Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.030
Filtrar
1.
J Cell Mol Med ; 28(9): e18374, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722288

RESUMO

The majority of advanced breast cancers exhibit strong aggressiveness, heterogeneity, and drug resistance, and currently, the lack of effective treatment strategies is one of the main challenges that cancer research must face. Therefore, developing a feasible preclinical model to explore tailored treatments for refractory breast cancer is urgently needed. We established organoid biobanks from 17 patients with breast cancer and characterized them by immunohistochemistry (IHC) and next generation sequencing (NGS). In addition, we in the first combination of patient-derived organoids (PDOs) with mini-patient-derived xenografts (Mini-PDXs) for the rapid and precise screening of drug sensitivity. We confirmed that breast cancer organoids are a high-fidelity three-dimension (3D) model in vitro that recapitulates the original tumour's histological and genetic features. In addition, for a heavily pretreated patient with advanced drug-resistant breast cancer, we combined PDO and Mini-PDX models to identify potentially effective combinations of therapeutic agents for this patient who were alpelisib + fulvestrant. In the drug sensitivity experiment of organoids, we observed changes in the PI3K/AKT/mTOR signalling axis and oestrogen receptor (ER) protein expression levels, which further verified the reliability of the screening results. Our study demonstrates that the PDO combined with mini-PDX model offers a rapid and precise drug screening platform that holds promise for personalized medicine, improving patient outcomes and addressing the urgent need for effective therapies in advanced breast cancer.


Assuntos
Neoplasias da Mama , Organoides , Medicina de Precisão , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Organoides/efeitos dos fármacos , Organoides/patologia , Organoides/metabolismo , Medicina de Precisão/métodos , Animais , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Pessoa de Meia-Idade
2.
BMC Neurol ; 24(1): 158, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730325

RESUMO

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is a natural focal disease transmitted mainly by tick bites, and the causative agent is SFTS virus (SFTSV). SFTS can rapidly progress to severe disease, with multiple-organ failure (MOF) manifestations such as shock, respiratory failure, disseminated intravascular coagulation (DIC) and death, but cases of SFTS patients with central nervous system (CNS) symptoms onset and marked persistent involuntary shaking of the perioral area and limbs have rarely been reported. CASE PRESENTATION: A 69-year-old woman with fever and persistent involuntary shaking of the perioral area and limbs was diagnosed with SFTS with CNS symptom onset after metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) and peripheral blood identified SFTSV. The patient developed a cytokine storm and MOF during the course of the disease, and after aggressive antiviral, glucocorticoid, and gamma globulin treatments, her clinical symptoms improved, her laboratory indices returned to normal, and she had a good prognosis. CONCLUSION: This case gives us great insight that when patients with CNS symptoms similar to those of viral encephalitis combined with thrombocytopenia and leukopenia are encountered in the clinic, it is necessary to consider the possibility of SFTS involving the CNS. Testing for SFTSV nucleic acid in CSF and blood (mNGS or polymerase chain reaction (PCR)) should be carried out, especially in critically ill patients, and treatment should be given accordingly.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Feminino , Idoso , Febre Grave com Síndrome de Trombocitopenia/diagnóstico , Phlebovirus/genética , Phlebovirus/isolamento & purificação , Insuficiência de Múltiplos Órgãos/virologia , Insuficiência de Múltiplos Órgãos/diagnóstico , Insuficiência de Múltiplos Órgãos/etiologia
3.
Front Oncol ; 14: 1387388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715777

RESUMO

The v-raf murine sarcoma viral oncogenic homolog B1 (BRAF) V600E is a rare mutation that functions as an oncogenic driver in patients with non-small cell lung cancer (NSCLC) leading to the overactivation of the RAS-RAF-MEK-ERK (MAPK) pathway and the subsequent uncontrolled cell proliferation. Understanding the mechanism behind BRAF mutation, its inhibition, and relationship to the upstream and downstream effector is essential for advancing treatment strategies for NSCLC patients with the BRAF V600E mutation. Next-generation sequencing studies have identified the presence of breast cancer susceptibility gene 1/2 (BRCA1/2) mutations in NSCLC patients, which are pathogenic variants associated with breast, ovarian, and prostate cancers. Although poly ADP-ribose polymerase (PARP) inhibitors are currently an approved treatment option for malignant tumors linked to BRCA1/2 pathogenic variants, the therapeutic potential of PARP inhibitors in NSCLC remains unclear. The development of genetic testing provides a platform for investigating the pathophysiological mechanisms of genetic mutations above. Here, we report a novel case of a middle-aged non-smoking female diagnosed with BRAF V600E and BRCA2 germline mutated lung adenocarcinoma, who had previously undergone a diverse array of cancer-targeted therapies, including PARP inhibitor, before the identification of the BRAF V600E mutation. Following this, a combination of dabrafenib and trametinib was administered and induced a rapid and positive response within two months. Our case not only highlights the importance of dynamic and repetitive genetic testing in managing patients, but contributes to the growing body of clinical evidence supporting the efficacy of BRAF/MEK co-inhibition in patients harboring a BRAF V600E mutation and provokes thinking for further research into the impact of PARP inhibitors in BRCA1/2-mutated NSCLC.

4.
Ther Adv Med Oncol ; 16: 17588359241248318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716480

RESUMO

Background: There is an interest in performing de-escalating axillary surgery after neoadjuvant chemotherapy (NAC). However, the significance of residual axillary node disease after NAC has not been well studied. Objectives: To investigate the pathological residual axillary lymph node tumor burden (ypN) of patients with initial clinical nodal stage cN0-1 breast cancer after NAC and determine its prognostic value. Design: Initial cN0-1 breast cancer patients who received NAC followed by axillary surgery at the First Hospital of Jilin University and the First Affiliated Hospital of Xi'an Jiaotong University between January 2011 and December 2019 were included. Methods: Survival outcomes were compared according to different clinical and pathological stage and nodal response to NAC. The main outcomes were disease-free survival (DFS) and overall survival (OS). Factors associated with survival were defined by Cox regression analysis. Results: A total of 911 patients were included, among whom 260 had cN0 and 651 had cN1 tumors. After NAC, 410 patients were ypN0, and another 501 were ypN+. The median follow-up time was 63 months. There was no significant difference in DFS or OS between the cN0 and cN1 groups in hormone receptor positive (HR+)/human epidermal growth factor receptor 2 positive (HER2+) and HR-/HER2- subtypes; instead, ypN status was significantly related to DFS and OS. In HR+/HER2- subtype, both cN and ypN stages did not show significant survival differences, but the ypN number and the nodal response to NAC showed significant prognostic value (p < 0.05). Among HR-/HER2+ patients, all cN status, ypN status, ypN number, and nodal response were significantly associated with survival (p < 0.05). Furthermore, tumor biology, axillary surgery, ypN status, pathological tumor size, and radiotherapy were independent prognostic factors for DFS and OS. Conclusion: The ypN status after NAC provide more prognostic information than the initial cN stage in cN0-1 patients, and the surgical axillary staging after NAC may have high clinical value.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38705722

RESUMO

Epidermal melanin unit integrity is crucial for skin homeostasis and pigmentation. Epidermal growth factor (EGF) receptor (EGFR) is a pivotal player in cell growth, wound healing, and maintaining skin homeostasis. However, its influence on skin pigmentation is relatively unexplored. This study investigates the impact and underlying mechanisms of EGFR inhibitors on skin pigmentation. We evaluated EGF and EGFR expression in various skin cells using quantitative real-time PCR, Western blot, and immunofluorescence. EGF and EGFR were predominantly expressed in epidermal keratinocytes, and treatment with the EGFR tyrosine kinase inhibitors (EGFR-TKIs) gefitinib and PD153035 significantly increased stem cell factor (SCF) and endothelin-1 (ET-1) expression in cultured keratinocytes. Enhanced melanocyte migration and proliferation were observed in co-culture, as evidenced by time-lapse live imaging and single-cell tracking assays. Furthermore, topical application of gefitinib to guinea pig dorsal skin induced increased pigmentation and demonstrated efficacy in mitigating rhododendrol-induced leukoderma. Suppression of EGF signaling indirectly enhanced skin pigmentation by upregulating SCF and ET-1 in epidermal keratinocytes. This novel mechanism highlights the pivotal role of EGF signaling in regulating skin pigmentation, and topical EGFR-TKI therapy at an appropriate dose may be a promising approach for depigmentation disorder management.

6.
J Anim Sci ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38715467

RESUMO

LncRNAs (Long non-coding RNA) is an RNA molecule with a length more than 200bp. LncRNAs can directly act on mRNA, thus affecting the expression of downstream target genes and proteins, and widely participate in many important physiological and pathological regulation processes of the body. In this study, RNA-Seq was performed to detect lncRNAs from mammary gland tissues of 3 Chinese Holstein cows, including 3 cows at 7 days before calving and the same 3 cows at 30 days postpartum (early lactation stage). A total of 1,905 novel lncRNAs were detected, 57.3% of the predicted lncRNAs are ≥ 500bp and 612 lncRNAs are intronic lncRNAs. The exon number of lncRNAs ranged from 2 to 10. A total of 96 lncRNAs were significantly differentially expressed between two stages, which 47 were upregulated and 49 were downregulated. Pathway analysis found that target genes were mainly concentrated on the ECM-receptor interaction, Jak-STAT signaling pathway, PI3K-Akt signaling pathway and TGF-beta signaling pathway. This study revealed the expression profile and characteristics of lncRNAs in the mammary gland tissues of Holstein cows at non-lactation and early lactation period, and providing a basis for studying the functions of lncRNAs in Holstein cows during different lactation periods.

7.
Hortic Res ; 11(4): uhae065, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38689696

RESUMO

Terpenoids are important contributors to the aroma of grapes and wines. Grapes contain terpenoids in both volatile free form and non-volatile glycosidic form, with the latter being more abundant. Glycosylated terpenoids are deemed as latent aromatic potentials for their essential role in adding to the flowery and fruity bouquet of wines. However, the transcriptional regulatory mechanism underlying glycosylated terpenoid biosynthesis remains poorly understood. Our prior study identified an AP2/ERF transcription factor, VviERF003, through DNA pull-down screening using the promoter of terpenoid glycosyltransferase VviGT14 gene. This study demonstrated that both genes were co-expressed and synchronized with the accumulation of glycosylated monoterpenoids during grape maturation. VviERF003 can bind to the VviGT14 promoter and promote its activity according to yeast one-hybrid and dual-luciferase assays. VviERF003 upregulated VviGT14 expression in vivo, leading to increased production of glycosylated monoterpenoids based on the evidence from overexpression or RNA interference in leaves, berry skins, and calli of grapes, as well as tomato fruits. Additionally, VviERF003 and VviGT14 expressions and glycosylated monoterpenoid levels were induced by ethylene in grapes. The findings suggest that VviERF003 is ethylene-responsive and stimulates glycosylated monoterpenoid biosynthesis through upregulating VviGT14 expression.

8.
Foods ; 13(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611408

RESUMO

Jam is a popular traditional and modern food product for daily consumption. However, the benefits of mixed jams over single-fruit jams have not been thoroughly explored, with analyses limited to superficial indices. In this study, Xinjiang special Morus nigra L. and Prunus domestica L. were used as raw materials to prepare single-fruit and mixed jams, and their differences in antioxidants, organoleptic qualities, pH, texture, and color were analyzed. The dynamics of metabolites before and after thermal processing were assessed using untargeted metabolomics. The results indicate that the main metabolites were flavonoids, terpenoids, amino acids, phenolic acids, and carbohydrates. Flavonoid metabolites changed significantly after thermal processing, with 40 up-regulated and 13 down-regulated. During storage, polyphenols were the prominent differential metabolites, with fifty-four down-regulated and one up-regulated. Volatile aroma components were analyzed using gas chromatography-ion mobility spectrometry (GC-IMS); the aroma components E-2-hexenal, E-2-pentenal, 3-methylbutanal, 1-penten-3-ol, tetrahydro-linalool, 1-penten-3-one, hexyl propionate, isoamyl acetate, α-pinene, and propionic acid in mixed jam were significantly higher than in single-fruit jam. In this study, untargeted metabolomics and GC-IMS were used to provide a more comprehensive and in-depth evaluation system for jam analysis.

9.
Scand J Immunol ; : e13371, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671579

RESUMO

Isoliquiritigenin (ISL) is a chalcone-type flavonoid derived from the root of licorice with antioxidant, anti-inflammatory, anti-tumour and neuroprotective properties. ISL has been proven to downregulate the productions of IL-1ß, TNF-α and IL-6 by macrophages. However, detailed molecular mechanisms of this modulation remain elusive. Here, ISL suppressed Syk phosphorylation and CD80, CD86, IL-1ß, TNF-α and IL-6 expressions in lipopolysaccharide-stimulated macrophages ex vivo. ApoC3-transgenic (ApoC3TG) mice had more activated macrophages. ISL was also able to downregulate the inflammatory activities of macrophages from ApoC3TG mice. Administration of ISL inhibited Syk activation and inflammatory activities of macrophages in ApoC3TG mice in vivo. The treatment of ISL further alleviated MCD-induced non-alcoholic fatty liver disease (NAFLD) in wild-type and ApoC3TG mice, accompanied by less recruitment and activation of liver macrophages. Due to the inhibition of Syk phosphorylation, ISL-treated macrophages displayed less production of cytoplasmic ROS, NLRP3, cleaved-GSDMD and cleaved-IL-1ß, suggesting less inflammasome activation. Finally, the molecular docking study demonstrated that ISL bound to Syk directly with the Kd of 1.273 × 10-8 M. When the Syk expression was knocked down by its shRNA, the inhibitory effects of ISL on activated macrophages disappeared, indicating that Syk was at least one of key docking-molecules of ISL. Collectively, ISL could alleviate MCD-induced NAFLD in mice involved with the inhibition of macrophage inflammatory activity by the blockade of Syk-induced inflammasome activation.

10.
Res Sq ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38645165

RESUMO

Interleukin-15 (IL15) promotes the survival of T lymphocytes and enhances the antitumor properties of CAR T cells in preclinical models of solid neoplasms in which CAR T cells have limited efficacy1-4. Glypican-3 (GPC3) is expressed in a group of solid cancers5-10, and here we report the first evaluation in humans of the effects of IL15 co-expression on GPC3-CAR T cells. Cohort 1 patients (NCT02905188/NCT02932956) received GPC3-CAR T cells, which were safe but produced no objective antitumor responses and reached peak expansion at two weeks. Cohort 2 patients (NCT05103631/NCT04377932) received GPC3-CAR T cells that co-expressed IL15 (15.CAR), which mediated significantly increased cell expansion and induced a disease control rate of 66% and antitumor response rate of 33%. Infusion of 15.CAR T cells was associated with increased incidence of cytokine release syndrome, which was rapidly ameliorated by activation of the inducible caspase 9 safety switch. Compared to non-responders, tumor-infiltrating 15.CAR T cells from responders showed repression of SWI/SNF epigenetic regulators and upregulation of FOS and JUN family members as well as genes related to type I interferon signaling. Collectively, these results demonstrate that IL15 increases the expansion, intratumoral survival, and antitumor activity of GPC3-CAR T cells in patients.

11.
Nat Commun ; 15(1): 3491, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664439

RESUMO

Porous carbons with concurrently high specific surface area and electronic conductivity are desirable by virtue of their desirable electron and ion transport ability, but conventional preparing methods suffer from either low yield or inferior quality carbons. Here we developed a lithiothermal approach to bottom-up synthesize highly meso-microporous graphitized carbon (MGC). The preparation can be finished in a few milliseconds by the self-propagating reaction between polytetrafluoroethylene powder and molten lithium (Li) metal, during which instant ultra-high temperature (>3000 K) was produced. This instantaneous carbon vaporization and condensation at ultra-high temperatures and in ultra-short duration enable the MGC to show a highly graphitized and continuously cross-coupled open pore structure. MGC displays superior electrochemical capacitor performance of exceptional power capability and ultralong-term cyclability. The processes used to make this carbon are readily scalable to industrial levels.

12.
Nat Cancer ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658775

RESUMO

In this prospective, interventional phase 1 study for individuals with advanced sarcoma, we infused autologous HER2-specific chimeric antigen receptor T cells (HER2 CAR T cells) after lymphodepletion with fludarabine (Flu) ± cyclophosphamide (Cy): 1 × 108 T cells per m2 after Flu (cohort A) or Flu/Cy (cohort B) and 1 × 108 CAR+ T cells per m2 after Flu/Cy (cohort C). The primary outcome was assessment of safety of one dose of HER2 CAR T cells after lymphodepletion. Determination of antitumor responses was the secondary outcome. Thirteen individuals were treated in 14 enrollments, and seven received multiple infusions. HER2 CAR T cells expanded after 19 of 21 infusions. Nine of 12 individuals in cohorts A and B developed grade 1-2 cytokine release syndrome. Two individuals in cohort C experienced dose-limiting toxicity with grade 3-4 cytokine release syndrome. Antitumor activity was observed with clinical benefit in 50% of individuals treated. The tumor samples analyzed showed spatial heterogeneity of immune cells and clustering by sarcoma type and by treatment response. Our results affirm HER2 as a CAR T cell target and demonstrate the safety of this therapeutic approach in sarcoma. ClinicalTrials.gov registration: NCT00902044 .

13.
Anal Chem ; 96(16): 6301-6310, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597061

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a transformative technology that unravels the intricate cellular state heterogeneity. However, the Poisson-dependent cell capture and low sensitivity in scRNA-seq methods pose challenges for throughput and samples with a low RNA-content. Herein, to address these challenges, we present Well-Paired-Seq2 (WPS2), harnessing size-exclusion and quasi-static hydrodynamics for efficient cell capture. WPS2 exploits molecular crowding effect, tailing activity enhancement in reverse transcription, and homogeneous enzymatic reaction in the initial bead-based amplification to achieve 3116 genes and 8447 transcripts with an average of ∼20000 reads per cell. WPS2 detected 1420 more genes and 4864 more transcripts than our previous Well-Paired-Seq. It sensitively characterizes transcriptomes of low RNA-content single cells and nuclei, overcoming the Poisson limit for cell and barcoded bead capture. WPS2 also profiles transcriptomes from frozen clinical samples, revealing heterogeneous tumor copy number variations and intercellular crosstalk in clear cell renal cell carcinomas. Additionally, we provide the first single-cell-level characterization of rare metanephric adenoma (MA) and uncover potential specific markers. With the advantages of high sensitivity and high throughput, WPS2 holds promise for diverse basic and clinical research.


Assuntos
Análise de Célula Única , Transcriptoma , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , RNA/genética , Análise de Sequência de RNA , Neoplasias Renais/genética , Neoplasias Renais/patologia , Sequenciamento de Nucleotídeos em Larga Escala
14.
RSC Adv ; 14(16): 11276-11283, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38595709

RESUMO

Due to their small interlayer spacing and a low lithiation potential close to Li+ deposition, current graphite anodes suffer from weak kinetics, and lithium deposition in a fast-charging process, hindering their practical application in high-power lithium-ion batteries (LIBs). In this work, expanded graphite incorporated with Li4Ti5O12 nanoparticles (EG/LTO) was synthesized via moderate oxidization of artificial graphite following a solution coating process. The EG/LTO has sufficient porosity for fast Li+ diffusion and a dense Li4Ti5O12 layer for decreased interface reaction resistance, resulting in excellent fast-charging properties. EG/LTO presented a high reversible capacity of 272.8 mA h g-1 at 3.74 A g-1 (10C), much higher than that of the original commercial graphite (50.1 mA h g-1 at 10C) and even superior to that of hard carbon. In addition, EG/LTO exhibited capacity retention rate of 98.4% after 500 cycles at 10C, demonstrating high structural stability during a long cycling process. This study provides a protocol for a solution chemistry method to prepare fast-charging graphite anode materials with high stability for high-power LIBs.

15.
J Agric Food Chem ; 72(18): 10439-10450, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38676695

RESUMO

Trypsin inhibitors derived from plants have various pharmacological activities and promising clinical applications. In our previous study, a Bowman-Birk-type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) was extracted with antiatherosclerotic activity. Currently, we found that FMB-BBTI possesses a prominent anticolorectal cancer (anti-CRC) activity. Further, a recombinant FMB-BBTI (rFMB-BBTI) was successfully expressed in a soluble manner in host strain Escherichia coli. BL21 (DE3) was induced by isopropyl-ß-d-thiogalactoside (0.1 mM) at 37 °C for 3.5 h by the pET28a vector system. Fortunately, a purity greater than 93% of rFMB-BBTI with anti-CRC activity was purified by nickel-nitrilotriacetic acid affinity chromatography. Subsequently, we found that rFMB-BBTI displays a strikingly anti-CRC effect, characterized by the inhibition of cell proliferation and clone formation ability, cell cycle arrest at the G2/M phase, and induction of cell apoptosis. It is interesting that the rFMB-BBTI treatment had no obvious effect on normal colorectal cells in the same concentration range. Importantly, the anti-CRC activity of rFMB-BBTI was further confirmed in the xenografted nude mice model. Taken together, our study highlights the anti-CRC activity of rFMB-BBTI in vitro and in vivo, uncovering the clinical potential of rFMB-BBTI as a targeted agent for CRC in the future.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Colorretais , Camundongos Nus , Setaria (Planta) , Inibidores da Tripsina , Animais , Humanos , Camundongos , Setaria (Planta)/genética , Setaria (Planta)/química , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/química , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Linhagem Celular Tumoral , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Expressão Gênica , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Masculino
16.
Breast ; 76: 103738, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38685149

RESUMO

BACKGROUND: We assessed the potential role of serial circulating tumor DNA (ctDNA) as a biomarker to monitor treatment response to primary systemic therapy (PST) in breast cancer and evaluated the predictive value of ctDNA to further identify patients with residual disease. METHODS: We prospectively enrolled 208 plasma samples collected at three time points (before PST, after 2 cycles of treatment, before surgery) of 72 patients with stage Ⅱ-III breast cancer. Somatic mutations in plasma samples were identified using a customized 128-gene capture panel with next-generation sequencing. The correlation between early change in ctDNA levels and treatment response or long-term clinical outcomes was assessed. RESULTS: 37 of 72 (51.4%) patients harbored detectable ctDNA alterations at baseline. Patients with complete response showed a larger decrease in ctDNA levels during PST. The median relative change of variant allele fraction (VAF) was -97.4%, -46.7%, and +21.1% for patients who subsequently had a complete response (n = 11), partial response (n = 11), and no response (n = 15) (p = 0.0012), respectively. In addition, the relative change of VAF between the pretreatment and first on-treatment blood draw exhibited the optimal predictive value to tumor response after PST (area under the curve, AUC = 0.7448, p = 0.02). More importantly, early change of ctDNA levels during treatment have significant prognostic value for patients with BC, there was a significant correlation between early decrease of VAF and longer recurrence-free survival compared to those with an VAF increase (HR = 12.54; 95% CI, 2.084 to 75.42, p = 0.0063). CONCLUSION: Early changes of ctDNA are strongly correlated with therapeutic efficacy to PST and clinical outcomes in BC patients. The integration of preoperative ctDNA evaluation could help improving the perioperative management for BC patients receiving PST.

17.
IEEE Trans Cybern ; PP2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687667

RESUMO

A data-driven dynamic internal model control (D 3 IMC) scheme is proposed for unknown nonlinear nonaffine systems bypassing modeling steps. Different from the traditional internal model constructed by either a first-principle or an identified model, a dynamic internal model (DIM) is developed in this work using I/O data where a compact form dynamic linearization approach is introduced for addressing the nonlinearity and nonaffine structure. Then, the D 3 IMC is proposed with both a nominal control algorithm and an uncertainty compensation control algorithm. The former can quickly respond to the feedback errors and the latter can compensate the model-plant mismatch and external disturbances. Meanwhile, the adaptive parameter updating law in the proposed D 3 IMC method inherits the robustness against uncertainties. A nominal D 3 IMC is also designed without including the compensator when there is no exogenous disturbance since the adaptive mechanism can handle system uncertainty. Further, the results are extended and a full-form dynamic linearization-based D 3 IMC is developed to address control of nonlinear systems with more complex dynamics. All the proposed D 3 IMC methods are data-driven without need of an explicit model, and thus they are significant extensions from the traditional model-based IMC. Simulation study verifies the results.

18.
J Psychiatr Res ; 172: 382-390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452636

RESUMO

Previous studies have documented negative associations between somatic symptoms and remission of major depressive disorder (MDD). However, the correlations of specific somatic symptoms with remission remain uncertain. We aimed to explore the associations between specific somatic symptoms and remission focusing on sex differences among patients with MDD. We used data from patients with MDD in the Depression Cohort in China. At baseline, total somatic symptoms were evaluated using the 28-item Somatic Symptoms Inventory and were categorized into pain, autonomic, energy, and central nervous system (CNS) symptoms. To measure remission of MDD, depressive symptoms were evaluated using the Patient Health Questionnaire-9 after 3 months of treatment. We ultimately included 634 patients. Compared with quartile 1 of total somatic symptom scores, the full-adjusted ORs (95% CIs) for remission from quartile 2 to quartile 4 were 0.52 (0.30, 0.90), 0.44 (0.23, 0.83), and 0.36 (0.17, 0.75), respectively (P-value for trend = 0.005). The restricted cubic spline showed no non-linear associations between total somatic symptoms with remission (P-value for non-linear = 0.238). Pain, autonomic, and CNS symptoms showed similar results. Sex-stratified analysis showed that total somatic symptoms, pain symptoms, and autonomic symptoms were negatively correlated with remission in females, whereas CNS symptoms were negatively associated with remission in males. Our findings indicate that specific somatic symptoms exert differential effects on remission of MDD. Therapeutic interventions that target pain, autonomic, and CNS symptoms may increase the probability of remission. Furthermore, interventions for somatic symptoms should be tailored by sex, and females deserve more attention.


Assuntos
Transtorno Depressivo Maior , Sintomas Inexplicáveis , Humanos , Masculino , Feminino , Transtorno Depressivo Maior/tratamento farmacológico , Estudos Longitudinais , Dor , China
19.
BMC Plant Biol ; 24(1): 160, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429733

RESUMO

BACKGROUND: Anthocyanins are the most important compounds for nutritional quality and economic values of blood orange. However, there are few reports on the pre-harvest treatment accelerating the accumulation of anthocyanins in postharvest blood orange fruit. Here, we performed a comparative transcriptome and metabolomics analysis to elucidate the underlying mechanism involved in seasonal drought (SD) treatment during the fruit expansion stage on anthocyanin accumulation in postharvest 'Tarocco' blood orange fruit. RESULTS: Our results showed that SD treatment slowed down the fruit enlargement and increased the sugar accumulation during the fruit development and maturation period. Obviously, under SD treatment, the accumulation of anthocyanin in blood orange fruit during postharvest storage was significantly accelerated and markedly higher than that in CK. Meanwhile, the total flavonoids and phenols content and antioxidant activity in SD treatment fruits were also sensibly increased during postharvest storage. Based on metabolome analysis, we found that substrates required for anthocyanin biosynthesis, such as amino acids and their derivatives, and phenolic acids, had significantly accumulated and were higher in SD treated mature fruits compared with that of CK. Furthermore, according to the results of the transcriptome data and weighted gene coexpression correlation network analysis (WGCNA) analysis, phenylalanine ammonia-lyase (PAL3) was considered a key structural gene. The qRT-PCR analysis verified that the PAL3 was highly expressed in SD treated postharvest stored fruits, and was significantly positively correlated with the anthocyanin content. Moreover, we found that other structural genes in the anthocyanin biosynthesis pathway were also upregulated under SD treatment, as evidenced by transcriptome data and qRT-PCR analysis. CONCLUSIONS: The findings suggest that SD treatment promotes the accumulation of substrates necessary for anthocyanin biosynthesis during the fruit ripening process, and activates the expression of anthocyanin biosynthesis pathway genes during the postharvest storage period. This is especially true for PAL3, which co-contributed to the rapid accumulation of anthocyanin. The present study provides a theoretical basis for the postharvest quality control and water-saving utilization of blood orange fruit.


Assuntos
Antocianinas , Frutas , Frutas/metabolismo , Secas , Antioxidantes/metabolismo , Perfilação da Expressão Gênica
20.
Biochimie ; 223: 13-22, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38531484

RESUMO

The blood-brain barrier (BBB) is a protective semi-permeable structure that regulates the exchange of biomolecules between the peripheral blood and the central nervous system (CNS). Due to its specialized tight junctions and low vesicle trafficking, the BBB strictly limits the paracellular passage and transcellular transport of molecules to maintain the physiological condition of brain tissues. BBB breakdown is associated with many CNS disorders. Soluble epoxide hydrolase (sEH) is a hydrolase enzyme that converts epoxy-fatty acids (EpFAs) to their corresponding diols and is involved in the onset and progression of multiple diseases. EpFAs play a protective role in the central nervous system via preventing neuroinflammation, making sEH a potential therapeutic target for CNS diseases. Recent studies showed that sEH inhibition prevented BBB impairment caused by stroke, hemorrhage, traumatic brain injury, hyperglycemia and sepsis via regulating the expression of tight junctions. In this review, the protective actions of sEH inhibition on BBB and potential mechanisms are summarized, and some important questions that remain to be resolved are also addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA