Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Sci Total Environ ; : 173233, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763196

RESUMO

2-Methylisoborneol (2-MIB) is a common and widely distributed off-flavor compound in water. However, the toxic mechanisms of 2-MIB on aquatic organisms remain largely unexplored. In this study, grass carp larvae were exposed to different concentrations (0, 5, and 20 µg L-1) of 2-MIB for 96 h. The accumulation of 2-MIB in the dorsal muscle was measured. Histological analysis, ultrastructure observations, and transcriptomic sequencing were conducted on the liver tissues. The results showed that 2-MIB accumulated significantly in the fish muscle, with the accumulation increasing as the exposure concentration increased through gas chromatography-mass spectrometry (GC-MS) detection. Histological and ultrastructure observations indicated that 2-MIB caused concentration-dependent inflammatory infiltration and mitochondrial damage in the liver. Transcriptomic analysis revealed lipid metabolism disorders induced by exposure to 2-MIB in grass carp. Additionally, 5 µg L-1 2-MIB affected the neurodevelopment and cardiovascular system of grass carp larvae through extracellular matrix (ECM)-receptor interaction and focal adhesion pathway. Furthermore, several pathways related to the digestive system were significantly enriched, implying that 2-MIB may impact pancreatic secretion function, protein digestion and absorption processes. These findings provide new insights into the potential toxicological mechanisms of 2-MIB.

2.
Sci Rep ; 14(1): 11360, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762676

RESUMO

Sign language is an important way to provide expression information to people with hearing and speaking disabilities. Therefore, sign language recognition has always been a very important research topic. However, many sign language recognition systems currently require complex deep models and rely on expensive sensors, which limits the application scenarios of sign language recognition. To address this issue, based on computer vision, this study proposed a lightweight, dual-path background erasing deep convolutional neural network (DPCNN) model for sign language recognition. The DPCNN consists of two paths. One path is used to learn the overall features, while the other path learns the background features. The background features are gradually subtracted from the overall features to obtain an effective representation of hand features. Then, these features are flatten into a one-dimensional layer, and pass through a fully connected layer with an output unit of 128. Finally, use a fully connected layer with an output unit of 24 as the output layer. Based on the ASL Finger Spelling dataset, the total accuracy and Macro-F1 scores of the proposed method is 99.52% and 0.997, respectively. More importantly, the proposed method can be applied to small terminals, thereby improving the application scenarios of sign language recognition. Through experimental comparison, the dual path background erasure network model proposed in this paper has better generalization ability.

3.
Nanoscale ; 16(14): 7031-7040, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38441151

RESUMO

Galvanic replacement reaction (GRR) leverages the difference in metal reduction potentials to regulate the structure of nanomaterials. The crucial aspect of constructing highly active catalysts lies in the precise manipulation of both the oxidative dissolution of sacrificial template metals and reductive deposition of alternate metals. Herein, we investigated the morphological transformation of metal Ni as a sacrificial template in the presence of different amounts of H2PtCl6 solution and the Pt4+ substitution of Ni to achieve the redistribution of elements on the catalyst surface, which provides superior performance in both the methanol oxidation reaction (MOR) and hydrogen evolution reaction (HER). The uniform distribution of Pt on a three-dimensional transition metal Ni substrate allows for the complete exposure of the noble metal to the catalyst surface. This distribution increases the reaction area, facilitating easy access for reactants and promoting electron transfer. Meanwhile, Pt (1.39 Å) has a larger atomic radius compared to Ni (1.24 Å), and the substitution reaction in the transition metal phase induces strong compressive strain, which effectively regulates the electronic structure of Ni.

4.
BMC Genomics ; 25(1): 247, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443830

RESUMO

BACKGROUND: Ampelopsideae J. Wen & Z.L. Nie is a small-sized tribe of Vitaceae Juss., including ca. 47 species from four genera showing a disjunct distribution worldwide across all the continents except Antarctica. There are numerous species from the tribe that are commonly used as medicinal plants with immune-modulating, antimicrobial, and anti-hypertensive properties. The tribe is usually recognized into three clades, i.e., Ampelopsis Michx., Nekemias Raf., and the Southern Hemisphere clade. However, the relationships of the three clades differ greatly between the nuclear and the plastid topologies. There has been limited exploration of the chloroplast phylogenetic relationships within Ampelopsideae, and studies on the chloroplast genome structure of this tribe are only available for a few individuals. In this study, we aimed to investigate the evolutionary characteristics of plastid genomes of the tribe, including their genome structure and evolutionary insights. RESULTS: We sequenced, assembled, and annotated plastid genomes of 36 species from the tribe and related taxa in the family. Three main clades were recognized within Ampelopsideae, corresponding to Ampelopsis, Nekemias, and the Southern Hemisphere lineage, respectively, and all with 100% bootstrap supports. The genome sequences and content of the tribe are highly conserved. However, comparative analyses suggested that the plastomes of Nekemias demonstrate a contraction in the large single copy region and an expansion in the inverted repeat region, and possess a high number of forward and palindromic repeat sequences distinct from both Ampelopsis and the Southern Hemisphere taxa. CONCLUSIONS: Our results highlighted plastome variations in genome length, expansion or contraction of the inverted repeat region, codon usage bias, and repeat sequences, are corresponding to the three lineages of the tribe, which probably faced with different environmental selection pressures and evolutionary history. This study provides valuable insights into understanding the evolutionary patterns of plastid genomes within the Ampelopsideae of Vitaceae.


Assuntos
Genoma de Cloroplastos , Genomas de Plastídeos , Vitaceae , Humanos , Filogenia , Regiões Antárticas
5.
Artigo em Inglês | MEDLINE | ID: mdl-38517729

RESUMO

Estimating and synthesizing the hand's manipulation of objects is central to understanding human behaviour. To accurately model the interaction between the hand and object (referred to as the "hand-object"), we must not only focus on the pose of the hand and object, but also consider the contact between them. This contact provides valuable information for generating semantically and physically plausible grasps. In this paper, we propose an explicit contact representation called Contact Potential Field (CPF). In CPF, we model the contact between a pair of hand-object vertices as a spring-mass system. This system encodes the distance of the pair, as well as a likelihood of that contact being stable. Therefore, the system of multiple extended and compressed springs forms an elastic potential field with minimal energy at the optimal grasp position. We apply CPF to two relevant tasks, namely, hand-object pose estimation and grasping pose generation. Extensive experiments on the two challenging tasks and three commonly used datasets have demonstrated that our method can achieve state-of-the-art in several reconstruction metrics, allowing us to produce more physically plausible hand-object poses even when the ground-truth exhibits severe interpenetration or disjointedness. Our model and source codes are made publicly available at https://github.com/lixiny/CPF.

6.
Comput Biol Med ; 171: 108230, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442554

RESUMO

Interpreting single-cell chromatin accessibility data is crucial for understanding intercellular heterogeneity regulation. Despite the progress in computational methods for analyzing this data, there is still a lack of a comprehensive analytical framework and a user-friendly online analysis tool. To fill this gap, we developed a pre-trained deep learning-based framework, single-cell auto-correlation transformers (scAuto), to overcome the challenge. Following DNABERT's methodology of pre-training and fine-tuning, scAuto learns a general understanding of DNA sequence's grammar by being pre-trained on unlabeled human genome via self-supervision; it is then transferred to the single-cell chromatin accessibility analysis task of scATAC-seq data for supervised fine-tuning. We extensively validated scAuto on the Buenrostro2018 dataset, demonstrating its superior performance on chromatin accessibility prediction, single-cell clustering, and data denoising. Based on scAuto, we further developed an interactive web server for single-cell chromatin accessibility data analysis. It integrates tutorial-style interfaces for those with limited programming skills. The platform is accessible at http://zhanglab.icaup.cn. To our knowledge, this work is expected to help analyze single-cell chromatin accessibility data and facilitate the development of precision medicine.


Assuntos
Cromatina , DNA , Humanos , Análise de Sequência de DNA , Genoma Humano , Análise de Dados
7.
Neuroscience ; 541: 64-76, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38307407

RESUMO

Corticosteroids are commonly used in the treatment of inflammatory low back pain, and their nominal target is the glucocorticoid receptor (GR) to relieve inflammation. They can also have similar potency at the mineralocorticoid receptor (MR). The MR has been shown to be widespread in rodent and human dorsal root ganglia (DRG) neurons and non-neuronal cells, and when MR antagonists are administered during a variety of inflammatory pain models in rats, pain measures are reduced. In this study we selectively knockout (KO) the MR in sensory neurons to determine the role of MR in sensory neurons of the mouse DRG in pain measures as MR antagonism during the local inflammation of the DRG (LID) pain model. We found that MR antagonism using eplerenone reduced evoked mechanical hypersensitivity during LID, but MR KO in paw-innervating sensory neurons only did not. This could be a result of differences between prolonged (MR KO) versus acute (drug) MR block or an indicator that non-neuronal cells in the DRG are driving the effect of MR antagonists. MR KO unmyelinated C neurons are more excitable under normal and inflamed conditions, while MR KO does not affect excitability of myelinated A cells. MR KO in sensory neurons causes a reduction in overall GR mRNA but is protective against reduction of the anti-inflammatory GRα isoform during LID. These effects of MR KO in sensory neurons expanded our understanding of MR's functional role in different neuronal subtypes (A and C neurons), and its interactions with the GR.


Assuntos
Dor Lombar , Antagonistas de Receptores de Mineralocorticoides , Ratos , Camundongos , Humanos , Animais , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Receptores de Mineralocorticoides , Ratos Sprague-Dawley , Células Receptoras Sensoriais , Gânglios Espinais , Inflamação/tratamento farmacológico
8.
Artigo em Inglês | MEDLINE | ID: mdl-38372231

RESUMO

Obstructive sleep apnea (OSA) is associated with various health complications, and snoring is a prominent characteristic of this disorder. Therefore, the exploration of a concise and effective method for detecting snoring has consistently been a crucial aspect of sleep medicine. As the easily accessible data, the identification of snoring through sound analysis offers a more convenient and straightforward method. The objective of this study was to develop a convolutional neural network (CNN) for classifying snoring and non-snoring events based on audio. This study utilized Mel-frequency cepstral coefficients (MFCCs) as a method for extracting features during the preprocessing of raw data. In order to extract multi-scale features from the frequency domain of sound sources, this study proposes the utilization of a multi-branch convolutional neural network (MBCNN) for the purpose of classification. The network utilized asymmetric convolutional kernels to acquire additional information, while the adoption of one-hot encoding labels aimed to mitigate the impact of labels. The experiment tested the network's performance by utilizing a publicly available dataset consisting of 1,000 sound samples. The test results indicate that the MBCNN achieved a snoring detection accuracy of 99.5%. The integration of multi-scale features and the implementation of MBCNN, based on audio data, have demonstrated a substantial improvement in the performance of snoring classification.

9.
Front Psychol ; 15: 1297846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379619

RESUMO

Introduction: A large majority of US organizations profess a commitment to diversity, but their definitions of diversity can vary greatly. While previous research demonstrates a shift in diversity definitions to include fewer protected demographic groups and more non-demographic characteristics, the present research examines whether this shift might be a motivated process among dominant group members related to anti-egalitarian and colorblind belief systems. Methods: Using quantitative and qualitative methods, we explored potential underlying ideologies that may be associated with White Americans' shifting definitions of diversity. White Americans (N = 498) were asked how they define diversity, as well as who should be included in a range of diversity initiatives. Results: White participants' higher anti-egalitarian belief was associated with stronger colorblind ideology endorsement, which was then associated with shifting their definition of diversity to include fewer disadvantaged demographic groups, more advantaged demographic groups, and non-demographic groups, as well as employing a colorblind inclusion rhetoric. Discussion: Instead of only "broadening" diversity to include more characteristics than diversity's original focus, White Americans higher in anti-egalitarian and colorblind motives exhibited a simultaneous "narrowing" of diversity to include fewer protected demographic characteristics. Taken together, these findings have implications for dominant group members' definition of diversity and the subtle ways in which colorblind ideology may be enacted.

10.
Dalton Trans ; 53(9): 4237-4242, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38334161

RESUMO

In this work, low-crystalized and defective NiOx/graphene was synthesized by a facile electrolysis-solvothermal method. In the electrolytic process, Ni ions originate from the Ni anode, and graphene is produced from the graphite cathode. Then, Ni ions are reduced into oxides and deposited on graphene in the subsequent solvothermal process. The NiOx/graphene displays excellent electrocatalytic activity and selectivity for ethanol oxidation reaction to acetate. The peak current density was 296.5 mA cm-2 on a glassy carbon electrode. The FE of acetate was more than 93% at the potential range between 1.4 and 1.7 V. We propose that the mechanism is a cooperation between the chemical deprotonating process of ethanol by Ni3+ species and the electrochemical oxidation of the CH3CH2O* intermediate to acetate at the interface between NiOx and graphene.

11.
Chem Commun (Camb) ; 60(15): 1965-1978, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38273804

RESUMO

The rapid development of industry has accelerated the utilization and consumption of fossil energy, resulting in an increasing shortage of energy resources and environmental pollution. Therefore, it is crucial to explore new energy storage devices using renewable and environment-friendly energy as fuel. Direct borohydride fuel cells (DBFCs) are expected to be a feasible and efficient energy storage device by virtue of the read availability of raw materials, non-toxicity of products, and excellent operational stability. Moreover, while utilizing H2O2 as an oxidant, a significant theoretical energy density of 17 kW h kg-1 can be achieved, indicating the broad application prospect of DBFCs in long-range operation and oxygen-free environment. This review summarizes the research progress on DBFCs in term of reaction kinetics, electrode materials, membrane materials, architecture, and electrolytes. In addition, we predict the future research challenges and feasible research directions, considering both performance and cost. We hope this review will help guide future studies on DBFCs.

12.
Brain Behav Immun ; 117: 51-65, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38190983

RESUMO

Microglia, resident immune cells in the central nervous system, play a role in neuroinflammation and the development of neuropathic pain. We found that the stimulator of interferon genes (STING) is predominantly expressed in spinal microglia and upregulated after peripheral nerve injury. However, mechanical allodynia, as a marker of neuropathic pain following peripheral nerve injury, did not require microglial STING expression. In contrast, STING activation by specific agonists (ADU-S100, 35 nmol) significantly alleviated neuropathic pain in male mice, but not female mice. STING activation in female mice leads to increase in proinflammatory cytokines that may counteract the analgesic effect of ADU-S100. Microglial STING expression and type I interferon-ß (IFN-ß) signaling were required for the analgesic effects of STING agonists in male mice. Mechanistically, downstream activation of TANK-binding kinase 1 (TBK1) and the production of IFN-ß, may partly account for the analgesic effect observed. These findings suggest that STING activation in spinal microglia could be a potential therapeutic intervention for neuropathic pain, particularly in males.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Animais , Feminino , Masculino , Camundongos , Analgésicos , Anticorpos , Microglia , Traumatismos dos Nervos Periféricos/complicações
13.
Ecotoxicol Environ Saf ; 269: 115775, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070413

RESUMO

Geosmin is an environmental pollutant that causes off-flavor in water and aquatic products. The high occurrence of geosmin contamination in aquatic systems and aquaculture raises public awareness, however, few studies have investigated the response pathways of geosmin stress on freshwater fish. In this research, grass carp were exposed to 50 µg/L geosmin for 96 h, liver tissue was sequenced and validated using real-time qPCR. In total of 528 up-regulated genes and 488 down-regulated genes were observed, includes cytochrome P450 and uridine diphosphate (UDP)-glucuronosyltransferase related genes. KEGG analysis showed that chemical carcinogenesis-DNA adducts, metabolism of xenobiotics by cytochrome P450, drug metabolism-cytochrome P450 pathway was enriched. Common genes from the target genes of microRNAs and differential expression genes are enriched in metabolism of xenobiotics cytochrome P450 pathway. Two miRNAs (dre-miR-146a and miR-212-3p) down regulated their target genes (LOC127510138 and adh5, respectively) which are enriched cytochrome P450 related pathway. The results present that geosmin is genetoxic to grass carp and indicate that cytochrome P450 system and UDP-glucuronosyltransferase play essential roles in biotransformation of geosmin. MicroRNAs regulate the biotransformation of geosmin by targeting specific genes, which contributes to the development of strategies to manage its negative impacts in both natural and artificial environments.


Assuntos
Carpas , Doenças dos Peixes , MicroRNAs , Naftóis , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Carpas/genética , Carpas/metabolismo , RNA Mensageiro , Sistema Enzimático do Citocromo P-450/genética , Água Doce , Glucuronosiltransferase/genética , Difosfato de Uridina , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
14.
Dalton Trans ; 53(2): 619-627, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38063673

RESUMO

Engineering heterostructures with a unique surface/interface structure is one of the effective strategies to develop highly active noble-metal-free catalysts for the oxygen evolution reaction (OER), because the surface/interface of catalysts is the main site for the OER. Herein, we design a coralloid NiMo(Fe)-20 catalyst with a crystalline-amorphous interface through combining a hydrothermal method and an Fe-induced surface reconfiguration strategy. That is, after Fe3+ impregnation treatment, the Ni(OH)2-NiMoO4 pre-catalyst with a complete crystalline surface is restructured into a trimetallic heterostructure with a crystalline-amorphous interface, which facilitates mass diffusion and charge transfer during the OER. As expected, self-supported NiMo(Fe)-20 exhibits excellent electrocatalytic water oxidation performance (overpotential: η-10 = 220 mV, η-100 = 239 mV) in the alkaline electrolyte, and its electrocatalytic performance hardly changes after maintaining the current density of 50 mA cm-2 for 10 hours. Furthermore, nickel foam (NF) supported commercial Pt/C and self-supported NiMo(Fe)-20 served as the cathode and anode of the Pt/C‖NiMo(Fe)-20 electrolyzer, respectively, which exhibits a lower cell voltage (E-100 = 1.53 V) than that of the Pt/C‖RuO2 electrolyzer (E-100 = 1.58 V) assembled with noble metal-based catalysts. The enhanced electrocatalytic performance of the NiMo(Fe)-20 catalyst is mainly attributed to the synergistic effect between the crystalline-amorphous interface and the coralloid trimetallic heterostructure.

15.
J Biomed Mater Res A ; 112(5): 700-709, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962013

RESUMO

Sensorineural hearing loss (SNHL) is caused by the loss of sensory hair cells (HCs) and/or connected spiral ganglion neurons (SGNs). The current clinical conventional treatment for SNHL is cochlear implantation (CI). The principle of CI is to bypass degenerated auditory HCs and directly electrically stimulate SGNs to restore hearing. However, the effectiveness of CI is limited when SGNs are severely damaged. In the present study, oriented nanofiber scaffolds were fabricated using electrospinning technology to mimic the SGN spatial microenvironment in the inner ear. Meanwhile, different proportions of polyaniline (PANI), poly-l-lactide (PLLA), gelatin (Gel) were composited to mimic the composition and mechanical properties of auditory basement membrane. The effects of oriented PANI/PLLA/Gel biomimetic nanofiber scaffolds for neurite outgrowth were analyzed. The results showed the SGNs grew in an orientation along the fiber direction, and the length of the protrusions increased significantly on PANI/PLLA/Gel scaffold groups. The 2% PANI/PLLA/Gel group showed best effects for promoting SGN adhesion and nerve fiber extension. In conclusion, the biomimetic oriented nanofiber scaffolds can simulate the microenvironment of SGNs as well as promote neurite outgrowth in vitro, which may provide a feasible research idea for SGN regeneration and even therapeutic treatments of SNHL in future.


Assuntos
Compostos de Anilina , Nanofibras , Poliésteres , Gânglio Espiral da Cóclea , Gânglio Espiral da Cóclea/fisiologia , Gelatina/farmacologia , Neurônios
16.
J Colloid Interface Sci ; 656: 214-224, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37989054

RESUMO

To easily load Pt on smoothy graphene synthesized by cathodic exfoliation method and achieve adjacent plane distribution of Pt, carbon dots (CDs) are used to construct anchoring points to load highly dispersed Pt species due to strong interaction between CDs and Pt species. The composite of Pt-CDs/graphene is synthesized via a continuous process of cathodic exfoliation-hydrothermal-impregnation-reduction. Characterization results indicate the distribution configuration of Pt varies from coated structure of CDs@Pt to dispersed configuration of CDs&Pt or Pt&CDs, then to wrapping configuration of Pt@CDs with increased amount of CDs. It's found that suitable introduction of CDs promotes the adjacent plane distribution of Pt species. The obtained best Pt-4CDs/G shows the low overpotential of 36 mV (10 mA⋅cm-2) and high mass activity of 3747.8 mA mg-1 at -40 mV towards electrocatalytic hydrogen evolution reaction (HER), 9.2 times more active than that of Pt/C (406.2 mA mg-1). The superior HER performance of Pt-4CDs/G is attributed to its relatively adjacent plane distribution of Pt, which supports high electrochemically active surface area and more adjacent Pt sites for H* adsorption. Benefitting from that, the HER process for Pt-4CDs/G favorably follows the Tafel pathway, resulting in low hydrogen adsorption free energy and excellent HER activity.

17.
Neurosci Lett ; 817: 137518, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37844727

RESUMO

In mammals, aminoglycoside antibiotic-induced injury to hair cells (HCs) and associated spiral ganglion neurons (SGNs) is irreversible and eventually leads to permanent hearing loss. Efforts have been directed towards the advancement of efficacious therapeutic treatments to protect hearing loss, but the ideal substance for treating the damaged cochlear sensory epithelium has yet to be identified. Berberine (BBR), a quaternary ammonium hydroxide extracted from Coptis chinensis, has been found to display potential anti-oxidant and neuroprotective properties. However, its involvement in aminoglycoside antibiotic-induced ototoxicity has yet to be explored or assessed. In the present study, we explored the possible anti-oxidative properties of BBR in mitigating neomycin-triggered ototoxicity. An improved survival of HCs and SGN nerve fibers (NFs) in organ of Corti (OC) explants after neomycin with BBR co-treatment was observed, and BBR treatment attenuated reactive oxygen species (ROS) generation and reduced cleaved caspase-3 signaling by activating six phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling relative subtypes, and the addition of PI3K/AKT suppressor LY294002 resulted in a decrease in the protective effect. The protective effect of BBR against ototoxicity was also evident in a neomycin-injured animal model, as evidenced by the preservation of HC and SGN in mice administered subcutaneous BBR for 7 days. In summary, all results suggest that BBR has potential as a new and effective otoprotective agent, operating via the PI3K/AKT signaling pathway.


Assuntos
Berberina , Perda Auditiva , Ototoxicidade , Animais , Camundongos , Antibacterianos/toxicidade , Apoptose , Berberina/farmacologia , Berberina/uso terapêutico , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle , Neomicina/toxicidade , Ototoxicidade/prevenção & controle , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2767-2776, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37897284

RESUMO

Scientific assessment of landscape ecological risk in ecologically fragile areas of the upper reaches of the Yangtze River is of great significance to regional ecological regulation and construction of the Yangtze River ecological security barrier. With the dry-hot valley area of Jinsha River in Yunnan Province as the research area, we constructed a landscape ecological risk evaluation model, and analyzed the spatial and temporal variations of regional landscape ecological risk. The results showed that the average values of landscape ecological risk index (LER) in the study area were 0.414, 0.398, and 0.462 in 2000, 2010 and 2020, respectively. The LER value of the whole region had reached a higher risk level by 2020. In 2000 and 2010, the landscape ecological risk zones of each level were staggered, and the high-risk zones showed a centralized distribution in 2020. During the two decades, the average LER of each section in the study area was around 0.42, which was close to the high risk level, indicating high landscape ecological risk level. The area of middle and low risk zones had decreased, while the area of high risk zone had significantly increased. The area of high risk zone in the western and middle sections was much higher than that in the eastern section. The area with significant changes of landscape ecological risk accounted for about 55% of the total study area, with obvious spatial agglomeration characteristics of significant increase and decrease of risk. The competition between government-led ecological management policies and measures and market-led land use activities was the main cause of landscape ecological risk variations in this region. In the future, the driving mechanism of climate change coupled with human activities on global and local landscape ecological risk changes in the study area should be uncovered to effectively cope with regional ecological risks.


Assuntos
Ecologia , Rios , Humanos , Conservação dos Recursos Naturais , China , Atividades Humanas , Ecossistema
19.
Expert Opin Ther Targets ; 27(8): 665-678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37574713

RESUMO

INTRODUCTION: Current treatments for chronic pain are inadequate. Here, we provide an update on the new therapeutic strategies that target dorsal root ganglia (DRGs) in the peripheral nervous system for a better and safer treatment of chronic pain. AREAS COVERED: Despite the complex nature of chronic pain and its underlying mechanisms, we do know that changes in the plasticity and modality of neurons in DRGs play a pivotal role. DRG neurons are heterogenous and offer potential pain targets for different therapeutic interventions. We discuss the last advancements of these interventions, which include the use of systemic and local administrations, selective nerve drug delivery, and gene therapy. In particular, we provide updates and further details on the molecular characterization of primary sensory neurons, new analgesics entering the market, and future gene therapy approaches. EXPERT OPINION: DRGs and primary sensory neurons are promising targets for chronic pain treatment due to their key role in pain signaling, unique anatomical location, and the potential for different targeted therapeutic interventions.


Assuntos
Dor Crônica , Humanos , Dor Crônica/tratamento farmacológico , Gânglios Espinais , Analgésicos , Células Receptoras Sensoriais
20.
Cell J ; 25(7): 447-454, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37543857

RESUMO

OBJECTIVE: Previous reports showed that mouse embryonic fibroblasts (MEFs) could support pluripotent stem cell selfrenewal and maintain their pluripotency. The goal of this study was to reveal whether the decellularized extracellular matrix derived from MEFs (MEF-ECM) is beneficial to promote the proliferation of inner ear-derived cells. MATERIALS AND METHODS: In this experimental study, we prepared a cell-free MEF-ECM through decellularization. Scanning electron microscope (SEM) and immunofluorescent staining were conducted for phenotype characterization. Organs of Corti were dissected from postnatal day 2 and the inner ear-derived cells were obtained. The identification of inner ear-derived cells was conducted by using reverse transcription-polymerase chain reaction (RT-PCR). Cell counting kit-8 (CCK-8) was used to evaluate the proliferation capability of inner ear-derived cells cultured on the MEFECM and tissue culture plate (TCP). RESULTS: The MEF-ECM was clearly observed after decellularization via SEM, and the immunofluorescence staining results revealed that MEF-ECM was composed of three proteins, including collagen I, fibronectin and laminin. Most importantly, the results of CCK-8 showed that compared with TCP, MEF-ECM could effectively facilitate the proliferation of inner ear-derived cells. CONCLUSION: The discovery of the potential of MEF-ECM in promoting inner ear-derived cell proliferation indicates that the decellularized matrix microenvironment may play a vital role in keeping proliferation ability of these cells. Our findings indicate that the use of MEF-ECM may serve as a novel approach for expanding inner ear-derived cells and potentially facilitating the clinical application of inner ear-derived cells for hearing loss in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA