Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32722539

RESUMO

This study experimentally investigated heavy metal removal and accumulation in the aquatic plant Eichhornia crassipes. Pb, Zn, Cd, and Mn concentrations, plant morphology, and plant functional groups were analyzed. Eichhornia crassipes achieved high removal efficiency of Pb and Mn from karst water (over 79.5%), with high proportion of Pb, Zn, and Cd absorption occurring in the first eight days. The highest removal efficiencies were obtained at initial Pb, Zn, Cd, and Mn concentrations of 1 mg/L, 2 mg/L, 0.02 mg/L, and 0.2 mg/L, respectively. Eichhornia crassipes exhibited a high bioconcentration factor (Mn = 199,567 > Pb = 19,605 > Cd = 3403 > Zn = 1913) and a low translocation factor (<1). The roots accumulated more Pb, Zn, Cd, and Mn than the stolons and leaves due to the stronger tolerance of roots. The voids, stomas, air chambers, and airways promoted this accumulation. Pb, Cd, Zn, and Mn likely exchanged with Mg, Na, and K through the cation exchange. C≡C, C=O, SO42-, O-H, C-H, and C-O played different roles during uptake, which led to different removal and accumulation effects.


Assuntos
Eichhornia/metabolismo , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Biodegradação Ambiental , Cádmio , Chumbo , Água , Zinco
2.
Artigo em Inglês | MEDLINE | ID: mdl-32024317

RESUMO

Karst water is rich in calcium ions (Ca2+) and exhibits poor metal availability and low biodegradation efficiency. This study sought to analyze the effects and mechanisms of Ca2+ on lead (Pb) removal and absorption by Eichhornia crassipes (a floating plant common in karst areas). Moreover, the morphology and functional groups of E. crassipes in water were characterized via SEM, and FTIR. The results demonstrated that the removal rate of Pb in karst water (85.31%) was higher than that in non-karst water (77.04%); however, the Pb bioconcentration amount (BCA) in E. crassipes roots in karst water (1763 mg/kg) was lower than that in non-karst water (2143 mg/kg). With increased Ca2+ concentrations (60, 80, and 100 mg/L) in karst water, the Pb removal rate increased (85.31%, 88.87%, and 92.44%), the Pb BCA decreased (1763, 1317, and 1095 mg/kg), and the Ca BCA increased (6801, 6955, and 9368 mg/kg), which was attributed to PbCO3 and PbSO4 precipitation and competitive Ca and Pb absorption. High Ca2+ concentrations increased the strength of cation exchange, alleviated the fracture degree of fibrous roots, reduced the atrophy of vascular bundles, protected the cell wall, promoted C-O combined with Pb, enhanced the strength of O‒H, SO42-, C=O, and reduced the oxidization of alkynyl acetylene bonds.


Assuntos
Cálcio/química , Eichhornia/metabolismo , Chumbo/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Chumbo/química , Poluentes Químicos da Água/química
3.
Huan Jing Ke Xue ; 40(6): 2675-2685, 2019 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854659

RESUMO

To investigate the environmental quality and human health risks of different types of groundwater at Xiangshui, Chongzuo, several regular water quality indexes and concentrations of metals in 60 groundwater samples were measured and analyzed. The environmental quality of groundwater was analyzed by means of the Nemerow index. The health risks were assessed by using a human health risk assessment model. The regular water quality indexes and concentrations of metals of the well water, spring water, and underground river water exceeded the standards to different degrees. The environmental quality of groundwater was at a poor grade. The comprehensive evaluation score of underground river water (F=4.26) was the lowest. The well water had the same score as spring water (F=7.10). The high hardness and salinity were conducive to enrichment of Cr, and the reducing environment was of great advantage for the enrichment of As. The environmental geochemistry of Zn, Pb, Cd, and Cu was similar. The sources of Fe, Al, and Mn were similar. The results of the health risk assessment indicated that the health risks of well water, spring water, and underground river water were relatively high. The health risks decreased in the order of well water > underground river water > spring water. The health risks mainly came from the carcinogenic metallic element Cr. Carcinogenic risks were 4-6 orders of magnitude higher than non-carcinogenic risks. Carcinogenic risks were higher than the maximum allowance levels (5.0×10-5 a-1). Non-carcinogenic risks were lower than the allowance levels (10-6 a-1). Children had greater health risks than adults. The health risks of metals through the drinking pathway were 2-3 orders of magnitude higher than the values caused by the dermal contact pathway. For the sake of drinking water safety, the well water, underground river water, and spring water should be properly treated and the concentration of Cr in groundwater should be controlled before drinking.


Assuntos
Água Subterrânea/análise , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise , Qualidade da Água , Adulto , Criança , China , Água Potável/análise , Monitoramento Ambiental , Humanos
4.
Huan Jing Ke Xue ; 40(5): 2143-2151, 2019 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087850

RESUMO

To investigate the major ionic characteristics, seasonal variation, and controlling factors of karst groundwater at Xiangshui, Chongzuo, 210 groundwater samples were collected and measured in wet season, dry season, and flat season in 2016. The controlling factors of karst groundwater were analyzed by using multivariate statistical analysis method. The results showed that the groundwater samples were weakly alkaline fresh water and rich in Ca2+ and HCO3-, which accounted for more than 75% and 70% of total ion concentration. The average concentrations of K+, Na+, Cl-, and NO3- decreased in the order of wet season > flat season > dry season. None of the concentrations of Ca2+, Mg2+, HCO3-, SO42-, pH, TDS, TZ+, and TZ- showed significant seasonal variation. The hydrochemical characteristics were found to be of HCO3-Ca type and mainly determined by carbonate rock dissolution. Only a small proportion of them were of HCO3·Cl-Ca and HCO3·SO4-Ca type in wet season and flat season, Cl·NO3-Ca type appeared in flat season, and HCO3-Ca·Mg type appeared in dry season, reflecting the influence of dolomite and ferric mudstone dissolution in the stratum, and of NO3- and Cl- input from anthropogenic activities. Groundwater Ca2+ and HCO3- mainly came from limestone dissolution; Na+, Cl-, K+, and NO3- came from atmospheric precipitation and human activities; while Mg2+ and SO42- came from dolomite and ferric mudstone dissolution. The chemical composition of groundwater was controlled by water-rock interaction, the groundwater in the carbonate aquifer was controlled by carbonate rocks dissolution, and the groundwater in villages and densely populated areas was affected by atmospheric precipitation and human activity.

5.
Huan Jing Ke Xue ; 39(5): 2104-2116, 2018 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965510

RESUMO

Fluorescent substances are used as good tracers in dissolved organic matter (DOM) to identify the source of DOM and its geochemical behavior in a hydrological system. However, there are few studies on the karst aquifer system. Many parameters in karst systems affect the DOM spectral information. A typical karst watershed in Northern China was selected in this research. Excitation-emission matrices (EEMs), parallel factor analysis (PARAFAC), and hydrochemical data were applied to reveal the relationship between the composition and transformation of DOM fluorescent substances in different karst water-bearing spaces. The source of DOM and the effect of water chemistry on DOM transfer were also discussed. The results showed that DOM in exogenous surface water and karst surface water in the Yufu River watershed were mainly composed of tryptophan-like substances, while the DOM in shallow karst water and deep karst water consisted of tryptophan-like and tyrosine-like substances. A comprehensive analysis by fluorescence index (FI), biological index (BIX), and humification index (HIX) displayed that the DOM in shallow and deep karst water resulted from microbial decomposition. In contrast, the DOM in karst surface water and exogenous surface water resulted from land-based input and endogenous microbial decomposition, in which endogenous contributions occupy a large proportion. Due to the chemical parameters of karst water, these three kinds of fluorescent substances extracted by PARAFAC had obviously different characteristics, i.e., ① the tyrosine-like substances had a strong adaptability to Ca2+ and HCO3-, and the proportion of the tyrosine in karst water was relatively large; ② the tryptophan substance followed an opposite trend; and ③ there was a significant positive correlation between fulvic acid and TDS, turbidity, Cl-, and SO42-. Observations of the watershed runoff revealed that the DOM in shallow karst water in the upper reaches came mainly from the soil and microbial degradation. The organic matter underwent a large amount of microbial decomposition and exogenous input when the water was rejuvenated with springs. After infiltration to the deep karst water in the lower reaches, the DOM gradually were converted to low aromatic hydrocarbon organic compounds and decreased macromolecules of DOM. Subsequently, the fluorescence intensity was weakened. The principal component analysis (PCA) extracted three principal components. They were the water mineralization index, soil leaching index, and hydrochemical/biochemical process index. The water mineralization index consists of hydrochemical parameters reflecting the water infiltration, transformation, and flow conditions in the karst system. The soil leaching index contains TOC, NO3-, and protein-like indicators relating to the relationship between protein-like substances and soil and natural leaching. The hydrochemical/biochemical process index is composed of Ca2+, HCO3-, FI, and fulvic acid indicators that illustrate the water chemistry and biochemical processes in the karst water system. In addition, the study also showed that total fluorescence intensity, fulvate-like substances, and protein-like substances can be used as a tracer for rapid seepage, transformation, and aquifer fragility for karst water, respectively. The results of the study are important in understanding the biogeochemical cycle of DOM in the karst water system and also helpful for controlling organic pollution. It also provides a new tool for characterizing the geochemical processes of organic matter in karst system.

6.
J Contam Hydrol ; 203: 18-27, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28619599

RESUMO

Carbonate weathering and the CO2 consumption in karstic area are extensive affected by anthropogenic activities, especially sulfuric and nitric acids usage in the upper-middle reaches of Wujiang River, China. The carbonic acid would be substituted by protons from sulfuric and nitric acids which can be reduce CO2 absorption. Therefore, The goal of this study was to highlight the impacts of sulfuric and nitric acids on carbonate dissolution and the associated deficit of CO2 uptaking during carbonate weathering. The hydrochemistries and carbon isotopic signatures of dissolved inorganic carbon from groundwater were measured during the rainy season (July; 41 samples) and post-rainy season (October; 26 samples). Our results show that Ca2+ and Mg2+ were the dominant cations (55.87-98.52%), and HCO3- was the dominant anion (63.63-92.87%). The combined concentrations of Ca2+ and Mg2+ commonly exceeded the equivalent concentration of HCO3-, with calculated [Ca2++Mg2+]/[HCO3-] equivalent ratios of 1.09-2.12. The mean measured groundwater δ13CDIC value (-11.38‰) was higher than that expected for carbonate dissolution mediated solely by carbonic acid (-11.5‰), and the strong positive correlation of these values with [SO42-+NO3-]/HCO3- showed that additional SO42- and NO3- were required to compensate for this cation excess. Nitric and sulfuric acids are, therefore, suggested to have acted as the additional proton-promoted weathering agents of carbonate in the region, alongside carbonic acid. The mean contribution of atmospheric/pedospheric CO2 to the total aquatic HCO3- decreased by 15.67% (rainy season) and 14.17% (post-rainy season) due to the contributions made by these acids. The annual mean deficit of soil CO2 uptake by carbonate weathering across the study area was 14.92%, which suggests that previous workers may have overestimated the absorption of CO2 by carbonate weathering in other karstic areas worldwide.


Assuntos
Dióxido de Carbono/química , Carbonatos/química , Água Subterrânea/química , Ácido Nítrico/química , Ácidos Sulfúricos/química , Cálcio/análise , Carbono/análise , Isótopos de Carbono/análise , Carbonatos/análise , China , Água Subterrânea/análise , Magnésio/análise , Chuva , Rios , Estações do Ano , Solo/química
7.
Huan Jing Ke Xue ; 37(5): 1779-87, 2016 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-27506031

RESUMO

The Wujing River, the largest river in Guizhou Province, is one of the most important water resources for social and economical development. Recently, with the fast population proliferation and rapid economic growth, the drainage basin is intensively interfered by anthropogenic activities. The hydrochemistry of surface water was analyzed from the upper-middle reaches of Wujiang River for investigating the hydrochemical characteristics and their main influencing factors. The results showed that the major cations of the four rivers were Ca²âº and Mg²âº, accounting for more than 70%, and the main anions were HCO3⁻ and SO4²â», occupying more than 85%. The hydrochemical characteristics in the four rivers were found to be of HCO3-Ca type, and mainly determined by the carbonate rock dissolution, while only a small proportion of them were of HCO3 · SO4-Ca type, reflecting the influence of SO4²â» from anthropogenic activities. Compared to hydrochemical data in 1999, there was an obvious increase in cations and anions concentrations, majorly in NO3⁻, SO2- ion concentrations, which were significantly affected by human activities. The Na⁺, K⁺ , Cl⁻ in the river mainly came from atmospheric precipitation, and Ca²âº, HCO3⁻, Mg²âº, mainly came from carbonate rocks dissolution, while NO3⁻ and SO4²â» mainly came from human activities. According to principal component analysis and correlation analysis, hydrochemical composition of Liuchong River was affected by human activity, and that in the upstream of Sancha River was controlled by atmospheric precipitation and the dissolution of carbonate rocks, that to the downstream was enhanced by human activities. The main ion of Maotiao River was controlled by atmospheric precipitation and carbonate rocks dissolution, and also affected by human activity. The Nanming River, the Qingshui river's tributary, was mainly affected by human activity, while the middle and lower reaches of Qingshui River were affected by both the atmospheric precipitation and human activity.


Assuntos
Monitoramento Ambiental , Íons/análise , Rios/química , China , Atividades Humanas , Humanos
8.
Huan Jing Ke Xue ; 36(9): 3220-9, 2015 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-26717681

RESUMO

Groundwater and surface water from the Upper and Middle Reaches of the Wujiang River were sampled and analyzed for the hydrochemistry and Carbon isotope in DIC. Then hydrochemical characteristics and the main influencing factors were investigated, and the contributions of carbonate dissolution by sulphuric acid to total(Ca2+ + Mg2+) and HCO3 were calculated using the stoichiometry method. The results showed that the advantage cations of groundwater and surface water is Ca2+, which accounted for more than 50% and the advantage anions is HCO3- and SO(4)2-, which accounted for more than 85%. The hydrochemical characteristics of most samples were of Ca-HCO3 type, and a small part of HCO3.SO4-Ca, reflecting a few samples affected by SO(4)2- from human source. The δ13CDIC of groundwater and surface water, varying from -12. 98%o to -6. 36%o with a changeable molar ratio between (Ca2+ + Mg2+) and HCO3- of 1. 11 to 1. 90, indicated that sulfuric acid has an important influence on hydrochemistry and δ3CDIC. The contributions of carbonate dissolution by sulphuric acid to total (Ca2+ + Mg2+) and HCO3 in groundwater ranged from 20. 59% to 92. 87% (average 51. 50%), and from 11. 47% to 86. 69% (average 36. 90%). While the contributions of carbonate dissolution by sulphuric acid to total (Ca2+ + Mg2+) and HCO3- in surface water ranged from 56. 14% to 94. 55% (with an average of 76. 89%), and 39. 02% to 89. 66% (with an average of 64.24%), respectively, demonstrated that sulphuric acid is an important agent of carbon rock weathering. The results of this study have a great significance for the protection and development and utilization of water resources in the Wujiang River basin and for karst carbon cycle research.


Assuntos
Água Doce/química , Rios/química , Ácidos Sulfúricos/química , Isótopos de Carbono/análise , China
9.
Huan Jing Ke Xue ; 34(8): 3025-34, 2013 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-24191544

RESUMO

The riverine carbon flux is a critical component of global carbon cycle. Riverine water samples were collected from eleven hydrometric stations in the main stream of Pearl River and its tributaries during April and July, 2012. The samples were analyzed for the space and seasonal distribution characteristics of the riverine suspended substance and carbon compositions. Carbon fluxes and erosion modulus of Pearl River basin were also estimated in Boluo, Shijiao, Gaoyao, namely Dongjiang, Beijiang, Xijiang, in these two hydrological seasons. The results showed that the total suspended substance (TSS) and organic carbon, including total particulate organic carbon (POC) and dissolved organic carbon (DOC) have higher concentration in the high-water season than that in the normal-water season. Dissolved inorganic carbon (DIC) has an overwhelming concentration compared to other carbon compositions in Pearl River basin. The DIC concentration shows an order of Xijiang, Beijiang and Dongjiang from high to low. The percentage of allogenic POC in Xijiang, Beijiang and Dongjiang are 78%, 72%, 26%, respectively, and C3 plants are the main sources of allogenic POC in those three tributaries. The transported fluxes of TSS, total carbon (TC), POC, particulate inorganic carbon (PIC), DOC, DIC, total particulate carbon (TPC) and total organic carbon (TOC) are 134 x 10(12),12.69 x 10(12), 2.50 x 10(12), 1.01 x 10(12), 1.13 x 10(12), 8.05 x 10(12), 3.51 x 10(12) and 3.65 x 10(12) g x a(-1), respectively, and the erosion modulus of those compositions are 309 x 10(6), 28.98 x 10(6), 5.75 x 10(6), 2.27 x 10(6), 2.56 x 10(6), 18.4 x 10(6), 8.02 x 10(6) and 8.31 x 10(6) g x (km2 x a)(-1), respectively. Compared with average values of global large rivers, the erosion modulus of DOC, POC, and TOC in Pearl River basin are higher than the corresponding values.


Assuntos
Carbono/análise , Monitoramento Ambiental , Rios/química , Estações do Ano , Compostos Inorgânicos de Carbono/análise , China , Material Particulado , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA