Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 6(50): 34736-34743, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963956

RESUMO

For separating the azeotropic mixture methanol and toluene, an extractive distillation is applied with butyl propanoate, triethylamine, and butyl butanoate as the extractive solvents, which were screened by relative volatility, selectivity, and the x-y curve. The vapor-liquid equilibrium data of the binary and ternary systems for (toluene + butyl propanoate), (toluene + triethylamine), (toluene + butyl butanoate), and (methanol + toluene + butyl butanoate) were determined. The reliability for the experimental vapor-liquid equilibrium (VLE) data was assessed with the van Ness method. The measured data was fitted by the UNIQUAC, Wilson, and NRTL models, and the correlated results were consistent with the determined VLE data. In addition, the COSMO-UNIFAC model was used to predict the VLE data for comparison.

2.
ACS Omega ; 5(36): 23090-23098, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32954159

RESUMO

m-Cresol is an important chemical material, which is mainly derived from low-temperature coal tar. In this work, for separating m-cresol from coal tar model oil, two propylamine-based ionic liquids (ILs) propylamine formate ([PA][FA]) and propylamine acetate ([PA][Ac]) were selected as extractants. The selected ILs were synthesized and characterized by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (NMR) spectroscopy. The effects of temperature, mass ratio of IL to model oil, and separation time on the separation efficiency of m-cresol were explored. The separation efficiency (SE) and distribution coefficient (D) were calculated from the experimental data to assess the separation performance of [PA][FA] and [PA][Ac]. The results showed that propylamine formate was a promising extractant with the separation efficiency of 97.8% and distribution coefficient of 27.59 at 298.15 K and m IL/m oil = 0.2. In the meantime, molecular dynamics (MD) simulations were employed to comprehend the interaction mechanism, from which the noncovalent interaction energy (IE), radial distribution function (RDF), spatial distribution function (SDF), and averaged noncovalent interaction (aNCI) were calculated. The results showed that both cation and anion formed hydrogen bonds with m-cresol and the anions played a leading role with electrostatic interaction energy in separating m-cresol. In addition, the regeneration and reuse of the ionic liquids were explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA