Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 6(3): 232-245, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35102279

RESUMO

Cell-free DNA (cfDNA) in the circulating blood plasma of patients with cancer contains tumour-derived DNA sequences that can serve as biomarkers for guiding therapy, for the monitoring of drug resistance, and for the early detection of cancers. However, the analysis of cfDNA for clinical diagnostic applications remains challenging because of the low concentrations of cfDNA, and because cfDNA is fragmented into short lengths and is susceptible to chemical damage. Barcodes of unique molecular identifiers have been implemented to overcome the intrinsic errors of next-generation sequencing, which is the prevailing method for highly multiplexed cfDNA analysis. However, a number of methodological and pre-analytical factors limit the clinical sensitivity of the cfDNA-based detection of cancers from liquid biopsies. In this Review, we describe the state-of-the-art technologies for cfDNA analysis, with emphasis on multiplexing strategies, and discuss outstanding biological and technical challenges that, if addressed, would substantially improve cancer diagnostics and patient care.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Biomarcadores/análise , Ácidos Nucleicos Livres/análise , Ácidos Nucleicos Livres/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida/métodos , Neoplasias/diagnóstico , Neoplasias/genética
2.
Nat Biomed Eng ; 5(7): 702-712, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34211146

RESUMO

Assays for the molecular detection of nucleic acids are typically constrained by the level of multiplexing (this is the case for the quantitative polymerase chain reaction (qPCR) and for isothermal amplification), turnaround times (as with microarrays and next-generation sequencing), quantification accuracy (isothermal amplification, microarrays and nanopore sequencing) or specificity for single-nucleotide differences (microarrays and nanopore sequencing). Here we show that a portable and battery-powered PCR assay performed in a toroidal convection chamber housing a microarray of fluorescently quenched oligonucleotide probes allows for the rapid and sensitive quantification of multiple DNA targets with single-nucleotide discrimination. The assay offers a limit of detection of 10 DNA copies within 30 min of turnaround time and a dynamic range spanning 4 orders of magnitude of DNA concentration, and we show its performance by detecting 20 genomic loci and 30 single-nucleotide polymorphisms in human genomic DNA samples, and 15 bacterial species in clinical isolates. Portable devices for the fast and highly multiplexed detection of nucleic acids may offer advantages in point-of-care diagnostics.


Assuntos
DNA/análise , Reação em Cadeia da Polimerase/métodos , Bactérias/genética , Bactérias/isolamento & purificação , DNA/metabolismo , Sondas de DNA/metabolismo , Corantes Fluorescentes/química , Genoma Humano , Genótipo , Humanos , Limite de Detecção , Análise em Microsséries , Sistemas Automatizados de Assistência Junto ao Leito , Reação em Cadeia da Polimerase/instrumentação , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
3.
Nat Commun ; 12(1): 4387, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282137

RESUMO

Targeted high-throughput DNA sequencing is a primary approach for genomics and molecular diagnostics, and more recently as a readout for DNA information storage. Oligonucleotide probes used to enrich gene loci of interest have different hybridization kinetics, resulting in non-uniform coverage that increases sequencing costs and decreases sequencing sensitivities. Here, we present a deep learning model (DLM) for predicting Next-Generation Sequencing (NGS) depth from DNA probe sequences. Our DLM includes a bidirectional recurrent neural network that takes as input both DNA nucleotide identities as well as the calculated probability of the nucleotide being unpaired. We apply our DLM to three different NGS panels: a 39,145-plex panel for human single nucleotide polymorphisms (SNP), a 2000-plex panel for human long non-coding RNA (lncRNA), and a 7373-plex panel targeting non-human sequences for DNA information storage. In cross-validation, our DLM predicts sequencing depth to within a factor of 3 with 93% accuracy for the SNP panel, and 99% accuracy for the non-human panel. In independent testing, the DLM predicts the lncRNA panel with 89% accuracy when trained on the SNP panel. The same model is also effective at predicting the measured single-plex kinetic rate constants of DNA hybridization and strand displacement.


Assuntos
Sequência de Bases , Aprendizado Profundo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA/genética , Sondas de DNA , Genômica , Humanos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
4.
Nat Chem ; 10(1): 91-98, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29256499

RESUMO

Hybridization is a key molecular process in biology and biotechnology, but so far there is no predictive model for accurately determining hybridization rate constants based on sequence information. Here, we report a weighted neighbour voting (WNV) prediction algorithm, in which the hybridization rate constant of an unknown sequence is predicted based on similarity reactions with known rate constants. To construct this algorithm we first performed 210 fluorescence kinetics experiments to observe the hybridization kinetics of 100 different DNA target and probe pairs (36 nt sub-sequences of the CYCS and VEGF genes) at temperatures ranging from 28 to 55 °C. Automated feature selection and weighting optimization resulted in a final six-feature WNV model, which can predict hybridization rate constants of new sequences to within a factor of 3 with ∼91% accuracy, based on leave-one-out cross-validation. Accurate prediction of hybridization kinetics allows the design of efficient probe sequences for genomics research.


Assuntos
DNA/química , Modelos Teóricos , Hibridização de Ácido Nucleico , Algoritmos , Genoma Humano , Humanos , Cinética , Conformação de Ácido Nucleico , Sondas de Oligonucleotídeos , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA