Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
ACS Appl Mater Interfaces ; 16(26): 33971-33980, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38898423

RESUMO

Flexible electronics toward high integration, miniaturization, and multifunctionality, leading to a dramatic increase in power density. However, the low thermal conductivity of flexible substrates impedes efficient heat dissipation and device performance improvement. In this work, we propose a template-assisted chemical conversion strategy for obtaining boron nitride nanotube (BNNT) films with high thermal conductivity and great flexibility. Aligned carbon nanotube (CNT) films have been adopted as templates; a low-temperature chemical conversion followed by a high-temperature annealing has been carried out to produce a highly ordered BNNT film. Benefiting from the high orientation order, the BNNT film exhibits an exceptional thermal conductivity of 45.5 W m-1 K-1 and presents excellent heat dissipation capability, much superior to the commonly used polyimide film. Furthermore, the BNNT film demonstrated excellent flexibility and high insulation resistance. The test of integration with film resistors demonstrated its potential as a thermally conductive substrate for electronics cooling. This work provides a solution for the effective thermal management of flexible electronics.

2.
Environ Monit Assess ; 196(7): 607, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38858316

RESUMO

Understanding the vegetation dynamics and their drivers in Nepal has significant scientific reference value for implementing sustainable ecological policies. This study provides a comprehensive analysis of the spatio-temporal variations in vegetation cover in Nepal from 2003 to 2022 using MODIS NDVI data and explores the effects of climatic factors and anthropogenic activities on vegetation. Mann-Kendall test was used to assess the significant trend in NDVI and was integrated with the Hurst exponent to predict future trends. The driving factors of NDVI dynamics were analyzed using Pearson's correlation, partial derivative, and residual analysis methods. The results indicate that over the last 20 years, Nepal has experienced an increasing trend in NDVI at 0.0013 year-1, with 80% of the surface area (vegetation cover) showing an increasing vegetation trend (~ 28% with a significant increase in vegetation). Temperature influenced vegetation dynamics in the higher elevation areas, while precipitation and human interventions influenced the lower elevation areas. The Hurst exponent analysis predicts an improvement in the vegetation cover (greening) for a larger area compared to vegetation degradation (browning). A significantly increased area of NDVI residuals indicates a positive anthropogenic influence on vegetation cover. Anthropogenic activities have a higher relative contribution to NDVI variation followed by temperature and then precipitation. The results of residual trend and Hurst analysis in different regions of Nepal help identify degraded areas, both in the present and future. This information can assist relevant authorities in implementing appropriate policies for a sustainable ecological environment.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental , Nepal , Monitoramento Ambiental/métodos , Análise Espaço-Temporal , Ecossistema , Imagens de Satélites , Plantas
3.
Phys Rev Lett ; 132(21): 216903, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856288

RESUMO

Controlling interlayer excitons in Van der Waals heterostructures holds promise for exploring Bose-Einstein condensates and developing novel optoelectronic applications, such as excitonic integrated circuits. Despite intensive studies, several key fundamental properties of interlayer excitons, such as their binding energies and interactions with charges, remain not well understood. Here we report the formation of momentum-direct interlayer excitons in a high-quality MoSe_{2}/hBN/MoSe_{2} heterostructure under an electric field, characterized by bright photoluminescence (PL) emission with high quantum yield and a narrow linewidth of less than 4 meV. These interlayer excitons show electrically tunable emission energy spanning ∼180 meV through the Stark effect, and exhibit a sizable binding energy of ∼81 meV in the intrinsic regime, along with trion binding energies of a few millielectronvolts. Remarkably, we demonstrate the long-range transport of interlayer excitons with a characteristic diffusion length exceeding 10 µm, which can be attributed, in part, to their dipolar repulsive interactions. Spatially and polarization-resolved spectroscopic studies reveal rich exciton physics in the system, such as valley polarization, local trapping, and the possible existence of dark interlayer excitons. The formation and transport of tightly bound interlayer excitons with narrow linewidth, coupled with the ability to electrically manipulate their properties, open exciting new avenues for exploring quantum many-body physics, including excitonic condensate and superfluidity, and for developing novel optoelectronic devices, such as exciton and photon routers.

4.
Pest Manag Sci ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888411

RESUMO

BACKGROUND: The parasitic mite, Varroa destructor has posed a threat to the health and survival of European honey bees, Apis mellifera worldwide. There is a prevailing belief that small comb cells could provide a management tool against Varroa mites. However, the hypothesis that smaller cells can impede Varroa reproduction has not been fully tested. Here, we tested this hypothesis under laboratory conditions by using two distinct Varroa in vitro rearing systems: one involved gelatin capsules of different sizes, specifically size 00 (0.95 mL) versus size 1 (0.48 mL), and the second consisted of brood comb cells drawn on 3D printed foundations with varying cell sizes, ranging from 5.0 mm to 7.0 mm at 0.5 mm intervals. RESULTS: The results showed that mother mites in size 00 cells had significantly lower fecundity and fertility compared to those in size 1 cells. Interestingly, the reproductive suppression in larger cells could be reversed by adding an extra worker larva. Similarly, gonopore size of mother mites was smaller in size 00 cells, but restored with another host larva. Furthermore, both the fecundity and fertility of mother mites decreased linearly with the size of brood comb cells. CONCLUSIONS: Our results suggest that the reproduction of V. destructor is hindered by larger cells, possibly because larger brood cells disperse or weaken host volatile chemical cues that are crucial for Varroa reproduction. The insights derived from this study are expected to hold significant implications for the implementation of Varroa management programs. © 2024 Society of Chemical Industry.

5.
Anal Chim Acta ; 1305: 342590, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677844

RESUMO

Monitoring extracellular calcium ion (Ca2+) chemical signals in neurons is crucial for tracking physiological and pathological changes associated with brain diseases in live animals. Potentiometry based solid-state ion-selective electrodes (ISEs) with the assist of functional carbon nanomaterials as ideal solid-contact layer could realize the potential response for in vitro and in vivo analysis. Herein, we employ a kind of biomass derived porous carbon as a transducing layer to prompt efficient ion to electron transduction while stabilizes the potential drift. The eco-friendly porous carbon after activation (APB) displays a high specific area with inherit macropores, micropores, and large specific capacitance. When employed as transducer in ISEs, a stable potential response, minimized potential drift can be obtained. Benefiting from these excellent properties, a solid-state Ca2+ selective carbon fiber electrodes (CFEs) with a sandwich structure is constructed and employed for real time sensing of Ca2+ under electrical stimulation. This study presents a new approach to develop sustainable and versatile transducers in solid-state ISEs, a crucial way for in vivo sensing.


Assuntos
Cálcio , Carbono , Nanoestruturas , Cálcio/química , Cálcio/análise , Carbono/química , Nanoestruturas/química , Eletrodos Seletivos de Íons , Animais , Porosidade , Transdutores , Técnicas Eletroquímicas/instrumentação
6.
Front Plant Sci ; 15: 1333089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601301

RESUMO

Timely and accurate estimation of cotton seedling emergence rate is of great significance to cotton production. This study explored the feasibility of drone-based remote sensing in monitoring cotton seedling emergence. The visible and multispectral images of cotton seedlings with 2 - 4 leaves in 30 plots were synchronously obtained by drones. The acquired images included cotton seedlings, bare soil, mulching films, and PE drip tapes. After constructing 17 visible VIs and 14 multispectral VIs, three strategies were used to separate cotton seedlings from the images: (1) Otsu's thresholding was performed on each vegetation index (VI); (2) Key VIs were extracted based on results of (1), and the Otsu-intersection method and three machine learning methods were used to classify cotton seedlings, bare soil, mulching films, and PE drip tapes in the images; (3) Machine learning models were constructed using all VIs and validated. Finally, the models constructed based on two modeling strategies [Otsu-intersection (OI) and machine learning (Support Vector Machine (SVM), Random Forest (RF), and K-nearest neighbor (KNN)] showed a higher accuracy. Therefore, these models were selected to estimate cotton seedling emergence rate, and the estimates were compared with the manually measured emergence rate. The results showed that multispectral VIs, especially NDVI, RVI, SAVI, EVI2, OSAVI, and MCARI, had higher crop seedling extraction accuracy than visible VIs. After fusing all VIs or key VIs extracted based on Otsu's thresholding, the binary image purity was greatly improved. Among the fusion methods, the Key VIs-OI and All VIs-KNN methods yielded less noises and small errors, with a RMSE (root mean squared error) as low as 2.69% and a MAE (mean absolute error) as low as 2.15%. Therefore, fusing multiple VIs can increase crop image segmentation accuracy. This study provides a new method for rapidly monitoring crop seedling emergence rate in the field, which is of great significance for the development of modern agriculture.

7.
Adv Sci (Weinh) ; 11(25): e2401586, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666496

RESUMO

The continued miniaturization of chips demands highly thermally conductive materials and effective thermal management strategies. Particularly, the high-field transport of the devices built with 2D materials is limited by self-heating. Here a systematic control of heat flow in single-side fluorinated graphene (FG) with varying degrees of fluorination is reported, revealing a superior room-temperature thermal conductivity as high as 128 W m-1 K-1. Monolayer graphene/FG lateral heterostructures with seamless junctions are approached for device fabrication. Efficient in-plane heat removal paths from graphene channel to side FG are created, contributing significant reduction of the channel peak temperature and improvement in the current-carrying capability and power density. Molecular dynamics simulations indicate that the interfacial thermal conductance of the heterostructure is facilitated by the high degree of overlap in the phonon vibrational spectra. The findings offer novel design insights for efficient heat dissipation in micro- and nanoelectronic devices.

8.
Opt Express ; 32(5): 7682-7696, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439444

RESUMO

We investigate the pulse evolution and energy conservation condition at the temporal boundary under third-order dispersion. When the fundamental soliton crosses the temporal boundary and forms two reflected pulses and one transmitted pulse, the power of the transmitted pulse first increases and then decreases as the incident spectrum shifts toward the blue side. If the transmitted spectrum lies in the anomalous group-velocity dispersion region, second-order soliton is formed and dispersive wave is radiated. We present a modified phase-matching condition to predict the resonance frequencies. The predicted results are in good agreement with the results obtained by numerically solving the nonlinear Schrödinger equation.

9.
Eur J Med Res ; 29(1): 193, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528571

RESUMO

BACKGROUND: Hyperspectral techniques have aroused great interest in non-invasively measuring periodontal tissue hemodynamics. However, current studies mainly focused on three typical inflammation stages (healthy, gingivitis and periodontitis) and practical approaches for using optical spectroscopy for early and precisely detection of periodontal inflammation at finer disease stages have not been well studied. METHODS: This study provided novel spectroscopic insights into periodontitis at different stages of disease, and developed six simple but physically meaning hemodynamic spectral indices (HSIs) including four spectral absorption depths of oxyhemoglobin ( D HbO 2 ), deoxyhemoglobin ( D Hb ), total hemoglobin ( t Hb ) and tissue water ( D water ), and two normalized difference indices of oxyhemoglobin( N D HbO 2 I ) and deoxyhemoglobin ( N D Hb I ) from continuum-removal spectra (400-1700 nm) of periodontal tissue collected from 47 systemically healthy subjects over different severities from healthy, gingivitis, slight, moderate to severe periodontitis for early and precision diagnostics of periodontitis. Typical statistical analyses were conducted to explore the effectiveness of the proposed HSIs. RESULTS: D Hb and t Hb exerted significant increasing trends as inflammation progressed, whereas D HbO 2 exhibited significant difference (P < 0.05) from the healthy sites only at moderate and severe periodontitis and D water presented unstable sensitives to disease severity. By contrast, N D HbO 2 I and N D Hb I showed more steadily downward trends as severity increased, and demonstrated the highest correlations with clinical gold standard parameters. Particularly, the proposed normalized HSIs ( N D HbO 2 I and N D Hb I ) yielded high correlations of - 0.49 and - 0.44 with probing depth, respectively, far outperforming results achieved by previous studies. The performances of the HSIs were also confirmed using the periodontal therapy group. CONCLUSIONS: These results indicated great potentials of combination optical spectroscopy and smart devices to non-invasively probe periodontitis at earlier stages using the simple and practical HSIs. Trial registration This study was retrospectively registered in the Chinese Clinical Trial Registry on October 24, 2021, and the clinical registration number is ChiCTR2100052306.


Assuntos
Gengivite , Periodontite , Humanos , Oxiemoglobinas/análise , Periodontite/diagnóstico , Gengivite/diagnóstico , Inflamação/diagnóstico , Água , Hemodinâmica
10.
Life (Basel) ; 14(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38398731

RESUMO

The growth and development of honeybees are influenced by many factors, one of which is the cell size of the brood comb. Larger worker bees can be obtained by being raised in bigger cells. However, whether cell size has the same effect on drone development is still unknown. Here, using 3D-printed foundations, we observed the development of drones kept in comb cells of different sizes from the late larval stage through eclosion. The results showed that drones in larger cell-size combs had heavier body weights, longer body lengths, and larger head widths, thorax widths, and abdomen widths compared to those in smaller cell-size combs. Furthermore, regardless of developmental stages, the drones' body weights increased linearly with the comb's cell size. However, the other morphological changes of drones in different developmental stages were out of proportion to the cell-size changes, resulting in smaller cells with a higher fill factor (thorax width/cell width). Our findings confirm that comb cell size affects the development of honeybees; drones become bigger when raised in large cells.

11.
J Nutr Biochem ; 126: 109584, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242178

RESUMO

Hyperlipidemia (HLP) is a prevalent metabolic disorder and a significant risk factor for cardiovascular disease. According to recent discoveries, super-enhancers (SEs) play a role in the increased expression of genes that encode important regulators of both cellular identity and the progression of diseases. However, the underlying function of SEs in the development of HLP is still unknown. We performed an integrative analysis of data on H3K27ac ChIP-seq and RNA sequencing obtained from liver tissues of mice under a low-fat diet (LFD) and high-fat diet (HFD) from GEO database. The rank ordering of super enhancers algorithm was employed for the computation and identification of SEs. A total of 1,877 and 1,847 SEs were identified in the LFD and HFD groups, respectively. The SE inhibitor JQ1 was able to potently reverse lipid deposition and the increased intracellular triglyceride and total cholesterol induced by oleic acid, indicating that SEs are involved in regulating lipid accumulation. Two hundred seventy-eight were considered as HFD-specific SEs (HSEs). GO and KEGG pathway enrichment analysis of the upregulated HSEs-associated genes revealed that they were mainly involved in lipid metabolic pathway. Four hub genes, namely Cd36, Pex11a, Ech1, and Cidec, were identified in the HSEs-associated protein-protein interaction network, and validated with two other datasets. Finally, we constructed a HSEs-specific regulatory network with Cidec and Cd36 as the core through the prediction and verification of transcription factors. Our study constructed a HSEs-associated regulatory network in the pathogenesis of HLP, providing new ideas for the underlying mechanisms and therapeutic targets of HLP.


Assuntos
Hiperlipidemias , Camundongos , Animais , Hiperlipidemias/genética , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Triglicerídeos/metabolismo , Fatores de Transcrição/metabolismo
12.
Adv Sci (Weinh) ; 11(12): e2307020, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38239054

RESUMO

Control of convection plays an important role in heat transfer regulation, bio/chemical sensing, phase separation, etc. Current convection controlling systems generally depend on engineered energy sources to drive and manipulate the convection, which brings additional energy consumption into the system. Here the use of human hand as a natural and sustainable infrared (IR) radiation source for the manipulation of liquid convection is demonstrated. The fluid can sense the change of the relative position or the shape of the hand with the formation of different convection patterns. Besides the generation of static complex patterns, dynamic manipulation of convections can also be realized via moving of hand or finger. The use of such sustainable convections to control the movement of a floating "boat" is further achieved. The use of human hands as the natural energy sources provides a promising approach for the manipulation of liquid convection without the need of extra external energy, which may be further utilized for low-cost and intelligent bio/chemical sensing and separation.


Assuntos
Convecção , Temperatura Alta , Humanos , Raios Infravermelhos
13.
Asian J Surg ; 47(1): 176-183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37419802

RESUMO

BACKGROUND: Postoperative atrial fibrillation (POAF) is a common complication after major thoracic operations. The objective of this case-control study was to identify the risk factors for POAF following lung cancer surgery. METHODS: In total, 216 patients with lung cancer who were selected from three different hospitals were followed up between May 2020 and May 2022. They were divided into two groups: case group, patients with POAF and control group, patients without POAF (case-control). Risk factors associated with POAF were investigated using univariate and multivariate logistic regression analyses. RESULTS: Risk factors that were significantly associated with POAF were preoperative brain-type natriuretic peptide (BNP) levels [odds ratio (OR): 4.46; 95% confidence interval (CI): 1.52-13.06; P = 0.0064], sex (OR: 0.07; 95%CI: 0.02-0.28; P = 0.0001), preoperative white blood cell (WBC) count (OR: 3.00; 95%CI: 1.89-4.77; P < 0.0001), lymph node dissection (OR: 11.49; 95%CI: 2.81-47.01; P = 0.0007), and cardiovascular disease (OR: 4.93; 95%CI: 1.14-21.31; P = 0.0326). CONCLUSION: In summary, data from the three hospitals suggested that preoperative BNP levels, sex, preoperative WBC count, lymph node dissection, and hypertension/coronary heart disease/myocardial infarction were associated with a significantly high risk of POAF following lung cancer surgery.


Assuntos
Fibrilação Atrial , Cardiopatias , Neoplasias Pulmonares , Humanos , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/etiologia , Estudos de Casos e Controles , Neoplasias Pulmonares/cirurgia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Fatores de Risco
14.
Adv Mater ; 36(7): e2309379, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37901965

RESUMO

Flexible organic solar cells (FOSCs) have attracted considerable attention from researchers as promising portable power sources for wearable electronic devices. However, insufficient power conversion efficiency (PCE), intrinsic stretchability, and mechanical stability of FOSCs remain severe obstacles to their application. Herein, an entangled strategy is proposed for the synergistic optimization of PCE and mechanical properties of FOSCs through green sequential printing combined with polymer-induced spontaneous gradient heterojunction phase separation morphology. Impressively, the toughened-pseudo-planar heterojunction (Toughened-PPHJ) film exhibits excellent tensile properties with a crack onset strain (COS) of 11.0%, twice that of the reference bulk heterojunction (BHJ) film (5.5%), which is among the highest values reported for the state-of-the-art polymer/small molecule-based systems. Finite element simulation of stress distribution during film bending confirms that Toughened-PPHJ film can release residual stress well. Therefore, this optimal device shows a high PCE (18.16%) with enhanced (short-circuit current density) JSC and suppressed energy loss, which is a significant improvement over the conventional BHJ device (16.99%). Finally, the 1 cm2 flexible Toughened-PPHJ device retains more than 92% of its initial PCE (13.3%) after 1000 bending cycles. This work provides a feasible guiding idea for future flexible portable power supplies.

15.
Adv Mater ; 36(3): e2308159, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37831921

RESUMO

The sequential deposition process has demonstrated the great possibility to achieve a photolayer architecture with an ideal gradient phase separation morphology, which has a vital influence on the physical processes that determine the performance of organic solar cells (OSCs). However, the controllable preparation of pseudo-planar heterojunction (P-PHJ) with gradient distribution has not been effectively elucidated. Herein, a binary-dilution strategy is proposed, the PM6 solution with micro acceptor BO-4Cl and the L8-BO solution with micro donor PM6 respectively, to form P-PHJ film. This architecture exists good donor (D) and acceptor (A) vertical gradient distribution and larger D/A interpenetrating regions, which promotes exciton generation and dissociation, shortens charge transport distance and optimizes carrier dynamics. Moreover, the dilution of PM6 by BO-4Cl promotes the regulation of active layer aggregation size and phase purity, thus alleviating energy disorder and voltage loss. As a result, the P-PHJ device exhibits an outstanding power conversion efficiency of 19.32% with an excellent short-circuit current density of 26.92 mA cm-2 , much higher than planar binary heterojunction (17.67%) and ternary bulk heterojunction (18.49%) devices. This research proves a simple but effective method to provide an avenue for constructing desirable active layer morphology and high-performance OSCs.

16.
Opt Express ; 31(25): 42338-42346, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087609

RESUMO

We investigate the nonlinear evolutions of modulation instability (MI) under the interaction of Kerr nonlinearity with pure higher, even-order dispersion (HEOD) by using the truncating method of three-wave mixing. For any HEOD, we find the phase-plane topological structure of the MI changes in three frequency regions whose ranges depend on the order of HEOD. And we present the novel types of nonlinear evolutions of the MI, which do not exist in the case of quadratic dispersion. Taking the pure-sextic dispersion as an example, the theoretical predictions of the MI evolutions are confirmed by numerically solving the modified nonlinear Schrödinger equation. Our results not only further deepen the understanding of MI, but also provide a universal guideline for experimental investigation of nonlinear waves, such as breather solitons or rogue waves excitation, in nonlinear Kerr media with pure HEOD.

17.
Opt Lett ; 48(24): 6529-6532, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099791

RESUMO

We investigate the dispersive waves (DWs) emitted from shaped pulses with spectral Heaviside step phases (HSPs). The spectrally HSP-modulated pulse exhibits a unique double-peak structure, where the intensity and separation of the twin peaks are determined by the modulation depth and frequency detuning. By tailoring the parameters of the HSP suitably, we can control the DW emission with regard to resonant frequency and conversion efficiency. As the intensity ratio or relative separation of neighboring peaks is elaborately chosen, the DW emission can be effectively boosted, or a solitonic cage can be constructed for realizing temporal reflections and refractions associated with spectral broadening and multi-peak spectra of the output DWs. These findings offer a straightforward and efficient approach for controlling the DW emission, which is highly relevant to the advancement of supercontinuum generation and wavelength conversion technology.

18.
iScience ; 26(11): 108296, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026186

RESUMO

Mixed-dimensional heterostructures have drawn significant attention due to their intriguing physical properties and potential applications in electronic and optoelectronic nanodevices. However, limited by the lattice matching, the preparation of heterostructures is experimentally difficult and the underlying growth mechanism has not been well established. Here, we report a three-step seeding epitaxial growth strategy for synthesizing mixed-dimensional heterostructures of one-dimensional microwire (MW) and two-dimensional atomic thin film. Our growth strategy has successfully realized direct epitaxial growth of WSe2 film on WOx MW and significantly improves the quality of the epitaxial WSe2 monolayer, which is evidenced by the remarkably enhanced photoluminescence (PL). More intriguingly, the as-synthesized WOx MWs exhibit a strong nonlinear optical response due to the enhancement effect of the core (WOx)-shell (WSe2) nanocavity. Our work provides a feasible route for direct growth of WOx-based mixed-dimensional heterostructures, which possess potential applications in high-performance optoelectronic devices.

19.
Environ Res ; 239(Pt 1): 117286, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797668

RESUMO

In the field of environmental science, traditional methods for predicting PM2.5 concentrations primarily focus on singular temporal or spatial dimensions. This approach presents certain limitations when it comes to deeply mining the joint influence of multiple monitoring sites and their inherent connections with meteorological factors. To address this issue, we introduce an innovative deep-learning-based multi-graph model using Beijing as the study case. This model consists of two key modules: firstly, the 'Meteorological Factor Spatio-Temporal Feature Extraction Module'. This module deeply integrates spatio-temporal features of hourly meteorological data by employing Graph Convolutional Networks (GCN) and Long Short-Term Memory (LSTM) for spatial and temporal encoding respectively. Subsequently, through an attention mechanism, it retrieves a feature tensor associated with air pollutants. Secondly, these features are amalgamated with PM2.5 concentration values, allowing the 'PM2.5 Concentration Prediction Module' to predict with enhanced accuracy the joint influence across multiple monitoring sites. Our model exhibits significant advantages over traditional methods in processing the joint impact of multiple sites and their associated meteorological factors. By providing new perspectives and tools for the in-depth understanding of urban air pollutant distribution and optimization of air quality management, this model propels us towards a more comprehensive approach in tackling air pollution issues.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aprendizado Profundo , Conceitos Meteorológicos , Material Particulado
20.
Sci Data ; 10(1): 688, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816768

RESUMO

Cotton maps (10 m) of Xinjiang (XJ_COTTON10), which is the largest cotton production region of China, were produced from 2018 to 2021 through supervised classification. A two-step mapping strategy, i.e., cropland mapping followed by cotton extraction, was employed to improve the accuracy and efficiency of cotton mapping for a large region of about 1.66 million km2 with high heterogeneity. Additionally, the time-series satellite data related to spectral, textural, structural, and phenological features were combined and used in a supervised random forest classifier. The cotton/non-cotton classification model achieved overall accuracies of about 95% and 90% on the test samples of the same and adjacent years, respectively. The proposed two-step cotton mapping strategy proved promising and effective in producing multi-year and consistent cotton maps. XJ_COTTON10 agreed well with the statistical areas of cotton at the county level (R2 = 0.84-0.94). This is the first cotton mapping for the entire Xinjiang at 10-meter resolution, which can provide a basis for high-precision cotton monitoring and policymaking in China.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA