Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Commun ; 15(1): 2797, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555355

RESUMO

Silent information regulator 2 (Sir2) proteins typically catalyze NAD+-dependent protein deacetylation. The recently identified bacterial Sir2 domain-containing protein, defense-associated sirtuin 2 (DSR2), recognizes the phage tail tube and depletes NAD+ to abort phage propagation, which is counteracted by the phage-encoded DSR anti-defense 1 (DSAD1), but their molecular mechanisms remain unclear. Here, we determine cryo-EM structures of inactive DSR2 in its apo form, DSR2-DSAD1 and DSR2-DSAD1-NAD+, as well as active DSR2-tube and DSR2-tube-NAD+ complexes. DSR2 forms a tetramer with its C-terminal sensor domains (CTDs) in two distinct conformations: CTDclosed or CTDopen. Monomeric, rather than oligomeric, tail tube proteins preferentially bind to CTDclosed and activate Sir2 for NAD+ hydrolysis. DSAD1 binding to CTDopen allosterically inhibits tube binding and tube-mediated DSR2 activation. Our findings provide mechanistic insight into DSR2 assembly, tube-mediated DSR2 activation, and DSAD1-mediated inhibition and NAD+ substrate catalysis in bacterial DSR2 anti-phage defense systems.


Assuntos
Sirtuínas , Sirtuínas/metabolismo , NAD/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2 , Hidrólise
2.
Nat Chem Biol ; 20(4): 503-511, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37932528

RESUMO

Argonaute proteins (Agos), which use small RNAs or DNAs as guides to recognize complementary nucleic acid targets, mediate RNA silencing in eukaryotes. In prokaryotes, Agos are involved in immunity: the short prokaryotic Ago/TIR-APAZ (SPARTA) immune system triggers cell death by degrading NAD+ in response to invading plasmids, but its molecular mechanisms remain unknown. Here we used cryo-electron microscopy to determine the structures of inactive monomeric and active tetrameric Crenotalea thermophila SPARTA complexes, revealing mechanisms underlying SPARTA assembly, RNA-guided recognition of target single-stranded DNA (ssDNA) and subsequent SPARTA tetramerization, as well as tetramerization-dependent NADase activation. The small RNA guides Ago to recognize its ssDNA target, inducing SPARTA tetramerization via both Ago- and TIR-mediated interactions and resulting in a two-stranded, parallel, head-to-tail TIR rearrangement primed for NAD+ hydrolysis. Our findings thus identify the molecular basis for target ssDNA-mediated SPARTA activation, which will facilitate the development of SPARTA-based biotechnological tools.


Assuntos
DNA de Cadeia Simples , NAD+ Nucleosidase , NAD , Microscopia Crioeletrônica , RNA , Sistema Imunitário
4.
Medicine (Baltimore) ; 102(41): e35411, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37832067

RESUMO

BACKGROUND: Previous studies suggest that sleep-disordered breathing (SDB) may be a potential risk factor of retinal vein occlusion (RVO). We conducted a meta-analysis to systematically explore the relationship between RVO and SDB. METHODS: Observational studies assessing the relationship between SDB and RVO were retrieved by searches of electronic databases including the PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and Wan Fang databases from database inception to August 9, 2023. In consideration of intra-study heterogeneity, a random-effects model was adopted to combine the results. RESULTS: Seven studies (1 retrospective cohort and 6 case-control studies) were included in this meta-analysis, and among 36,628 adults included in those studies, 6452 (17.6%) had SDB. The combined results indicated that SDB was associated with RVO [risk ratio (RR): 1.92, 95% confidence interval (CI): 1.60-2.30, P < .001] with no significant heterogeneity (I2 = 0%). Subgroup analyses showed consistent relationships between SDB and any RVO (RR: 1.73, 95% CI: 1.13-2.28, P < .001), central RVO (RR: 2.20, 95% CI: 1.57-3.08, P < .001), and branch RVO (RR: 1.85, 95% CI: 1.15-2.99, P = .01). Moreover, the relationship was consistent among patients with mild (RR: 1.82, 95% CI: 1.32-2.53, P < .001), moderate (RR: 2.17, 95% CI: 1.65-2.85, P < .001), and severe SDB (RR: 2.66, 95% CI: 1.96-3.62, P < .001). The association was consistent in studies that adjusted for age and sex (RR: 2.17, 95% CI: 1.50-3.13, P < .001), and in studies with additional adjustment for comorbidities (RR: 1.78, 95% CI: 1.42-2.25, P < .001). CONCLUSION: SDB is associated with RVO in adults.


Assuntos
Oclusão da Veia Retiniana , Síndromes da Apneia do Sono , Adulto , Humanos , Oclusão da Veia Retiniana/complicações , Estudos Retrospectivos , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/epidemiologia , Fatores de Risco , Estudos de Casos e Controles , Estudos Observacionais como Assunto
5.
Clin Nephrol Case Stud ; 11: 126-131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575312

RESUMO

Sinomenine (SIN), the alkaloid monomer extracted from Sinomenium acutum, is a kind of non-steroidal anti-inflammatory drug widely used in China to treat rheumatoid arthritis (RA) and various glomerular diseases. It has various pharmacological effects such as anti-inflammatory, analgesic, and anti-tumor. As a strong histamine-releasing agent, SIN has drawn increasing attention in regards to its side effects such as allergic, gastrointestinal, and circulatory systemic reactions. In this report, we first described a patient with primary membranous nephropathy (PMN) who was treated with oral intake of SIN and developed medicine-induced toxic epidermal necrolysis (TEN) and subsequently died of septic multi-organ failure. The present case report intends to demonstrate the underestimated side effects of SIN that can eventually lead to death.

6.
Mol Cell ; 83(14): 2493-2508.e5, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37343553

RESUMO

Type IV CRISPR-Cas systems, which are primarily found on plasmids and exhibit a strong plasmid-targeting preference, are the only one of the six known CRISPR-Cas types for which the mechanistic details of their function remain unknown. Here, we provide high-resolution functional snapshots of type IV-A Csf complexes before and after target dsDNA binding, either in the absence or presence of CasDinG, revealing the mechanisms underlying CsfcrRNA complex assembly, "DWN" PAM-dependent dsDNA targeting, R-loop formation, and CasDinG recruitment. Furthermore, we establish that CasDinG, a signature DinG family helicase, harbors ssDNA-stimulated ATPase activity and ATP-dependent 5'-3' DNA helicase activity. In addition, we show that CasDinG unwinds the non-target strand (NTS) and target strand (TS) of target dsDNA from the CsfcrRNA complex. These molecular details advance our mechanistic understanding of type IV-A CRISPR-Csf function and should enable Csf complexes to be harnessed as genome-engineering tools for biotechnological applications.


Assuntos
Proteínas Associadas a CRISPR , DNA , DNA/genética , DNA de Cadeia Simples/genética , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/metabolismo
7.
J Hepatocell Carcinoma ; 10: 369-382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915393

RESUMO

Background: FAT atypical cadherin 1 (FAT1) acts as a tumor suppressor or oncogene, which regulates cell adherence, proliferation, motility, and actin kinetics. FAT1 gene expression is closely related to hepatocarcinogenesis; however, the function and mechanism of FAT1 in hepatocellular carcinoma (HCC) remain unclear. Methods: Here, we screened for the FAT1, which is intimately linked to the development and progression of HCC, both in circulating tumor cells (CTCs) and tumor tissues using next generation sequencing (NGS). Immunohistochemical staining was performed to detect FAT1 protein expression. To determine the impact of FAT1 on epithelial-mesenchymal transition (EMT), migration and invasion of HCC, an in vitro transwell assay and Western blot were performed. Moreover, Gene Set Enrichment Analysis was carried out to discover the underlying mechanism. Finally, animal experiments were conducted to confirm the effects of FAT1 on HCC metastasis and tumorigenicity. Results: Our results showed that FAT1 expression was decreased in HCC tissues, while in vitro and in vivo, the FAT1 knockdown facilitated invasion, cell motility, colony formation, and proliferation. FAT1 knockdown also resulted in decreased expression of E-cadherin and markedly elevated expression of N-cadherin, vimentin, and snail. We also confirmed our hypothesis from the analysis of group differences in the CTC phenotype and lung metastasis in nude mice. Conclusion: Our findings illustrated that FAT1 played a negative regulatory role in the HCC EMT and metastasis, providing further evidence for the role played by FAT1 in the formation and progression of HCC.

8.
Hepatol Commun ; 7(1): e0006, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36633475

RESUMO

BACKGROUND: Exosomal proteins from cancer cells are becoming new biomarkers for cancer monitoring and efficacy evaluation. However, their biological function and molecular mechanism underlying tumor metastasis are largely unknown. METHODS: Bioinformatic methods such as bulk gene expression analysis, single-cell RNA sequencing data analysis, and gene set enrichment analysis were employed to identify metastasis-associated proteins. The in vitro and in vivo experiments were used to investigate the function of RAB13 in HCC metastasis. RESULTS: We identified RAB13 as one of the critical regulators of metastasis in HCC-derived exosomes for the first time. In vitro, the invasiveness of HCC cell lines could be attenuated by RAB13 silence. In vivo, tumor size and proportion of high-grade lung metastatic nodule could be reduced in the mice with orthotopic transplantation of tumors and intravenously injected with exosomes derived from MHCC97H cell with RAB13 silence (si-RAB13-Exo), as compared with those without RAB13 silence (si-NC-Exo). Moreover, in si-RAB13-Exo group, circulating tumor cell counts were decreased at the third, fourth, and fifth weeks after orthotopic transplantation of tumors, and MMP2 (matrix metalloproteinase 2)/TIMP2 (tissue inhibitor of metalloproteinases 2) ratio was also significantly decreased. In addition, RAB13 expression was also associated with VEGF levels, microvessel density, and tube formation of vascular endothelial cells by both in vitro and in vivo models, indicating that RAB13 was associated with angiogenesis in HCC. CONCLUSIONS: We have demonstrated exosomal RAB13 as a potential regulator of metastasis for HCC by in silico, in vitro, and in vivo methods, which greatly improve our understanding of the functional impact of exosomal proteins on HCC metastasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Células Endoteliais/metabolismo , Neoplasias Hepáticas/patologia , Metaloproteinase 2 da Matriz , Proteômica , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
J Nanobiotechnology ; 21(1): 25, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681851

RESUMO

BACKGROUND: Hematogenous metastasis is essential for the progression of advanced hepatocellular carcinoma (HCC) and can occur even after patients receive multidisciplinary therapies, including immunotherapy and hepatectomy; circulating tumor cells (CTCs) are one of the dominant components of the metastatic cascade. However, the CTC capture efficiency for HCC is low due to the low sensitivity of the detection method. In this study, epithelial cell adhesion molecule (EpCAM)/vimentin/Glypican-3 (GPC3) antibody-modified lipid magnetic spheres (LMS) were used to capture tumor cells with epithelial phenotype, mesenchymal phenotype and GPC3 phenotype, respectively, in order to capture more CTCs with a more comprehensive phenotype for monitoring tumor metastasis. RESULTS: The novel CTC detection system of Ep-LMS/Vi-LMS/GPC3-LMS was characterized by low toxicity, strong specificity (96.94%), high sensitivity (98.12%) and high capture efficiency (98.64%) in vitro. A sudden increase in CTC counts accompanied by the occurrence of lung metastasis was found in vivo, which was further validated by a clinical study. During follow-up, the rapid increase in CTCs predicted tumor progression in HCC patients. Additionally, genetic testing results showed common genetic alterations in primary tumors, CTCs and metastatic tissues. The proportion of patients predicted to benefit from immunotherapy with the CTC detection method was higher than that for the tissue detection method (76.47% vs. 41.18%, P = 0.037), guiding the application of clinical individualized therapy. CONCLUSIONS: The Ep-LMS/Vi-LMS/GPC3-LMS sequential CTC capture system is convenient and feasible for the clinical prediction of HCC progression. CTCs captured by this system could be used as a suitable alternative to HCC tissue detection in guiding immunotherapy, supporting the clinical application of CTC liquid biopsy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Humanos , Carcinoma Hepatocelular/patologia , Células Neoplásicas Circulantes/patologia , Neoplasias Hepáticas/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Hepatectomia , Biomarcadores Tumorais/metabolismo , Glipicanas
10.
Proc Natl Acad Sci U S A ; 120(4): e2213727120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36656854

RESUMO

The myophage possesses a contractile tail that penetrates its host cell envelope. Except for investigations on the bacteriophage T4 with a rather complicated structure, the assembly pattern and tail contraction mechanism of myophage remain largely unknown. Here, we present the fine structure of a freshwater Myoviridae cyanophage Pam3, which has an icosahedral capsid of ~680 Å in diameter, connected via a three-section neck to an 840-Å-long contractile tail, ending with a three-module baseplate composed of only six protein components. This simplified baseplate consists of a central hub-spike surrounded by six wedge heterotriplexes, to which twelve tail fibers are covalently attached via disulfide bonds in alternating upward and downward configurations. In vitro reduction assays revealed a putative redox-dependent mechanism of baseplate assembly and tail sheath contraction. These findings establish a minimal myophage that might become a user-friendly chassis phage in synthetic biology.


Assuntos
Myoviridae , Montagem de Vírus , Bacteriófago T4/química , Capsídeo , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Myoviridae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA