Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Mar Pollut Bull ; 203: 116433, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723551

RESUMO

We examined the occurrence and levels of 19 legacy and emerging per- and polyfluoroalkyl substances (PFASs) in 7 species of marine bivalve molluscs collected from four coastal cities of Shandong Province, China. Perfluorooctanoic acid (PFOA) was the most prevalent component, accounting for 68.1 % of total PFASs. The total PFASs in bivalve molluscs ranged from 0.86 to 6.55 ng/g wet weight, with the highest concentration found in Meretrix meretrix L. The concentration of total PFASs in bivalve molluscs showed the following trend: clams > scallops > oysters > mussels. Estimation on the human intake of PFASs from consumption of bivalve molluscs resulted in hazard ratios (HR) ranging from 0.12 to 6.40. Five of the seven species had HR >1, indicating high exposure risks associated with PFASs. Therefore, the occurrence of PFASs in marine biota is particularly concerning and further investigations on the sources of PFASs in Shandong are warranted.

2.
BMC Plant Biol ; 24(1): 390, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38730367

RESUMO

Granulation of juice sacs is a physiological disorder, which affects pomelo fruit quality. Here, the transcriptome and ubiquitinome of the granulated juice sacs were analyzed in Guanxi pomelo. We found that lignin accumulation in the granulated juice sacs was regulated at transcription and protein modification levels. In transcriptome data, we found that the genes in lignin biosynthesis pathway and antioxidant enzyme system of the granulated juice sacs were significantly upregulated. However, in ubiquitinome data, we found that ubiquitinated antioxidant enzymes increased in abundance but the enzyme activities decreased after the modification, which gave rise to reactive oxygen species (ROS) contents in granulated juice sacs. This finding suggests that ubiquitination level of the antioxidant enzymes is negatively correlated with the enzyme activities. Increased H2O2 is considered to be a signaling molecule to activate the key gene expressions in lignin biosynthesis pathway, which leads to the lignification in granulated juice sacs of pomelo. This regulatory mechanism in juice sac granulation of pomelo was further confirmed through the verification experiment using tissue culture by adding H2O2 or dimethylthiourea (DMTU). Our findings suggest that scavenging H2O2 and other ROS are important for reducing lignin accumulation, alleviating juice sac granulation and improving pomelo fruit quality.


Assuntos
Citrus , Lignina , Lignina/metabolismo , Citrus/metabolismo , Citrus/genética , Sucos de Frutas e Vegetais/análise , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma , Peróxido de Hidrogênio/metabolismo , Regulação da Expressão Gênica de Plantas , Frutas/metabolismo , Frutas/genética , Antioxidantes/metabolismo
3.
J Adv Res ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704090

RESUMO

BACKGROUND: Central nervous system (CNS) injury causes severe organ damage due to both damage resulting from the injury and subsequent cell death. However, there are currently no effective treatments for countering the irreversible loss of cell function. Parthanatos is a poly (ADP-ribose) polymerase 1 (PARP-1)-dependent form of programmed cell death that is partly responsible for neural cell death. Consequently, the mechanism by which parthanatos promotes CNS injury has attracted significant scientific interest. AIM OF REVIEW: Our review aims to summarize the potential role of parthanatos in CNS injury and its molecular and pathophysiological mechanisms. Understanding the role of parthanatos and related molecules in CNS injury is crucial for developing effective treatment strategies and identifying important directions for future in-depth research. KEY SCIENTIFIC CONCEPTS OF REVIEW: Parthanatos (from Thanatos, the personification of death according to Greek mythology) is a type of programmed cell death that is initiated by the overactivation of PARP-1. This process triggers a cascade of reactions, including the accumulation of poly(ADP-ribose) (PAR), the nuclear translocation of apoptosis-inducing factor (AIF) after its release from mitochondria, and subsequent massive DNA fragmentation caused by migration inhibitory factor (MIF) forming a complex with AIF. Secondary molecular mechanisms, such as excitotoxicity and oxidative stress-induced overactivation of PARP-1, significantly exacerbate neuronal damage following initial mechanical injury to the CNS. Furthermore, parthanatos is not only associated with neuronal damage but also interacts with various other types of cell death. This review focuses on the latest research concerning the parthanatos cell death pathway, particularly considering its regulatory mechanisms and functions in CNS damage. We highlight the associations between parthanatos and different cell types involved in CNS damage and discuss potential therapeutic agents targeting the parthanatos pathway.

4.
FASEB J ; 38(7): e23587, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38568835

RESUMO

Mastitis is a disease characterized by congestion, swelling, and inflammation of the mammary gland and usually caused by infection with pathogenic microorganisms. Furthermore, the development of mastitis is closely linked to the exogenous pathway of the gastrointestinal tract. However, the regulatory mechanisms governing the gut-metabolism-mammary axis remain incompletely understood. The present study revealed alterations in the gut microbiota of mastitis rats characterized by an increased abundance of the Proteobacteria phylum. Plasma analysis revealed significantly higher levels of L-isoleucine and cholic acid along with 7-ketodeoxycholic acid. Mammary tissue showed elevated levels of arachidonic acid metabolites and norlithocholic acid. Proteomic analysis showed increased levels of IFIH1, Tnfaip8l2, IRGM, and IRF5 in mastitis rats, which suggests that mastitis triggers an inflammatory response and immune stress. Follistatin (Fst) and progesterone receptor (Pgr) were significantly downregulated, raising the risk of breast cancer. Extracellular matrix (ECM) receptors and focal adhesion signaling pathways were downregulated, while blood-milk barrier integrity was disrupted. Analysis of protein-metabolic network regulation revealed that necroptosis, protein digestion and absorption, and arachidonic acid metabolism were the principal regulatory pathways involved in the development of mastitis. In short, the onset of mastitis leads to changes in the microbiota and alterations in the metabolic profiles of various biological samples, including colonic contents, plasma, and mammary tissue. Key manifestations include disturbances in bile acid metabolism, amino acid metabolism, and arachidonic acid metabolism. At the same time, the integrity of the blood-milk barrier is compromised while inflammation is promoted, thereby reducing cell adhesion in the mammary glands. These findings contribute to a more comprehensive understanding of the metabolic status of mastitis and provide new insights into its impact on the immune system.


Assuntos
Mastite , Infecções Estafilocócicas , Feminino , Humanos , Ratos , Animais , Staphylococcus aureus/fisiologia , Proteômica , Ácido Araquidônico/metabolismo , Mastite/microbiologia , Mastite/patologia , Mastite/veterinária , Inflamação/metabolismo , Redes e Vias Metabólicas , Glândulas Mamárias Animais/metabolismo , Infecções Estafilocócicas/metabolismo
6.
Front Nutr ; 11: 1359989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646105

RESUMO

Introduction: With improvements in living conditions, modern individuals exhibit a pronounced inclination towards a high-fat diet, largely because of its distinctive gustatory appeal. However, the association between high-fat diets and metabolic complications has largely been ignored, and metabolic diseases such as obesity and non-alcoholic fatty liver disease now constitute a major public health concern. Because high-fat diets increase the risk of metabolic diseases, a thorough investigation into the impact of high-fat diets on gut microbiota and metabolism is required. Methods: We utilize 16S rRNA sequencing and untargeted metabolomics analysis to demonstrate that SD rats fed a high-fat diet exhibited marked alterations in gut microbiota and plasma, intestinal metabolism. Results: Changes in gut microbiota included a decreased abundance at phylum level for Verrucomicrobiota, and a decreased abundance at genus level for Akkermansia, Ralstonia, Bacteroides, and Faecalibacterium. Additionally, significant changes were observed in both intestinal and plasma metabolite levels, including an upregulation of bile acid metabolism, an upregulation of glucose-lipid metabolism, and increased levels of metabolites such as norlithocholic acid, cholic acid, D-fructose, D-mannose, fructose lactate, and glycerophosphocholine. We also investigated the correlations between microbial communities and metabolites, revealing a significant negative correlation between Akkermansia bacteria and cholic acid. Discussion: Overall, our findings shed light on the relationship between symbiotic bacteria associated with high-fat diets and metabolic biomarkers, and they provide insights for identifying novel therapeutic approaches to mitigate disease risks associated with a high-fat diet.

7.
Sci China Life Sci ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679670

RESUMO

Betaine-homocysteine methyltransferase (BHMT) regulates protein methylation and is correlated with tumorigenesis; however, the effects and regulation of BHMT in hepatocarcinogenesis remain largely unexplored. Here, we determined the clinical significance of BHMT in the occurrence and progression of hepatocellular carcinoma (HCC) using tissue samples from 198 patients. BHMT was to be frequently found (86.6%) expressed at relatively low levels in HCC tissues and was positively correlated with the overall survival of patients with HCC. Bhmt overexpression effectively suppressed several malignant phenotypes in hepatoma cells in vitro and in vivo, whereas complete knockout of Bhmt (Bhmt-/-) produced the opposite effect. We combined proteomics, metabolomics, and molecular biological strategies and detected that Bhmt-/- promoted hepatocarcinogenesis and tumor progression by enhancing the activity of glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolism in DEN-induced HCC mouse and subcutaneous tumor-bearing models. In contrast, restoration of Bhmt with an AAV8-Bhmt injection or pharmacological inhibition of G6PD attenuated hepatocarcinogenesis. Additionally, coimmunoprecipitation identified monomethylated modifications of the G6PD, and BHMT regulated the methylation of G6PD. Protein sequence analysis, generation and application of specific antibodies, and site-directed mutagenesis indicated G6PD methylation at the arginine residue 246. Furthermore, we established bidirectionally regulated BHMT cellular models combined with methylation-deficient G6PD mutants to demonstrate that BHMT potentiated arginine methylation of G6PD, thereby inhibiting G6PD activity, which in turn suppressed hepatocarcinogenesis. Taken together, this study reveals a new methylation-regulatory mechanism in hepatocarcinogenesis owing to BHMT deficiency, suggesting a potential therapeutic strategy for HCC treatment.

8.
iScience ; 27(5): 109603, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638569

RESUMO

RNA molecules often play critical roles in assisting the formation of membraneless organelles in eukaryotic cells. Yet, little is known about the organization of RNAs within membraneless organelles. Here, using super-resolution imaging and nuclear speckles as a model system, we demonstrate that different sequence domains of RNA transcripts exhibit differential spatial distributions within speckles. Specifically, we image transcripts containing a region enriched in binding motifs of serine/arginine-rich (SR) proteins and another region enriched in binding motifs of heterogeneous nuclear ribonucleoproteins (hnRNPs). We show that these transcripts localize to the outer shell of speckles, with the SR motif-rich region localizing closer to the speckle center relative to the hnRNP motif-rich region. Further, we identify that this intra-speckle RNA organization is driven by the strength of RNA-protein interactions inside and outside speckles. Our results hint at novel functional roles of nuclear speckles and likely other membraneless organelles in organizing RNA substrates for biochemical reactions.

9.
Plant Commun ; : 100891, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561965

RESUMO

Plants that grow in extreme environments represent unique sources of stress-resistance genes and mechanisms. Ammopiptanthus mongolicus (Leguminosae) is a xerophytic evergreen broadleaf shrub native to semi-arid and desert regions; however, its drought-tolerance mechanisms remain poorly understood. Here, we report the assembly of a reference-grade genome for A. mongolicus, describe its evolutionary history within the legume family, and examine its drought-tolerance mechanisms. The assembled genome is 843.07 Mb in length, with 98.7% of the sequences successfully anchored to the nine chromosomes of A. mongolicus. The genome is predicted to contain 47 611 protein-coding genes, and 70.71% of the genome is composed of repetitive sequences; these are dominated by transposable elements, particularly long-terminal-repeat retrotransposons. Evolutionary analyses revealed two whole-genome duplication (WGD) events at 130 and 58 million years ago (mya) that are shared by the genus Ammopiptanthus and other legumes, but no species-specific WGDs were found within this genus. Ancestral genome reconstruction revealed that the A. mongolicus genome has undergone fewer rearrangements than other genomes in the legume family, confirming its status as a "relict plant". Transcriptomic analyses demonstrated that genes involved in cuticular wax biosynthesis and transport are highly expressed, both under normal conditions and in response to polyethylene glycol-induced dehydration. Significant induction of genes related to ethylene biosynthesis and signaling was also observed in leaves under dehydration stress, suggesting that enhanced ethylene response and formation of thick waxy cuticles are two major mechanisms of drought tolerance in A. mongolicus. Ectopic expression of AmERF2, an ethylene response factor unique to A. mongolicus, can markedly increase the drought tolerance of transgenic Arabidopsis thaliana plants, demonstrating the potential for application of A. mongolicus genes in crop improvement.

10.
J Am Chem Soc ; 146(13): 9241-9251, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502927

RESUMO

Much attention has been focused on the catalytic asymmetric creation of single chiral centers or two adjacent stereocenters. However, the asymmetric construction of two nonadjacent stereocenters is of significant importance but is challenging because of the lack of remote chiral induction models. Herein, based on a C═C bond relay strategy, we report a synergistic Pd/Cu-catalyzed 1,5-double chiral induction model. All four stereoisomers of the target products bearing 1,5-nonadjacent stereocenters involving both allenyl axial and central chirality could be obtained divergently by simply changing the combination of two chiral catalysts with different configurations. Control experiments and DFT calculations reveal a novel mechanism involving 1,5-oxidative addition, contra-thermodynamic η3-allyl palladium shift, and conjugate nucleophilic substitution, which play crucial roles in the control of reactivity, regio-, enantio-, and diastereoselectivity. It is expected that this C═C bond relay strategy may provide a general protocol for the asymmetric synthesis of structural motifs bearing two distant stereocenters.

11.
PLoS One ; 19(3): e0300709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38498562

RESUMO

BACKGROUND: 4D flow magnetic resonance imaging (4D flow MRI) can assess and measure the complex flow patterns of the right ventricle (RV) in congenital heart diseases, but its limited availability makes the broad application of intracardiac flow assessment challenging. Color Doppler imaging velocity reconstruction from conventional echocardiography is an emerging alternative, but its validity against 4D flow MRI needs to be established. OBJECTIVE: To compare intracardiac flow parameters measured by color Doppler velocity reconstruction (DoVeR) against parameters measured from 4D flow MRI. METHODS: We analyzed 20 subjects, including 7 normal RVs and 13 abnormal RVs (10 with repaired Tetralogy of Fallot, and 3 with atrial-level shunts). Intracardiac flow parameters such as relative pressure difference, vortex strength, total kinetic energy, and viscous energy loss were quantified using DoVeR and 4D flow MRI. The agreement between the two methods was determined by comparing the spatial fields and quantifying the cross-correlation and normalized difference between time-series measurements. RESULTS: The hemodynamic parameters obtained from DoVeR and 4D flow MRI showed similar flow characteristics and spatial distributions. The time evolutions of the parameters were also in good agreement between the two methods. The median correlation coefficient between the time-series of any parameter was between 0.87 and 0.92, and the median L2-norm deviation was between 10% to 14%. CONCLUSIONS: Our study shows that DoVeR is a reliable alternative to 4D flow MRI for quantifying intracardiac hemodynamic parameters in the RV.


Assuntos
Cardiopatias Congênitas , Tetralogia de Fallot , Humanos , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Cardiopatias Congênitas/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Ecocardiografia , Velocidade do Fluxo Sanguíneo
12.
J Agric Food Chem ; 72(11): 6019-6027, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38447069

RESUMO

Malachite green (MG) poses a formidable threat to ecosystems and human health. Laccase emerges as a promising candidate for MG degradation, prompting an investigation into the catalytic activity modulation of a small laccase (SLAC) from Streptomyces coelicolor, with a focus on amino acid position 228. Through saturation mutagenesis, five mutants with a 50% increase in the specific activity were generated. Characterization revealed notable properties, Km of E228F was 8.8% of the wild type (WT), and E288T exhibited a 133% kcat compared to WT. Structural analyses indicated improved hydrophobicity and electrostatic potential on the mutants' surfaces, with the stable E228F-ABTS complex exhibiting reduced flexibility, possibly contributing to the observed decrease in turnover rate. Mutants demonstrated enhanced MG decolorization, particularly E228G. Site 228 acts as a crucial functional control switch, suggesting its potential role in SLAC engineering. This study provides insights into laccase modulation and offers promising avenues for enzymatic bioremediation applications.


Assuntos
Lacase , Streptomyces coelicolor , Humanos , Lacase/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Ecossistema , Biodegradação Ambiental
13.
Am J Cancer Res ; 14(1): 300-323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323289

RESUMO

Enzalutamide is a drug used to treat prostate cancer (PC) and docetaxel is a drug for chemotherapeutic treatment of diverse cancer types, including PC. The effectiveness of these drugs in treating castration-resistant prostate cancer (CRPC) is poor and therefore CRPC is still largely incurable. However, the bio-inhibitor of fatty acid-binding protein 5 (FABP5), dmrFABP5, which is a mutant form of FABP5 incapable of binding to fatty acids, has been shown recently to be able to suppress the tumorigenicity and metastasis of cultured CRPC cells. The present study investigated the possible synergistic effect of dmrFABP5 combined with either enzalutamide or docetaxel on suppressing the tumorigenic properties of PC cells, including cell viability, migration, invasion and colony proliferation in soft agar. A highly significant synergistic inhibitory effect on these properties was observed when dmrFABP5 was used in combination with enzalutamide on androgen-responsive PC 22RV1 cells. Moreover, a highly significant synergistic inhibitory effect was also observed when dmrFABP5 was combined with docetaxel, and added to 22RV1 cells and to the highly malignant, androgen-receptor (AR)-negative Du145 cells. DmrFABP5 alone failed to produce any suppressive effect when added to the FABP5-negative cell line LNCaP, although enzalutamide could significantly suppress LNCaP cells when used as a single agent. These synergistic inhibitory effects of dmrFABP5 were produced by interrupting the FABP5-related signal transduction pathway in PC cells. Thus, dmrFABP5 appears to be not only a potential single therapeutic agent, but it may also be used in combination with existing drugs to suppress both AR-positive and AR-negative PC.

14.
J Ovarian Res ; 17(1): 46, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378652

RESUMO

OBJECTIVE: This study aims to investigate the effects of natural products on animal models of premature ovarian failure (POF). METHODS: We conducted comprehensive literature searches and identified relevant studies that examined the protective effects of natural products on experimental POF. We extracted quantitative data on various aspects such as follicular development, ovarian function, physical indicators, oxidative stress markers, inflammatory factors, and protein changes. The data was analyzed using random-effects meta-analyses, calculating pooled standardized mean differences and 95% confidence intervals. Heterogeneity was assessed using the I2 statistic, and bias was estimated using the SYRCLE tool. RESULTS: Among the 879 reviewed records, 25 articles met our inclusion criteria. These findings demonstrate that treatment with different phytochemicals and marine natural products (flavonoids, phenols, peptides, and alkaloids, etc.) significantly improved various aspects of ovarian function compared to control groups. The treatment led to an increase in follicle count at different stages, elevated levels of key hormones, and a decrease in atretic follicles and hormone levels associated with POF. This therapy also reduced oxidative stress (specifically polyphenols, resveratrol) and apoptotic cell death (particularly flavonoids, chrysin) in ovarian granulosa cells, although it showed no significant impact on inflammatory responses. The certainty of evidence supporting these findings ranged from low to moderate. CONCLUSIONS: Phytochemicals and marine natural product therapy (explicitly flavonoids, phenols, peptides, and alkaloids) has shown potential in enhancing folliculogenesis and improving ovarian function in animal models of POF. These findings provide promising strategies to protect ovarian reserve and reproductive health. Targeting oxidative stress and apoptosis pathways may be the underlying mechanism.


Assuntos
Alcaloides , Menopausa Precoce , Insuficiência Ovariana Primária , Feminino , Humanos , Animais , Insuficiência Ovariana Primária/terapia , Flavonoides/farmacologia , Fenóis , Peptídeos/uso terapêutico , Alcaloides/uso terapêutico
15.
J Cancer ; 15(3): 747-763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213728

RESUMO

Background: Immune cells play a critical role in the prognosis of cancer. However, the function of different immune cell types in lung adenocarcinoma (LUAD) and the development of a prognostic signature based on immune cell types have not been comprehensively investigated. Methods: We collected and included a total of 2499 LUAD patients and performed calculations to determine the penetration level of 24 immune cells. This examination was conducted using the macro-gene-based approach provided by ImmuCellAI. We performed a meta-analysis using Lasso-Cox analysis to establish the immune cell pair score (ICPS). We conducted a survival analysis to measure differences in survival across ICPS-risk groups. Wilcox test was used to measure the difference in expression level. Spearman correlation analysis was used for the relevance assessment. Results: We collected a total of 24 immune cell types to construct cell pairs. Utilizing 17 immune cell pairs, we constructed and validated the ICPS, which plays a critical role in stratifying survival and dynamically monitoring the effectiveness of immunotherapy. Additionally, we identified several candidate drugs that target ICPS. Conclusions: The ICPS shows promise as a valuable tool for identifying suitable candidates for immunotherapy among patients. Our comprehensive assessment of immune cell interactions in LUAD contributes to a deeper understanding of infiltration patterns and functions, thereby guiding the development of more efficacious immunotherapy strategies.

16.
J Ovarian Res ; 17(1): 25, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279186

RESUMO

Bushen Tiaoxue Granules (BTG) is an empirical Chinese herbal formula that has been used for the treatment of subfertility. The protective effect of BTG on controlled ovarian hyperstimulation (COH)-induced impaired endometrial receptivity has been reported in our previous study. This study aims to explore the mechanisms of BTG on ameliorating abnormal morphology of endometrium based on network pharmacology. Active compounds of BTG were identified via the traditional Chinese medicine systems pharmacology and UPLC-MS technology. The SwissTargetPrediction platform and HERB database were used to screen out the putative targets of BTG. Potential targets of endometrial dysfunction caused by COH were obtained from three GEO databases. Through the STRING database, the protein-protein interaction was carried out according to the cross-common targets of diseases and drugs. GO terms and KEGG pathways enrichment analyses were conducted via the Metascape database. AutoDock Vina was used for docking validation of the affinity between active compounds and potential targets. Finally, in vivo experiments were used to verify the potential mechanisms derived from network pharmacology study. A total of 141 effective ingredients were obtained from TCMSP and nine of which were verified in UPLC-MS. Six genes were selected through the intersection of 534 disease related genes and 165 drug potential targets. Enrichment analyses showed that BTG might reverse endometrial dysfunction by regulating adherens junction and arachidonic acid metabolism. Hematoxylin-eosin staining revealed that BTG ameliorated the loose and edematous status of endometrial epithelium caused by COH. The protein expression of FOXO1A, ß-Catenin and COX-2 was decreased in the COH group, and was up-regulated by BTG. BTG significantly alleviates the edema of endometrial epithelium caused by COH. The mechanisms may be related to adheren junctions and activation of arachidonic acid metabolism. The potential active compounds quercetin, taxifolin, kaempferol, eriodictyol, and isorhamnetin identified from the BTG exhibit marginal cytotoxicity. Both high and low concentrations of kaempferol, eriodictyol, and taxifolin are capable of effectively ameliorating impaired hESC cellular activity.


Assuntos
Quempferóis , Farmacologia em Rede , Feminino , Humanos , Ácido Araquidônico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Endométrio , Simulação de Acoplamento Molecular
17.
Small ; : e2310736, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282175

RESUMO

2D alloy-based anodes show promise in potassium-ion batteries (PIBs). Nevertheless, their low tap density and huge volume expansion cause insufficient volumetric capacity and cycling stability. Herein, a 3D highly dense encapsulated architecture of 2D-Bi nanosheets (HD-Bi@G) with conducive elastic networks and 3D compact encapsulation structure of 2D nano-sheets are developed. As expected, HD-Bi@G anode exhibits a considerable volumetric capacity of 1032.2 mAh cm-3 , stable long-life span with 75% retention after 2000 cycles, superior rate capability of 271.0 mAh g-1 at 104 C, and high areal capacity of 7.94 mAh cm-2 (loading: 24.2 mg cm-2 ) in PIBs. The superior volumetric and areal performance mechanisms are revealed through systematic kinetic investigations, ex situ characterization techniques, and theorical calculation. The 3D high-conductivity elastic network with dense encapsulated 2D-Bi architecture effectively relieves the volume expansion and pulverization of Bi nanosheets, maintains internal 2D structure with fast kinetics, and overcome sluggish ionic/electronic diffusion obstacle of ultra-thick, dense electrodes. The uniquely encapsulated 2D-nanosheet structure greatly reduces K+ diffusion energy barrier and accelerates K+ diffusion kinetics. These findings validate a feasible approach to fabricate 3D dense encapsulated architectures of 2D-alloy nanosheets with conductive elastic networks, enabling the design of ultra-thick, dense electrodes for high-volumetric-energy-density energy storage.

18.
Nano Lett ; 24(4): 1399-1405, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38252893

RESUMO

Polymer waveguide devices have attracted increasing interest in several rapidly developing areas of broadband communications since they are easily adaptable to on-chip integration and promise low propagation losses. As a key member of the waveguide gain medium, lanthanide doped nanoparticles have been intensively studied to improve the downconversion luminescence. However, current research efforts are almost confined to erbium-doped nanoparticles and amplifiers operating at the C-band; boosting the downconversion luminescence of Tm3+ for S-band optical amplification still remains a challenge. Here we report a Tb3+-induced deactivation control to enhance Tm3+ downconversion luminescence in a stoichiometric Yb lattice without suffering from concentration quenching. We also demonstrate their potential application in an S-band waveguide amplifier and record a maximum optical gain of 18 dB at 1464 nm. Our findings provide valuable insights into the fundamental understanding of deactivation-controlled luminescence enhancement and open up a new avenue toward the development of an S-band polymer waveguide amplifier with high gain.

19.
IEEE Trans Cybern ; 54(4): 2332-2344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37093724

RESUMO

Optimal control methods have gained significant attention due to their promising performance in nonlinear systems. In general, an optimal control method is regarded as an optimization process for solving the optimal control laws. However, for uncertain nonlinear systems with complex optimization objectives, the solving of optimal reference trajectories is difficult and significant that might be ignored to obtain robust performance. For this problem, a double-closed-loop robust optimal control (DCL-ROC) is proposed to maintain the optimal control reliability of uncertain nonlinear systems. First, a double-closed-loop scheme is established to divide the optimal control process into a closed-loop optimization process that solves optimal reference trajectories and a closed-loop control process that solves optimal control laws. Then, the ability of the optimal control method can be improved to solve complex uncertain optimization problems. Second, a closed-loop robust optimization (CL-RO) algorithm is developed to express uncertain optimization objectives as data-driven forms and adjust optimal reference trajectories in a close loop. Then, the optimality of reference trajectories can be improved under uncertainties. Third, the optimal reference trajectories are tracked by an adaptive controller to derive the optimal control laws without certain system dynamics. Then, the adaptivity and reliability of optimal control laws can be improved. The experimental results demonstrate that the proposed method can achieve better performance than other optimal control methods.

20.
Int J Oncol ; 64(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38131188

RESUMO

Fatty acid­binding protein 5 (FABP5) and androgen receptor (AR) are critical promoters of prostate cancer. In the present study, the effects of knocking out the FABP5 or AR genes on malignant characteristics of prostate cancer cells were investigated, and changes in the expression of certain key proteins in the FABP5 (or AR)­peroxisome proliferator activated receptor­Î³ (PPARγ)­vascular endothelial growth factor (VEGF) signaling pathway were monitored. The results obtained showed that FABP5­ or AR­knockout (KO) led to a marked suppression of the malignant characteristics of the cells, in part, through disrupting this signaling pathway. Moreover, FABP5 and AR are able to interact with each other to regulate this pathway, with FABP5 controlling the dominant AR splicing variant 7 (ARV7), and AR, in return, regulates the expression of FABP5. Comparisons of the RNA profiles revealed the existence of numerous differentially expressed genes (DEGs) comparing between the parental and the FABP5­ or AR­KO cells. The six most abundant changes in DEGs were found to be attributable to the transition from androgen­responsive to androgen­unresponsive, castration­resistant prostate cancer (CRPC) cells. These findings have provided novel insights into the complex molecular pathogenesis of CRPC cells, and have demonstrated that interactions between FABP5 and AR contribute to the transition of prostate cancer cells to an androgen­independent state. Moreover, gene enrichment analysis revealed that the most highly enriched biological processes associated with the DEGs included those responsive to fatty acids, cholesterol and sterol biosynthesis, as well as to lipid and fatty acid transportation. Since these pathways regulated by FABP5 or AR may be crucial in terms of transducing signals for cancer cell progression, targeting FABP5, AR and their associated pathways, rather than AR alone, may provide a new avenue for the development of therapeutic strategies geared towards suppressing the malignant progression to CRPC cells.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Androgênios , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA