Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Animals (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731362

RESUMO

This study investigated the efficacy of a composite probiotics composed of lactobacillus plantarum, lactobacillus reuteri, and bifidobacterium longum in alleviating oxidative stress in weaned piglets and pregnant sows. Evaluations of growth, oxidative stress, inflammation, intestinal barrier, and fecal microbiota were conducted. Results showed that the composite probiotic significantly promoted average daily gain in piglets (p < 0.05). It effectively attenuated inflammatory responses (p < 0.05) and oxidative stress (p < 0.05) while enhancing intestinal barrier function in piglets (p < 0.01). Fecal microbiota analysis revealed an increase in the abundance of beneficial bacteria such as faecalibacterium, parabacteroides, clostridium, blautia, and phascolarctobacterium in piglet feces and lactobacillus, parabacteroides, fibrobacter, and phascolarctobacterium in sow feces, with a decrease in harmful bacteria such as bacteroides and desulfovibrio in sow feces upon probiotic supplementation. Correlation analysis indicated significant negative associations of blautia with inflammation and oxidative stress in piglet feces, while treponema and coprococcus showed significant positive associations. In sow feces, lactobacillus, prevotella, treponema, and CF231 exhibited significant negative associations, while turicibacter showed a significant positive association. Therefore, the composite probiotic alleviated oxidative stress in weaned piglets and pregnant sows by modulating fecal microbiota composition.

2.
Eur J Pharm Biopharm ; : 114337, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38789062

RESUMO

Orodispersible films (ODFs) have emerged as an advanced and patient-friendly delivery system due to ease of administration, improved patient compliance, quick release and taste-masking of active pharmaceutical ingredients. This research reports the preparation of the ODF containing eugenol and borax (EB-ODF) by a solvent casting technique for treating mouth ulcers. The EB-ODF consisted of Kollidon® VA 64 and hydroxypropyl methylcellulose (HPMC-K250) as the film formers where eugenol and borax were loaded. The thickness of the EB-ODF obtained was 0.119 ±â€¯0.001 mm and the tensile strength was 13.1 ±â€¯1.1 N/mm2 (p > 0.05). The prepared films disintegrated in the oral cavity within 30 s and over 90 % of the eugenol was released from the film in the first 5 min. Furthermore, the combined application of eugenol and borax, loaded in EB-ODF, displayed notable synergetic antibacterial property against both gram-negative and gram-positive bacteria. In an in-vivo study on a rat model with chemical burn-induced oral ulcers, the EB-ODFs treatment group had a 100 % reduction in ulcer area (p > 0.05) after 10 days of treatment and demonstrated a 38.7 % higher reduction in oral ulcer area compared to the Dingpeng Cream treatment group (p < 0.0001). The EB-ODF treatment group The EB-ODF showed minimal oral irritation, scoring only 1 point and a 65 % preference in the taste tests (p < 0.0001). In summary, EB-ODF had successfully overcome the poor palatability of commercially available formulation and provided notable potential for further ulcer treatment development.

4.
Carbohydr Polym ; 336: 122102, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670773

RESUMO

Skin wounds are susceptible to infection, leading to severe inflammatory reactions that can progress to chronic wounds, ultimately causing significant physical and mental distress to the patient. In this study, we propose an injectable composite hydrogel achieved through one-pot gelation of oxidized xyloglucan (OXG), cationic polyamide ε-poly-l-lysine (EPL), and surface amino-rich silicon nanoparticles (SiNPs). OXG exhibits commendable anti-inflammatory properties and provides crosslinking sites. SiNPs serve as mechanically reinforced crosslinkers, facilitating the construction of a dynamic Schiff base network. SiNPs significantly reduced the gelation time to 3 s and tripled the storage modulus of the hydrogels. Additionally, the combination of EPL and SiNPs demonstrated synergistic antimicrobial activity against both S. aureus and E. coli. Notably, the hydrogel effectively halted liver bleeding within 30 s. The hydrogel demonstrated outstanding shear-thinning and self-healing properties, crucial considerations for the design of injectable hydrogels. Furthermore, its efficacy was evaluated as a wound dressing in a mouse model with S. aureus infection. The results indicated that, compared to commercial products, the hydrogel exhibited a shorter wound healing time, decreased inflammation, thinner epithelium, increased hair follicles, enhanced neovascularization, and more substantial collagen deposition. These findings strongly suggest the promising potential of the proposed hydrogel as an effective wound dressing for the treatment of infected wounds.


Assuntos
Antibacterianos , Escherichia coli , Glucanos , Hidrogéis , Nanopartículas , Polilisina , Staphylococcus aureus , Cicatrização , Xilanos , Glucanos/química , Glucanos/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Xilanos/química , Xilanos/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Polilisina/química , Polilisina/farmacologia , Camundongos , Nanopartículas/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Infecções Estafilocócicas/tratamento farmacológico , Reagentes de Ligações Cruzadas/química , Infecção dos Ferimentos/tratamento farmacológico , Masculino
5.
Front Cell Infect Microbiol ; 14: 1373737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686094

RESUMO

Background: The mechanism by which high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) improves swallowing function by regulating intestinal flora remains unexplored. We aimed to evaluate this using fecal metabolomics and 16S rRNA sequencing. Methods: A Post-stroke dysphagia (PSD) rat model was established by middle cerebral artery occlusion. The magnetic stimulation group received HF-rTMS from the 7th day post-operation up to 14th day post-surgery. Swallowing function was assessed using a videofluoroscopic swallowing study (VFSS). Hematoxylin-eosin (H&E) staining was used to assess histopathological changes in the intestinal tissue. Intestinal flora levels were evaluated by sequencing the 16S rRNA V3-V4 region. Metabolite changes within the intestinal flora were evaluated by fecal metabolomics using liquid chromatography-tandem mass spectrometry. Results: VFSS showed that the bolus area and pharyngeal bolus speed were significantly decreased in PSD rats, while the bolus area increased and pharyngeal transit time decreased after HF-rTMS administration (p < 0.05). In the PSD groups, H&E staining revealed damaged surface epithelial cells and disrupted cryptal glands, whereas HF-rTMS reinforced the integrity of the intestinal epithelial cells. 16S rRNA sequencing indicated that PSD can disturb the intestinal flora and its associated metabolites, whereas HF-rTMS can significantly regulate the composition of the intestinal microflora. Firmicutes and Lactobacillus abundances were lower in the PSD group than in the baseline group at the phylum and genus levels, respectively; however, both increased after HF-rTMS administration. Levels of ceramides (Cer), free fatty acids (FA), phosphatidylethanolamine (PE), triacylglycerol (TAG), and sulfoquinovosyl diacylglycerol were increased in the PSD group. The Cer, FA, and DG levels decreased after HF-rTMS treatment, whereas the TAG levels increased. Peptococcaceae was negatively correlated with Cer, Streptococcus was negatively correlated with DG, and Acutalibacter was positively correlated with FA and Cer. However, these changes were effectively restored by HF-rTMS, resulting in recovery from dysphagia. Conclusion: These findings suggest a synergistic role for the gut microbiota and fecal metabolites in the development of PSD and the therapeutic mechanisms underlying HF-rTMS.


Assuntos
Transtornos de Deglutição , Modelos Animais de Doenças , Fezes , Microbioma Gastrointestinal , Metabolômica , RNA Ribossômico 16S , Acidente Vascular Cerebral , Animais , RNA Ribossômico 16S/genética , Fezes/microbiologia , Fezes/química , Ratos , Metabolômica/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Transtornos de Deglutição/terapia , Masculino , Estimulação Magnética Transcraniana/métodos , Ratos Sprague-Dawley , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo
6.
Behav Brain Res ; 467: 115018, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678971

RESUMO

Poststroke cognitive impairment (PSCI) is a common complication of stroke, but effective treatments are currently lacking. Repetitive transcranial magnetic stimulation (rTMS) is gradually being applied to treat PSCI, but there is limited evidence of its efficacy. To determine rTMS effects on PSCI, we constructed a transient middle cerebral artery occlusion (tMCAO) rat model. Rats were then grouped by random digital table method: the sham group (n = 10), tMCAO group (n = 10) and rTMS group (n = 10). The shuttle box and Morris water maze (MWM) tests were conducted to detect the cognitive functions of the rats. In addition, synaptic density and synaptic ultrastructural parameters, including the active zone length, synaptic cleft width, and postsynaptic density (PSD) thickness, were quantified and analyzed using an electron microscope. What's more, synaptic associated proteins, including PSD95, SYN, and BDNF were detected by western blot. According to the shuttle box and MWM tests, rTMS improved tMCAO rats' cognitive functions, including spatial learning and memory and decision-making abilities. Electron microscopy revealed that rTMS significantly increased the synaptic density, synaptic active zone length and PSD thickness and decreased the synaptic cleft width. The western blot results showed that the expression of PSD95, SYN, and BDNF was markedly increased after rTMS stimulation. Based on these results, we propose that 20 Hz rTMS can significantly alleviate cognitive impairment after stroke. The underlying mechanism might be modulating the synaptic plasticity and up-regulating the expression PSD95, SYN, and BDNF in the hippocampus.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , Modelos Animais de Doenças , Hipocampo , Plasticidade Neuronal , Ratos Sprague-Dawley , Estimulação Magnética Transcraniana , Animais , Plasticidade Neuronal/fisiologia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Masculino , Ratos , Hipocampo/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/fisiopatologia , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/complicações , Proteína 4 Homóloga a Disks-Large/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Aprendizagem em Labirinto/fisiologia
7.
Sensors (Basel) ; 24(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676089

RESUMO

The Galileo satellite navigation system now provides initial services. With further satellite launches, the performance of Galileo will gradually improve, and new services will be introduced. This study aims to provide a comprehensive analysis of Galileo Single Point Positioning (SPP) using different broadcast ephemeris data sources. This study investigates the completeness of Galileo navigation message records from different institutions. The results show that IGS provides the best completeness across different data sources (ECR > 70%), while IGN exhibits the lowest completeness. Analyze the proportions of different data sources within the Galileo navigation message in the broadcast ephemeris files provided by IGS during the study period. The proportions of FNAV_258, INAV_513, INAV_516, and INAV_517 during the study period are 25.83%, 24.76%, 23.61%, and 25.80%, respectively, suggesting better data completeness for FNAV_258 and INAV_517 and poorer completeness for INAV_513 and INAV_516. Finally, this study explores SPP solutions for GPS and Galileo systems using different data sources. The results indicate that a higher ECR corresponds to better positioning performance. Although GPS exhibits smaller error fluctuations and smoother positioning results, Galileo's SPP positioning accuracy surpasses that of GPS. The introduction of dual-frequency observations effectively reduces data dispersion and enhances vertical positioning accuracy.

8.
Brain Res ; 1832: 148846, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432259

RESUMO

BACKGROUND: Post-stroke dysphagia (PSD) is a common symptom of stroke. Clinical complications of PSD include malnutrition and pneumonia. Clinical studies have shown that high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) can improve the swallowing function in stroke patients. However, few studies have elucidated the underlying molecular mechanisms. METHODS: A PSD rat model was established using transient middle cerebral artery occlusion (tMCAO). Rats were randomly divided into sham-operated groups, PSD groups, PSD + sham-rTMS groups, PSD + 5 Hz-rTMS groups, PSD + 10 Hz-rTMS groups and PSD + 20 Hz-rTMS groups. Rats were weighed and videofluoroscopic swallowing studies were conducted. Pulmonary inflammation, levels of substance P (SP) and calcitonin gene-related peptide (CGRP) in the serum, lung, and nucleus tractus solitarius (NTS), brain-derived neurotrophic factor (BDNF) and 5-hydroxytryptamine (5HT) in NTS were evaluated. RESULTS: Rats in the PSD group experienced weight loss, reduced bolus area and pharyngeal bolus speed, and increased pharyngeal transit time (PTT) and inter-swallow interval (ISI) on day 7 and day 14 after operation. Moreover, PSD rats showed pulmonary inflammation, reduced levels of SP in the lung and serum, increased levels of CGRP in the lung and NTS, reduced levels of BDNF and 5HT in the NTS. There was no significant difference between the PSD group and the PSD + sham-rTMS group in the results of weight and VFSS. Comparing with the PSD group, there significant increases in the bolus area, decreases in PTT of rats following 5 Hz rTMS intervention. HF-rTMS at 10 Hz significantly increased the weight, bolus area, pharyngeal bolus speed and decreased the PTT and ISI of rats. There were also significant increases in the bolus area (p < 0.01) and pharyngeal bolus speed, decreases in PTT and ISI of rats following 20 Hz rTMS intervention. Furthermore, compared with the PSD + 5 Hz-rTMS group, there were significant increases in the bolus area and pharyngeal bolus speed, decreases in ISI in the swallowing function of rats in the PSD + 10 Hz-rTMS group. Besides, compared with the PSD + 5 Hz-rTMS group, there were significant decreases in ISI in the swallowing function of rats in the PSD + 20 Hz-rTMS group. HF-rTMS at 10 Hz alleviated pulmonary inflammation, increased the levels of SP in the lung, serum, and NTS, CGRP in the serum and NTS, 5HT in the NTS of PSD rats. CONCLUSION: Compared with 5 Hz and 20 Hz rTMS, 10 Hz rTMS more effectively improved the swallowing function of rats with PSD. HF-rTMS at 10 Hz improved the swallowing function and alleviated pneumonia in PSD rats. The mechanism may be related to increased levels of SP in the lung, serum and NTS, levels of CGRP in the serum and NTS, 5HT in the NTS after HF-rTMS treatment.


Assuntos
Transtornos de Deglutição , Pneumonia , Acidente Vascular Cerebral , Humanos , Animais , Ratos , Transtornos de Deglutição/etiologia , Transtornos de Deglutição/terapia , Deglutição/fisiologia , Estimulação Magnética Transcraniana/métodos , Fator Neurotrófico Derivado do Encéfalo , Peptídeo Relacionado com Gene de Calcitonina , Pneumonia/terapia , Pneumonia/complicações
9.
Adv Healthc Mater ; : e2400071, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501563

RESUMO

The treatment of infected wounds remains a challenging biomedical problem. Some bioactive small-molecule hydrogelators with unique rigid structures can self-assemble into supramolecular hydrogels for wound healing. However, they are still suffered from low structural stability and bio-functionality. Herein, a supramolecular hydrogel antibacterial dressing with a dual nanofibrillar network structure is proposed. A nanofibrillar network created by a small-molecule hydrogelator, puerarin extracted from the traditional Chinese medicine Pueraria, is interconnected with a secondary macromolecular silk fibroin nanofibrillar network induced by Ga ions via charge-induced supramolecular self-assembly. The resulting hydrogel features adequate mechanical strength for sustainable retention at wounds. Good biocompatibility and efficient bacterial inhibition are obtained when the Ga ion concentration is 0.05%. Otherwise, the substantial release of Ga ions and puerarin endows the hydrogel with excellent hemostatic and antioxidative properties. In vivo, evaluation of a mouse-infected wound model demonstrates that its healing effect outperformed that of a commercially available silver-containing wound dressing. The experimental group successfully achieves a 100% wound closure rate on day 10. This study sheds new light on the design of nanofibrillar hydrogels based on supramolecular self-assembly of naturally derived bioactive molecules as well as their clinical use for treating chronic infected wounds.

10.
Food Funct ; 15(7): 3653-3668, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38487897

RESUMO

Intestinal ischemia-reperfusion (IIR) injury leads to inflammation and oxidative stress, resulting in intestinal barrier damage. Probiotics, due to their anti-inflammatory and antioxidant properties, are considered for potential intervention to protect the intestinal barrier during IIR injury. Bifidobacterium longum, a recognized probiotic, has targeted effects on IIR injury, but its mechanisms of action are not yet understood. To investigate the mechanism of Bifidobacterium longum intervention in IIR injury, we conducted a study using a rat IIR injury model. The results showed that Bifidobacterium longum could alleviate inflammation and oxidative stress induced by IIR injury by suppressing the NF-κB inflammatory pathway and activating the Keap1/Nrf2 signaling pathway. Bifidobacterium longum GL001 also increased the abundance of the gut microbiota such as Oscillospira, Ouminococcus, Corynebacterium, Lactobacillus, and Akkermansia, while decreasing the abundance of Allobaculum, [Prevotella], Bacteroidaceae, Bacteroides, Shigella, and Helicobacter. In addition, Bifidobacterium longum GL001 reversed the changes in amino acids and bile acids induced by IIR injury and reduced the levels of DL-cysteine, an oxidative stress marker, in intestinal tissue. Spearman correlation analysis showed that L-cystine was positively correlated with Lactobacillus and negatively correlated with Shigella, while DL-proline was positively correlated with Akkermansia. Moreover, bile acids, cholic acid and lithocholic acid, were negatively correlated with Lactobacillus and positively correlated with Shigella. Therefore, Bifidobacterium longum GL001 may alleviate IIR injury by regulating the gut microbiota to modulate intestinal lipid peroxidation and bile acid metabolism.


Assuntos
Bifidobacterium longum , Microbioma Gastrointestinal , Probióticos , Traumatismo por Reperfusão , Ratos , Animais , Bifidobacterium longum/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Lactobacillus/metabolismo , Inflamação , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
11.
Int J Biol Macromol ; 266(Pt 1): 131170, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554906

RESUMO

Skin wound healing is a complex and dynamic process involving hemostasis, inflammatory response, cell proliferation and migration, and angiogenesis. Currently used wound dressings remain unsatisfactory in the clinic due to the lack of adjustable mechanical property for injection operation and bioactivity for accelerating wound healing. In this work, an "all-sugar" hydrogel dressing is developed based on dynamic borate bonding network between the hydroxyl groups of okra polysaccharide (OP) and xyloglucan (XG). Benefiting from the reversible crosslinking network, the resulting composite XG/OP hydrogels exhibited good shear-thinning and fast self-healing properties, which is suitable to be injected at wound beds and filled into irregular injured site. Besides, the proposed XG/OP hydrogels showed efficient antioxidant capacity by scavenging DPPH activity of 73.9 %. In vivo experiments demonstrated that XG/OP hydrogels performed hemostasis and accelerated wound healing with reduced inflammation, enhanced collagen deposition and angiogenesis. This plant-derived dynamic hydrogel offers a facile and effective approach for wound management and has great potential for clinical translation in feature.


Assuntos
Antioxidantes , Hidrogéis , Neovascularização Fisiológica , Polissacarídeos , Cicatrização , Cicatrização/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Abelmoschus/química , Glucanos/química , Glucanos/farmacologia , Xilanos/química , Xilanos/farmacologia , Camundongos , Ratos , Masculino , Humanos , Angiogênese
12.
Free Radic Biol Med ; 213: 430-442, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38301977

RESUMO

Hepatic ischemia-reperfusion injury (IRI) results in significant postoperative liver dysfunction, and the intricate mechanism of IRI poses challenges in developing effective therapeutic drugs. Mitigating the damage caused by hepatic IRI and promoting the repair of postoperative liver injury have become focal points in recent years, holding crucial clinical significance. Adipose mesenchymal stem cell derived exosomes (ADSCs-Exo) and metformin (Met) can play a mitochondrial protective role in the treatment of hepatic IRI, but whether there is a synergistic mechanism for their intervention is not yet known. Combining the unique advantages of exosomes as drug carriers, the aim of this study was to investigate the protective effects and mechanisms of the constructed Met and ADSCs-Exo complex (Met-Exo) on the liver IRI combined with partial resection injury in rat and hypoxic reoxygenation injury of rat primary hepatocytes (HCs). In this study, firstly, we detected that mitochondrial morphology and function were severely affected in hepatic tissues after hepatic IRI combined with partial resection, and then verified by in vitro experiments that Met-Exo could promote mitochondrial biosynthesis and fusion-associated protein expression and inhibit mitochondrial fission-related protein expression by modulating the AMPK/SIRT1 signalling pathway. This indicates that ADSCs-Exo can not only play a targeting role as a drug carrier but also has a great potential to act as a vehicle to act synergistically with drugs in the treatment of tissue and organ damage, which provides a new therapeutic strategy and experimental basis for the treatment of liver injury in medical science and clinical veterinary.


Assuntos
Metformina , Doenças Mitocondriais , Traumatismo por Reperfusão , Ratos , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Metformina/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fígado/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Doenças Mitocondriais/metabolismo
13.
Pathogens ; 13(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38251382

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has posed unparalleled challenges due to its rapid transmission, ability to mutate, high mortality and morbidity, and enduring health complications. Vaccines have exhibited effectiveness, but their efficacy diminishes over time while new variants continue to emerge. Antiviral medications offer a viable alternative, but their success has been inconsistent. Therefore, there remains an ongoing need to identify innovative antiviral drugs for treating COVID-19 and its post-infection complications. The ORF3a (open reading frame 3a) protein found in SARS-CoV-2, represents a promising target for antiviral treatment due to its multifaceted role in viral pathogenesis, cytokine storms, disease severity, and mortality. ORF3a contributes significantly to viral pathogenesis by facilitating viral assembly and release, essential processes in the viral life cycle, while also suppressing the body's antiviral responses, thus aiding viral replication. ORF3a also has been implicated in triggering excessive inflammation, characterized by NF-κB-mediated cytokine production, ultimately leading to apoptotic cell death and tissue damage in the lungs, kidneys, and the central nervous system. Additionally, ORF3a triggers the activation of the NLRP3 inflammasome, inciting a cytokine storm, which is a major contributor to the severity of the disease and subsequent mortality. As with the spike protein, ORF3a also undergoes mutations, and certain mutant variants correlate with heightened disease severity in COVID-19. These mutations may influence viral replication and host cellular inflammatory responses. While establishing a direct link between ORF3a and mortality is difficult, its involvement in promoting inflammation and exacerbating disease severity likely contributes to higher mortality rates in severe COVID-19 cases. This review offers a comprehensive and detailed exploration of ORF3a's potential as an innovative antiviral drug target. Additionally, we outline potential strategies for discovering and developing ORF3a inhibitor drugs to counteract its harmful effects, alleviate tissue damage, and reduce the severity of COVID-19 and its lingering complications.

14.
J Org Chem ; 89(3): 1524-1533, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38207216

RESUMO

An efficient and convenient method for the synthesis of oxalamides by the reaction of ß-ketoamides with tertiary amines and TBHP was developed. A variety of ß-ketoamides and tertiary amines substrates were well-tolerated in this transformation. Based on the control experiments, a plausible mechanism for this reaction was proposed that involved the tandem oxidation/amination process. In addition, α,ß-epoxy amides could be obtained by adjusting the reaction conditions.

15.
mBio ; 15(1): e0303023, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38078754

RESUMO

IMPORTANCE: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has tragically claimed millions of lives through coronavirus disease 2019 (COVID-19), and there remains a critical gap in our understanding of the precise molecular mechanisms responsible for the associated fatality. One key viral factor of interest is the SARS-CoV-2 ORF3a protein, which has been identified as a potent inducer of host cellular proinflammatory responses capable of triggering the catastrophic cytokine storm, a primary contributor to COVID-19-related deaths. Moreover, ORF3a, much like the spike protein, exhibits a propensity for frequent mutations, with certain variants linked to the severity of COVID-19. Our previous research unveiled two distinct types of ORF3a mutant proteins, categorized by their subcellular localizations, setting the stage for a comparative investigation into the functional and mechanistic disparities between these two types of ORF3a variants. Given the clinical significance and functional implications of the natural ORF3a mutations, the findings of this study promise to provide invaluable insights into the potential roles undertaken by these mutant ORF3a proteins in the pathogenesis of COVID-19.


Assuntos
COVID-19 , Retículo Endoplasmático , SARS-CoV-2 , Proteínas Viroporinas , Humanos , COVID-19/virologia , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/virologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Degradação Associada com o Retículo Endoplasmático , Proteínas Mutantes , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo
16.
Int J Biol Macromol ; 256(Pt 1): 128382, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000598

RESUMO

The use of natural and safe ingredients in green food packaging material is a hot research topic. This study investigated the effect of different emulsifiers on starch film properties. Three types of emulsifiers, including Tween 80 as a small-molecule surfactant, sodium caseinate (CAS), whey protein isolate (WPI), and gelatin (GE) as macromolecule emulsifiers, whey protein isolate fibril (WPIF) as a particle emulsifier, were utilized to prepare Zanthoxylum bungeanum essential oil (ZBO) emulsions. The mechanical, physical, thermal, antibacterial properties, microstructure and essential oil release of starch films were investigated. CAS-ZBO nanoemulsion exhibited the smallest particle size of 198.6 ± 2.2 nm. The film properties changed with different emulsifiers. CAS-ZBO film showed the highest tensile strength value. CAS-ZBO and WPIF-ZBO films exhibited lower water vapor permeability than Tween-ZBO. CAS-ZBO film showed good dispersion of essential oil, the slowest release rate of essential oils in all food simulants, and the best antibacterial effect against Staphylococcus aureus and Listeria monocytogenes. The films composed of CAS-ZBO nanoemulsion, corn starch, and glycerol are considered more suitable for food packaging. This work indicated that natural macromolecule emulsifiers of CAS and WPIF are expected to be used in green food packaging material to offer better film properties.


Assuntos
Óleos Voláteis , Zanthoxylum , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Zea mays/química , Proteínas do Soro do Leite , Amido/química , Antibacterianos/farmacologia , Emulsificantes/química , Embalagem de Alimentos , Polissorbatos , Permeabilidade
17.
Sci Rep ; 13(1): 21963, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082032

RESUMO

Damage to lamellar keratinocytes, an essential cellular component of the epidermal layer of hoof tissue, can have a detrimental effect on hoof health and the overall production value of dairy cows. We isolated and cultured cow lamellar keratinocytes using the Dispase II and collagenase methods. We purified them by differential digestion and differential velocity adherent methods at each passaging and identified them by keratin 14 immunofluorescence. We established an in vitro model of inflammation in laminar keratinocytes using LPS and investigated whether chicoric acid protects against inflammatory responses by inhibiting the activation of the TLR4/MAPK/NF-κB signaling pathway. The results showed that cow lamellar keratinocytes were successfully isolated and cultured by Dispase II combined with the collagenase method. In the in vitro inflammation model established by LPS, the Chicoric acid decreased the concentration of inflammatory mediators (TNF-α, IL-1ß, and IL-6), down-regulated the mRNA expression of TLR4 and MyD88 (P < 0.01), down-regulated the expression of TLR4, MyD88, p-ERK, p-p38, IKKß, p-p65, p-p50 (P < 0.05), and increased the IκBα protein expression (P < 0.05). In conclusion, Chicoric acid successfully protected cow lamellar keratinocytes from LPS-induced inflammatory responses by modulating the TLR4/MAPK/NF-κB signaling pathway and downregulating inflammatory mediators.


Assuntos
Lipopolissacarídeos , NF-kappa B , Feminino , Bovinos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Receptor 4 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Queratinócitos/metabolismo , Mediadores da Inflamação/metabolismo , Colagenases/metabolismo
18.
Heliyon ; 9(11): e22226, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045217

RESUMO

Objective: This systematic review and meta-analysis aimed to systematically evaluate the prediction models for the risk of post-thrombotic syndrome (PTS) in deep vein thrombosis (DVT) patients. Methods: This systematic review and meta-analysis was guided by the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). A systematic search on the following electronic database: PubMed/MEDLINE, EMBASE, and Cochrane Library, and Chinese databases such as WANFANG and CNKI was conducted to look for relevant articles based on the research question. The risk of bias for each studies included was carried out based on Prediction Model Risk of Bias Assessment Tool (PROBAST). Results: We identified 10 studies that developed a total of 13 clinical prediction models for PTS risk in DVT patients, 3 models were externally validated, 2 models were temporally validated. The top 5 predictors were: BMI (N = 9), Varicose vein (N = 6), Baseline Villalta Score (N = 6), Iliofemoral thrombosis (N = 5), and Age (N = 4). The high risk of bias was from the analysis domain, which the number of participants and selection of predictors often did not meet the requirements of PROBAST. A random-effects meta-analysis of C-statistics was conducted, the pooled discrimination was C-statistic 0.75, 95%CI (0.69, 0.81). Conclusion: Among the 13 PTS risk prediction models reported in this study, no prediction model has been applied to clinical practice due to the lack of external validation. In the development of prediction models, most models were not standardized in data analysis. It is recommended that future studies on the design and implementation of prediction models refer to Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) and PROBAST.

19.
Life Sci ; 334: 122234, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931744

RESUMO

Intestinal ischemia-reperfusion (IIR) injury is associated with inflammation and oxidative stress, yet its precise mechanisms remain not fully understood. IIR injury is closely linked to the gut microbiota and its metabolites. The anti-inflammatory and antioxidant effects of Lactiplantibacillus plantarum are specific to IIR. In our study, we conducted a 30-day pre-treatment of SD rats with both a standard strain of Lactiplantibacillus plantarum and Lactiplantibacillus plantarum GL001. After a 7-day cessation of treatment, we induced an IIR injury model to investigate the mechanisms by which Lactiplantibacillus plantarum alleviates IIR damage. The results demonstrate that Lactiplantibacillus plantarum effectively mitigates the inflammatory and oxidative stress damage induced by IIR. Lactiplantibacillus plantarum GL001 can improve the gut microbiota by reducing the abundance of harmful bacteria and increasing the abundance of beneficial bacteria. In IIR intestinal tissue, the levels of secondary bile acids are elevated. The content of the bacterial metabolite Calcimycin increases. Annotations of metabolic pathways suggest that Lactiplantibacillus plantarum GL001 can alleviate IIR damage by modulating calcium-phosphorus homeostasis through the regulation of parathyroid hormone synthesis, secretion, and action. Microbiota-metabolite correlation analysis reveals a significant negative correlation between calcimycin and Lactonacillus and a significant positive correlation between calcimycin and Shigella. There is also a significant positive correlation between calcimycin and secondary bile acids. Lactiplantibacillus plantarum GL001 can alleviate oxidative damage induced by IIR through improvements in gut microbiota and intestinal tissue metabolism.


Assuntos
Estresse Oxidativo , Traumatismo por Reperfusão , Ratos , Animais , Calcimicina/farmacologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Bactérias , Ácidos e Sais Biliares
20.
Biomed Pharmacother ; 169: 115873, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37979374

RESUMO

Hepatic ischemia-reperfusion injury (HIRI) is a complication of hepatectomy that affects the functional recovery of the remnant liver, which has been demonstrated to be associated with pyroptosis and apoptosis. Mesenchymal stem cells (MSCs) can protect against HIRI in rodents. Paracrine mechanisms of MSCs indicated that MSCs-derived exosomes (MSCs-exo) are one of the important components within the paracrine substances of MSCs. Moreover, miniature pigs are ideal experimental animals in comparative medicine compared to rodents. Accordingly, this study aimed to investigate whether hepatectomy combined with HIRI in miniature pigs would induce pyroptosis and whether adipose-derived MSCs (ADSCs) and their exosomes (ADSCs-exo) could positively mitigate apoptosis and pyroptosis. The study also compared the differences in the effects and the role of ADSCs and ADSCs-exo in pyroptosis and apoptosis. Results showed that severe ultrastructure damage occurred in liver tissues and systemic inflammatory response was induced after surgery, with TLR4/MyD88/NFκB/HMGB1 activation, NLRP3-ASC-Caspase1 complex generation, GSDMD revitalization, and IL-1ß, IL-18, and LDH elevation in the serum. Furthermore, expression of Fas-Fasl-Caspase8 and CytC-APAF1-Caspase9 was increased in the liver. The ADSCs or ADSCs-exo intervention could inhibit the expression of these indicators and improve the ultrastructural pathological changes and systemic inflammatory response. There was no significant difference between the two intervention groups. In summary, ADSCs-exo could effectively inhibit pyroptosis and apoptosis similar to ADSCs and may be considered a safe and effective cell-free therapy to protect against liver injury.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Animais , Suínos , Piroptose , Porco Miniatura , Exossomos/metabolismo , Fígado/metabolismo , Apoptose , Células-Tronco Mesenquimais/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA