Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; PP2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146166

RESUMO

Scene graph generation (SGG) of surgical procedures is crucial in enhancing holistically cognitive intelligence in the operating room (OR). However, previous works have primarily relied on multi-stage learning, where the generated semantic scene graphs depend on intermediate processes with pose estimation and object detection. This pipeline may potentially compromise the flexibility of learning multimodal representations, consequently constraining the overall effectiveness. In this study, we introduce a novel single-stage bi-modal transformer framework for SGG in the OR, termed, S2Former-OR, aimed to complementally leverage multi-view 2D scenes and 3D point clouds for SGG in an end-to-end manner. Concretely, our model embraces a View-Sync Transfusion scheme to encourage multi-view visual information interaction. Concurrently, a Geometry-Visual Cohesion operation is designed to integrate the synergic 2D semantic features into 3D point cloud features. Moreover, based on the augmented feature, we propose a novel relation-sensitive transformer decoder that embeds dynamic entity-pair queries and relational trait priors, which enables the direct prediction of entity-pair relations for graph generation without intermediate steps. Extensive experiments have validated the superior SGG performance and lower computational cost of S2Former-OR on 4D-OR benchmark, compared with current OR-SGG methods, e.g., 3 percentage points Precision increase and 24.2M reduction in model parameters. We further compared our method with generic single-stage SGG methods with broader metrics for a comprehensive evaluation, with consistently better performance achieved. Our source code can be made available at: https://github.com/PJLallen/S2Former-OR.

2.
Sci Rep ; 14(1): 19004, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152225

RESUMO

The energy efficiency identification of machining process plays an indispensable part in achieving energy-efficient manufacturing and improving energy utilization as well as productivity and surface quality. However, there is a great difficulty to track energy efficiency in real-time based on one kind of traditional power signal. Because energy consumption is affected by many factors such as machine tool current performance, tool wear conditions and cutting parameters selection. This paper puts forward an energy efficiency recognition method as well as surface roughness prediction model based on the cutting force signals. The CEEMDAN (Complete Ensemble Empirical Mode Decomposition with Adaptive Noise) algorithm is employed to decompose the cutting force signal into multiple IMF (intrinsic mode function) components; and characterization of energy efficiency of machining process is recognized through proportion of components based on PCA-Fast ICA algorithm. Then, a surface roughness prediction model is proposed using support vector regression (SVR) based on specific cutting energy consumption (SCEC). The orthogonal test is designed considering spindle speed, feed rate, depth of cutting and width of cutting in 3 levels to obtain the influence degree of cutting parameters on cutting force, specific energy consumption, and the surface roughness. The energy efficiency of 27 group experiments is classified into high, medium and low levels according to energy efficiency value. Finally, using the data of orthogonal test, energy efficiency state was identified. The result show that time-frequency of cutting force signals for high, medium and low energy efficiency could be extracted, and the average absolute error of surface roughness predict is 0.058. That illustrated that the proposed method could meet the industry requirement for energy efficiency monitoring and surface roughness prediction to achieve sustainable manufacturing.

3.
Ageing Res Rev ; 99: 102416, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002644

RESUMO

Alzheimer's disease (AD) is a fatal neurodegenerative disease in which senile plaques and neurofibrillary tangles are crucially involved in its physiological and pathophysiological processes. Growing animal and clinical studies have suggested that AD is also comorbid with some metabolic diseases, including type 2 diabetes mellitus (T2DM), and therefore, it is often considered brain diabetes. AD and T2DM share multiple molecular and biochemical mechanisms, including impaired insulin signaling, oxidative stress, gut microbiota dysbiosis, and mitochondrial dysfunction. In this review article, we mainly introduce oxidative stress and mitochondrial dysfunction and explain their role and the underlying molecular mechanism in T2DM and AD pathogenesis; then, according to the current literature, we comprehensively evaluate the possibility of regulating oxidative homeostasis and mitochondrial function as therapeutics against AD. Furthermore, considering dietary polyphenols' antioxidative and antidiabetic properties, the strategies for applying them as potential therapeutical interventions in patients with AD symptoms are assessed.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Mitocôndrias , Estresse Oxidativo , Polifenóis , Transdução de Sinais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Estresse Oxidativo/efeitos dos fármacos , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antioxidantes/uso terapêutico
4.
Artigo em Inglês | MEDLINE | ID: mdl-39081000

RESUMO

Finding environmentally friendly, effective and residue-free alternatives to antibiotics has become a research priority. This is due to the ban on antibiotics in animal feed. Curcumin is a polyphenol extracted from the rhizome of turmeric that has antioxidant, anti-inflammatory and immunomodulatory properties. Curcumin has been widely demonstrated as a traditional flavoured agent and herbal medicine in the fight against diseases. In recent years, curcumin has been extensively studied in animal production, especially in poultry production. This article reviews the source, structure, metabolism and biological functions of curcumin and focuses on the application of curcumin in poultry production. In terms of production performance, curcumin can improve the growth performance of poultry, increase the egg production rate of laying hens and alleviate the negative effects of heat stress on the production performance of poultry and livestock. In terms of meat quality, curcumin can improve poultry meat quality by regulating lipid metabolism and antioxidant capacity. In terms of health, curcumin can improve immunity. Since mycotoxins have been a major problem in poultry production, this article also reviews the role of curcumin in helping poultry resist toxins. It is hoped that the review in this article can provide a concrete theoretical basis and research ideas for the research and application of curcumin in the field of poultry.

5.
CNS Neurosci Ther ; 30(7): e14876, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39049731

RESUMO

AIM: This study explores the efficacy of electroacupuncture (EA) in treating cerebral palsy (CP) in Sprague-Dawley (SD) pups, specifically CP animal models, and its molecular mechanisms. METHODS: Gait analysis and Y-maze were used to detect the improvement of motor ability and cognitive function of CP rats after EA treatment. Transcription sequencing was used to determine the key pathway for EA to improve the symptoms of CP. PPAR agonists were used to verify the causal relationship between the pathway and the improvement of CP phenotype. RESULTS: The motor ability and cognitive function of CP pups were improved after EA treatment. The results of transcriptome sequencing suggest that the improvement of CP phenotype may be caused by the activation of PPAR pathway. PPAR pathway is widely activated in the epithelium of CP pups treated with EA, which is verified by qPCR. Rosiglitazone (Ros), a PPAR agonist, can improve CP phenotype while activating PPAR pathway, which proves the causal relationship between PPAR pathway activation and CP phenotype improvement. CONCLUSION: Our study demonstrated behavioral improvements and enhanced cognitive functions in CP models after EA treatment by activating PPAR pathway, suggesting new perspectives for CP rehabilitation, and providing theoretical support for acupuncture treatment of CP.


Assuntos
Paralisia Cerebral , Eletroacupuntura , Receptores Ativados por Proliferador de Peroxissomo , Fenótipo , Ratos Sprague-Dawley , Eletroacupuntura/métodos , Paralisia Cerebral/terapia , Paralisia Cerebral/metabolismo , Animais , Ratos , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Feminino , Aprendizagem em Labirinto/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Modelos Animais de Doenças , Rosiglitazona/farmacologia , Animais Recém-Nascidos
6.
Biosensors (Basel) ; 14(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39056631

RESUMO

Mycotoxins are secondary products produced primarily by fungi and are pathogens of animals and cereals, not only affecting agriculture and the food industry but also causing great economic losses. The development of rapid and sensitive methods for the detection of mycotoxins in food is of great significance for livelihood issues. This study employed an amino-functionalized zirconium luminescent metal-organic framework (LOF) (i.e., UiO-66-NH2). Click chemistry was utilized to assemble UiO-66-NH2 in a controlled manner, generating LOF assemblies to serve as probes for fluorescence-linked immunoassays. The proposed fluoroimmunoassay method for Zearalenone (ZEN) and Fumonisin B1 (FB1) detection based on the UiO-66-NH2 assembled probe (CLICK-FLISA) afforded a linear response range of 1-20 µmol/L for ZEN, 20 µmol/L for FB1, and a very low detection limit (0.048-0.065 µmol/L for ZEN; 0.048-0.065 µmol/L for FB1). These satisfying results demonstrate promising applications for on-site quick testing in practical sample analysis. Moreover, the amino functionalization may also serve as a modification strategy to design luminescent sensors for other food contaminants.


Assuntos
Fumonisinas , Estruturas Metalorgânicas , Zea mays , Zearalenona , Fumonisinas/análise , Zearalenona/análise , Estruturas Metalorgânicas/química , Zea mays/química , Química Click , Fluorimunoensaio/métodos , Técnicas Biossensoriais , Contaminação de Alimentos/análise , Limite de Detecção , Micotoxinas/análise
7.
ACS Appl Mater Interfaces ; 16(20): 25665-25675, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38735053

RESUMO

Tumor-associated macrophages (TAMs) usually adopt a tumor-promoting M2-like phenotype, which largely impedes the immune response and therapeutic efficacy of solid tumors. Repolarizing TAMs from M2 to the antitumor M1 phenotype is crucial for reshaping the tumor immunosuppressive microenvironment (TIME). Herein, we developed self-assembled nanoparticles from the polymeric prodrug of resiquimod (R848) to reprogram the TIME for robust cancer immunotherapy. The polymeric prodrug was constructed by conjugating the R848 derivative to terminal amino groups of the linear dendritic polymer composed of linear poly(ethylene glycol) and lysine dendrimer. The amphiphilic prodrug self-assembled into nanoparticles (PLRS) of around 35 nm with a spherical morphology. PLRS nanoparticles could be internalized by antigen-presenting cells (APCs) in vitro and thus efficiently repolarized macrophages from M2 to M1 and facilitated the maturation of APCs. In addition, PLRS significantly inhibited tumor growth in the 4T1 orthotopic breast cancer model with much lower systemic side effects. Mechanistic studies suggested that PLRS significantly stimulated the TIME by repolarizing TAMs into the M1 phenotype and increased the infiltration of cytotoxic T cells into the tumor. This study provides an effective polymeric prodrug-based strategy to improve the therapeutic efficacy of R848 in cancer immunotherapy.


Assuntos
Imidazóis , Imunoterapia , Nanopartículas , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Animais , Camundongos , Imidazóis/química , Imidazóis/farmacologia , Nanopartículas/química , Feminino , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Humanos , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Células RAW 264.7 , Polietilenoglicóis/química , Microambiente Tumoral/efeitos dos fármacos , Dendrímeros/química , Dendrímeros/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo
8.
J Am Chem Soc ; 146(20): 13983-13999, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38736283

RESUMO

The reaction mechanism of Brønsted acid-catalyzed silane-dependent P═O reduction has been elucidated through combined computational and experimental methods. Due to its remarkable chemo- and stereoselective nature, the Brønsted acid/silane reduction system has been widely employed in organophosphine-catalyzed transformations involving P(V)/P(III) redox cycle. However, the full mechanistic profile of this type of P═O reduction has yet to be clearly established to date. Supported by both DFT and experimental studies, our research reveals that the reaction likely proceeds through mechanisms other than the widely accepted "dual activation mode by silyl ester" or "acid-mediated direct P═O activation" mechanism. We propose that although the reduction mechanisms may vary with the substitution patterns of silane species, Brønsted acid generally activates the silane rather than the P═O group in transition structures. The proposed activation mode differs significantly from that associated with traditional Brønsted acid-catalyzed C═O reduction. The uniqueness of P═O reduction originates from the dominant Si/O═P orbital interactions in transition structures rather than the P/H-Si interactions. The comprehensive mechanistic landscape provided by us will serve as a guidance for the rational design and development of more efficient P═O reduction systems as well as novel organophosphine-catalyzed reactions involving P(V)/P(III) redox cycle.

9.
Reproduction ; 168(2)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38744310

RESUMO

In brief: Abnormal glucose metabolism may be involved in the pathogenesis of endometriosis. The present study identifies that highly expressed H19 leads to increased aerobic glycolysis and histone lactylation levels in endometriosis. Abstract: Previous studies from our group and others have shown increased IncRNA H19 expression in both the eutopic endometrium and the ectopic endometriosis tissue during endometriosis. In this study, we use immunofluorescence, immunohistochemistry, and protein quantification to determine that levels of aerobic glycolysis and histone lactylation are increased in endometriosis tissues. In human endometrial stromal cells, we found that high H19 expression resulted in abnormal glucose metabolism by examining the levels of glucose, lactate, and ATP and measuring protein levels of enzymes that participate in glycolysis. At the same time, immunofluorescence and western blotting demonstrated increased histone lactylation in H19 overexpressing cells. Altering aerobic glycolysis and histone lactylation levels through the addition of sodium lactate and 2-deoxy-d-glucose demonstrated that increased aerobic glycolysis and histone lactylation levels resulted in enhanced cell proliferation and cell migration, contributing to endometriosis. To validate these findings in vivo, we constructed an endometriosis mouse model, demonstrating similar changes in endometriosis tissues in vivo. Both aerobic glycolysis and histone lactylation levels were elevated in endometriotic lesions. Taken together, these data demonstrate elevated expression levels of H19 in endometriosis patients promote abnormal glucose metabolism and elevated histone lactylation levels in vivo, enhancing cell proliferation and migration and promoting the progression of endometriosis. Our study provides a functional link between H19 expression and histone lactylation and glucose metabolism in endometriosis, providing new insights into disease mechanisms that could result in novel therapeutic approaches.


Assuntos
Endometriose , Glicólise , Histonas , RNA Longo não Codificante , Feminino , Endometriose/metabolismo , Endometriose/patologia , Endometriose/genética , Humanos , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Histonas/metabolismo , Animais , Camundongos , Proliferação de Células , Endométrio/metabolismo , Endométrio/patologia , Adulto , Glucose/metabolismo
10.
Angew Chem Int Ed Engl ; 63(32): e202407281, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779787

RESUMO

Catalytic olefin hydroamination reactions are some of the most atom-economical transformations that bridge readily available starting materials-olefins and high-value-added amines. Despite significant advances in this field over the last two decades, the formal hydroamination of nonactivated aromatic compounds remains an unsolved challenge. Herein, we report the extension of olefin hydroamination to aromatic π-systems by using arenophile-mediated dearomatization and Cu-catalysis to perform 1,2-hydroamination on nonactivated arenes. This strategy was applied to a variety of substituted arenes and heteroarenes to provide general access to structurally complex amines. We conducted DFT calculations to inform mechanistic understanding and rationalize unexpected selectivity trends. Furthermore, we developed a practical, scalable desymmetrization to deliver enantioenriched dearomatized products and enable downstream synthetic applications. We ultimately used this dearomative strategy to efficiently synthesize a collection of densely functionalized small molecules.

11.
J Am Chem Soc ; 146(20): 14136-14148, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38642063

RESUMO

An unprecedented chiral bisphosphine-catalyzed asymmetric Staudinger/aza-Wittig reaction of 2,2-disubstituted cyclohexane-1,3-diones is reported, enabling the facile access of a broad range of cis-3a-arylhydroindoles in high yields with excellent enantioselectivities. The key to the success of this work relies on the first application of chiral bisphosphine DuanPhos to the asymmetric Staudinger/aza-Wittig reaction. An effective reductive system has been established to address the challenging PV═O/PIII redox cycle associated with the chiral bisphosphine catalyst. In addition, comprehensive experimental and computational investigations were carried out to elucidate the mechanism of the asymmetric reaction. Leveraging the newly developed chemistry, the enantioselective total syntheses of several crinine-type Amaryllidaceae alkaloids, including (+)-powelline, (+)-buphanamine, (+)-vittatine, and (+)-crinane, have been accomplished with remarkable conciseness and efficiency.

12.
J Environ Manage ; 356: 120599, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508013

RESUMO

The aim of this paper is to investigate the derived structure and properties of Zeolitic Imidazolate Framework-8 (ZIF-8), and the effect of residual structural on the catalytic properties after loading with Titanium Dioxide (TiO2). For this purpose, we ingeniously prepare C-ZIF-8@TiO2 with a transition-state defect structure and apply it for efficiently degrading organic dye wastewater represented by Rhodamine B (Rh-B). Thanks to the transition-state defect structure loaded with TiO2 and ZIF-8 self-derived Carbon (C) and Zinc Oxide (ZnO), the catalytic performance of C-ZIF-8@TiO2 is superior to that of TiO2 and normal TiO2/ZIF-8 composites, and it is effective in degrading a variety of antibiotics and dyes. The related characterization also shows good photovoltaic properties and long-term durability for C-ZIF-8@TiO2. The mechanism on free radical action is elucidated and the possible degradation pathway for Rh-B is speculated. Therefore, C-ZIF-8@TiO2 provides a new strategy for the degradation of organic pollutants in water bodies.


Assuntos
Poluentes Ambientais , Fotólise , Porosidade , Águas Residuárias , Catálise
13.
Org Lett ; 26(9): 1965-1969, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38418377

RESUMO

We report a carbene-catalyzed [4 + 2] annulation of activated esters and ß-borate enones, providing an efficient method to build enantioenriched organoborones with two consecutive stereogenic centers. It is worth noting that this protocol represents a new organocatalytic manner to generate chiral ß-C-B bonds. Moreover, it also greatly enriches the structural diversity of the chiral organoboron compounds.

14.
Biosens Bioelectron ; 250: 116094, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38308943

RESUMO

Upconversion nanoparticles (UCNPs)-mediated in-situ imaging and synergistic therapy may be an effective approach against tumors. However, it remains a challenge to improve therapeutic index and reduce toxicity. Here, we investigated the construction process of a three-layer (core-shell-shell) upconversion nano-jelly hydrogels (UCNJs) coated with stimulus-responsive deoxyribonucleic acid chains, aiming to achieve selective recognition of tumor cells and controlled release of drugs. The UCNJs have a NaYF4: Yb, Er core with an outer silica shell with embedded methylene blue (MB). Then the outer layer was coated with mesoporous silica and loaded with doxorubicin (DOX). Finally, polyacrylamide chains containing anti-adenosine triphosphate (ATP) aptamer sequences were assembled layer-by-layer on the surface of particles to form DNA hydrogels to lock DOX. Under near-infrared irradiation, green light (540 nm) emitted by UCNJs can be used for imaging, while red light (660 nm) is absorbed by MB. The latter generates singlet oxygen, resulting in photodynamic therapy (PDT) effect to inhibit tumor growth. UCNJs also can recognize ATP in tumor cells, leading to hydrogel degradation and DOX release. The hydrogel coating can increase drug-carrying capacity of mesoporous materials and improve biocompatibility. Therefore, the UCNJs has great potential advantages for application in the field of cancer diagnosis and treatment.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Fotoquimioterapia/métodos , Dióxido de Silício , Hidrogéis
15.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 921-933, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38372476

RESUMO

Intensive breeding of broilers met the increasing demands of human for broiler products, but it raised their increased susceptibility to various stressors resulting in the disorder of lipid metabolism. Pterostilbene, the methoxylated analogue of resveratrol, exhibits astonishing functions of antioxidant, anti-inflammatory and glycolipid regulatory. The study aimed to elucidate the protective effects of pterostilbene on broiler liver and to explore the potential mechanisms. A total of 480 one-day-old male Arbor Acres (AA) broilers were randomly divided into four groups: the control group (basal diet) and pterostilbene groups (PT200, PT400, and PT600 feeding with basal diet containing 200, 400 and 600 mg/kg pterostilbene, respectively). The results showed that the dietary pterostilbene supplementation significantly improved the ADG of broilers. Dietary pterostilbene supplementation regulated the expression levels of the genes Sirt1 and AMPK and the downstream genes related to lipid metabolism to protect liver function and reduce lipid accumulation in broilers. Dietary pterostilbene supplementation upregulated the expression levels of the Nrf2 gene and its downstream antioxidant genes (SOD, CAT, HO-1, NQO-1, GPX) and phase II detoxification enzyme-related genes (GST, GCLM, GCLC). Collectively, pterostilbene was confirmed the positive effects as a feed additive on lipid metabolism and antioxidant via regulating Sirt1/AMPK and Nrf2 signalling pathways in broilers.


Assuntos
Ração Animal , Antioxidantes , Galinhas , Dieta , Suplementos Nutricionais , Metabolismo dos Lipídeos , Fígado , Estilbenos , Animais , Estilbenos/farmacologia , Estilbenos/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Dieta/veterinária , Metabolismo dos Lipídeos/efeitos dos fármacos , Ração Animal/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Animal
16.
Animals (Basel) ; 14(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338051

RESUMO

This experiment aimed to investigate the mitigating effect of CUR on the growth performance and liver and intestinal health of broilers fed AFB1-contaminated diets. In this study, 320 one-day-old healthy male Arbor Acres (AA) broilers were randomly divided into four groups, including the Control group (fed the basal diet), the AFB1 group (fed the AFB1-contaminated diet containing 1 mg/kg AFB1), the AFB1+CUR group (fed the AFB1-contaminated diet with 500 mg/kg CUR), and the CUR group (fed the basal diet containing 500 mg/kg CUR), with eight replicates of ten animals per group and a 28 d experimental period. In terms of the growth performance, the addition of 500 mg/kg CUR significantly improved AFB1-induced significant reductions in the final body weight on day 28 and mean daily gain (p < 0.05) and increased the ratio of the mean daily feed intake to mean daily weight gain in broilers (p < 0.05). In terms of liver health, significant improvements in liver histological lesions occurred in broilers in the AFB1+CUR group compared to the AFB1 group, with significantly higher glutathione peroxidase (GSH-Px), catalase (CAT), and total superoxide dismutase (T-SOD) activities (p < 0.05) and significantly higher levels of nuclear factor erythroid 2-related factor 2 (Nrf2), Kelch-like ECH-associated protein 1 (Keap-1), heme oxygenase 1 (HO-1), and NAD(P)H quinone oxidoreductase 1 (NQO-1) gene expression (p < 0.05). In terms of intestinal health, CUR addition significantly increased the relative length of ileum (p < 0.05), significantly elevated the height of ileal villi (p < 0.05), significantly reduced D-Lactate (D-LA) and diamine oxidase (DAO) activities in broiler serum (p < 0.05), significantly increased GSH, CAT, and T-SOD activities in ileal tissues (p < 0.05), and significantly elevated the expression of Nrf2, HO-1, and NQO-1 genes (p < 0.05) compared to the AFB1 group. In conclusion, CUR showed a protective effect against damage to the liver and intestine caused by AFB1 in broilers through the Nrf2 signaling pathway, thereby improving the growth performance of broilers exposed to AFB1.

17.
Nano Lett ; 24(1): 402-410, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153842

RESUMO

The ability of drugs to cross the blood-brain barrier (BBB) is crucial for treating central nervous system (CNS) disorders. Inspired by natural viruses, here we report a glucose and polydopamine (GPDA) coating method for the construction of delivery platforms for efficient BBB crossing. Such platforms are composed of nanoparticles (NPs) as the inner core and surface functionalized with glucose-poly(ethylene glycol) (Glu-PEG) and polydopamine (PDA) coating. Glu-PEG provides selective targeting of the NPs to brain capillary endothelial cells (BCECs), while PDA enhances the transcytosis of the NPs. This strategy is applicable to gold NPs (AuNPs), silica, and polymeric NPs, which achieves as high as 1.87% of the injected dose/g of brain in healthy brain tissues. In addition, the GPDA coating manages to deliver NPs into the tumor tissue in the orthotopic glioblastoma model. Our study may provide a universal strategy for the construction of delivery platforms for efficient BBB crossing and brain drug delivery.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Células Endoteliais , Ouro/farmacologia , Encéfalo , Sistemas de Liberação de Medicamentos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA