented on the effects of thermal blanching (i.e., hot water, steam, superheated steam impingement, ohmic and microwave blanching), pasteurization, and sterilization and drying technologies on natural antioxidants in fruits and vegetables.


Assuntos
Antioxidantes , Manipulação de Alimentos , Frutas , Temperatura Alta , Verduras , Antioxidantes/análise , Frutas/química , Verduras/química , Manipulação de Alimentos/métodos , Pasteurização , Polifenóis/análise , Vapor , Humanos , Esterilização/métodos , Micro-Ondas
16.
Chem Sci ; 15(32): 12796-12805, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39148797

RESUMO

Electrocatalytic nitrogen reduction reaction (NRR) presents a sustainable alternative to the Haber-Bosch process for ammonia (NH3) production. However, developing efficient catalysts for NRR and deeply elucidating their catalytic mechanism remain daunting challenges. Herein, we pioneered the successful embedding of atomically dispersed (single/dual) W atoms into V2-x CT y via a self-capture method, and subsequently uncovered a quantifiable relationship between charge transfer and NRR performance. The prepared n-W/V2-x CT y shows an exceptional NH3 yield of 121.8 µg h-1 mg-1 and a high faradaic efficiency (FE) of 34.2% at -0.1 V (versus reversible hydrogen electrode (RHE)), creating a new record at this potential. Density functional theory (DFT) computations reveal that neighboring W atoms synergistically collaborate to significantly lower the energy barrier, achieving a remarkable limiting potential (U L) of 0.32 V. Notably, the calculated U L values for the constructed model show a well-defined linear relationship with integrated-crystal orbital Hamilton population (ICOHP) (y = 0.0934x + 1.0007, R 2 = 0.9889), providing a feasible activity descriptor. Furthermore, electronic property calculations suggest that the NRR activity is rooted in d-2π* coupling, which can be explained by the "donation and back-donation" hypothesis. This work not only designs efficient atomic catalysts for NRR, but also sheds new insights into the role of neighboring single atoms in improving reaction kinetics.

17.
Clin Exp Hypertens ; 46(1): 2393331, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39190746

RESUMO

OBJECTIVE: This study aims to explore the current cognitive status and identify risk factors associated with cognitive function in Tibetan hypertensive patients living at various altitudes. METHODS: The Simple Mental Status Scale (MMSE) was used to evaluate the cognitive function of 611 Tibetan hypertensive patients at various altitudes in Gannan Tibetan Autonomous Prefecture. Afterward, we conducted an analysis to identify the factors influencing their cognitive function. RESULTS: The study found that the prevalence of cognitive dysfunction was 22.3%, with a higher incidence at high altitude (group D 29.0%) compared to low altitude (group A 16.0%). The study conducted a binary logistic regression analysis to identify the risk factors for cognitive dysfunction. The analysis revealed that altitude, age, body mass index, marital status, education, income level, and blood pressure control level were all significant risk factors. After controlling for age, body mass index, marital status, educational level, income level, and blood pressure control level, the risk of developing cognitive dysfunction was 2.773 times higher (p < .05) for individuals in group C at high altitude and 2.381 times higher (p < .05) for individuals in group D at high altitude compared to those in group A at low altitude. CONCLUSIONS: Altitude plays a role in the development of cognitive dysfunction in hypertensive patients. Tibetan hypertensive patients living at high altitudes may be at a higher risk of cognitive dysfunction compared to those living at lower altitudes. Therefore, interventions should be targeted to prevent or mitigate potential cognitive impairment.


Assuntos
Altitude , Cognição , Disfunção Cognitiva , Hipertensão , Humanos , Masculino , Hipertensão/epidemiologia , Hipertensão/psicologia , Hipertensão/fisiopatologia , Feminino , Tibet/epidemiologia , Pessoa de Meia-Idade , Fatores de Risco , Cognição/fisiologia , Adulto , Idoso , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Prevalência , Pressão Sanguínea/fisiologia , Índice de Massa Corporal , Incidência
18.
Sci Total Environ ; 949: 175153, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089384

RESUMO

The extensive production and widespread use of plastic products have resulted in the gradual escalation of plastic pollution. Micro/nano/plastic pollution has become a global issue, and addressing how to "green" remove them is a crucial topic that needs to be tackled at this stage. Recently, micro/nanorobots have offered a promising solution for improving water monitoring and remediation as an environmentally friendly remediation strategy. Micro/nanorobots have been proven to efficiently remove micro/nanoplastics from water bodies. Micro/nanoplastics are captured by micro/nanorobots in water through electrostatic adsorption and electrophoretic interactions, and separation is achieved under the action of an external transverse rotating magnetic field. Their small size enables them to navigate easily in complex environments, while magnetic and optical drives help them move along established routes and reach different areas. With the assistance of these innovative robots, diffusion-limited reactions can be overcome, allowing for active contact with target pollutants. However, research on the removal of micro/nanoplastics by micro/nanorobots is still in its early stages. The dependence on chemical fuels and high costs severely limit the development and application of micro/nanorobots. Micro/nanoplastics are frequently captured by micro/nanorobots, but the degradation efficiency of micro/nanoplastics remains very low. Additionally, the secondary pollution caused by micro/nanorobots is also a key factor limiting their implementation. Although micro/nanorobots are a very promising technology for removing micro/nanoplastics, they still need to be explored in their applications. This paper discusses the opportunities and challenges faced by micro/nanorobots in removing micro/nanoplastics. Development and application of self-driven intelligent micro/nanorobots will help expedite the eco-friendly removal of micro/nanoplastics and other emerging pollutants.

19.
J Colloid Interface Sci ; 675: 1021-1031, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39003815

RESUMO

Development of non-noble metal-based electrocatalysts to enhance the performance of zinc-air batteries (ZABs) is of great significance, but it remains a formidable challenge due to their poor stability and activity. Herein, a bifunctional CuNi-TiOx/NCNFS electrocatalyst, featuring with electron-rich copper-nickel (CuNi) alloy nanoparticles anchored on titanium oxide/N-doped carbon nanofibers (TiOx/NCNFS), is constructed by a dual-substrate loading strategy. The introduction of TiOx has led to a significant increase in the stability of the dual-substrate. The strong electronic interaction between CuNi and TiOx strengthens the anchoring of active metal sites, thus accelerating the electron transfer. Theoretical calculations unclose that NCNFS can regulate the charge distribution of TiOx, inducing the charge transfer from NCNFS â†’ TiOx â†’ CuNi, thereby reducing the d-band center of Cu and Ni, which is beneficial to the desorption of intermediate oxide species of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Therefore, CuNi-TiOx/NCNFS delivers a remarkable bifunctional performance with a low OER overpotential of 258 mV at 10 mA cm-2 and an ORR half-wave potential of 0.85  V. When assembled into ZABs, CuNi-TiOx/NCNFS shows a low potential gap of 0.64 V, a higher power density of 149.6 mW cm-2 at 330 mA cm-2, and an outstanding stability for 250 h at 5mA cm-2. This study provides a novel approach by constructing dual-substrate to tune the electronic structure of active metal sites for efficient rechargeable ZABs.

20.
Int J Biol Macromol ; 277(Pt 4): 134282, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39084446

RESUMO

It has been demonstrated that ferulic acid (FA) can be effectively encapsulated using wheat gluten amyloid fibrils (AF) and chitosan (CS) in a double network hydrogel (DN) form, with cross-linking mediated by Genipin (GP). Within this system, the DN comprising gluten AF-FA and CS-FA exhibited optimal loading metrics at a formulation designated as DN8, achieving a load efficiency of 88.5 % and a load capacity of 0.78 %. Analysis through fluorescence quenching confirmed that DN8 harbored the highest quantity of FA. Fourier-transform infrared spectroscopy (FTIR) further verified a significant increase in ß-sheet content post-hydrogel formation, enhancing the binding capacity for FA. Rheological assessments indicated a transition from solution to gel, delineating the phase state of the DN. Comprehensive in vitro digestion studies revealed that DN8 provided superior sustained release properties, exhibited the highest total antioxidant capacity, and displayed potent inhibitory activities against angiotensin I converting enzyme (ACE) and acetylcholinesterase (Ach-E). Additionally, the DN significantly bolstered the stability of FA against photothermal degradation. Collectively, these findings lay foundational insights for the advancement of the wheat gluten AF-based delivery system for bioactive compounds and provided a theoretical basis for the development of functional foods.


Assuntos
Amiloide , Quitosana , Ácidos Cumáricos , Portadores de Fármacos , Glutens , Hidrogéis , Triticum , Quitosana/química , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Glutens/química , Hidrogéis/química , Hidrogéis/farmacologia , Triticum/química , Amiloide/química , Portadores de Fármacos/química , Antioxidantes/química , Antioxidantes/farmacologia , Reologia , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Liberação Controlada de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA