RESUMO
Nanomaterials offer unique opportunities to engineer immunomodulatory activity. In this work, we report the Toll-like receptor agonist activity of a nanoscale adjuvant zeolitic imidazolate framework-8 (ZIF-8). The accumulation of ZIF-8 in endosomes and the pH-responsive release of its subunits enable selective engagement with endosomal Toll-like receptors, minimizing the risk of off-target activation. The intrinsic adjuvant properties of ZIF-8, along with the efficient delivery and biomimetic presentation of a severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain trimer, primed rapid humoral and cell-mediated immunity in a dose-sparing manner. Our study offers insights for next-generation adjuvants that can potentially impact future vaccine development.
Assuntos
COVID-19 , Zeolitas , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Adjuvantes Imunológicos , Endossomos , Receptores Toll-Like , Zeolitas/farmacologiaRESUMO
Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro. We demonstrate that the resulting MNPs are shelf stable for at least 6 months at room temperature when assessed using a model mRNA construct. Vaccine loading efficiency and microneedle dissolution suggest that efficacious, microgram-scale doses of mRNA encapsulated in lipid nanoparticles could be delivered with a single patch. Immunizations in mice using manually produced MNPs with mRNA encoding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain stimulate long-term immune responses similar to those of intramuscular administration.
Assuntos
COVID-19 , Vacinas , Humanos , Animais , Camundongos , Vacinas contra COVID-19/genética , Vacinas de mRNA , RNA Mensageiro/genética , SARS-CoV-2/genética , COVID-19/prevenção & controleRESUMO
d-alanine (d-Ala) and several other d-amino acids (d-AAs) act as hormones and neuromodulators in nervous and endocrine systems. Unlike the endogenously synthesized d-serine in animals, d-Ala may be from exogenous sources, e.g., diet and intestinal microorganisms. However, it is unclear if the capability to produce d-Ala and other d-AAs varies among different microbial strains in the gut. We isolated individual microorganisms of rat gut microbiota and profiled their d-AA production in vitro, focusing on d-Ala. Serial dilutions of intestinal contents from adult male rats were plated on agar to obtain clonal cultures. Using MALDI-TOF MS for rapid strain typing, we identified 38 unique isolates, grouped into 11 species based on 16S rRNA gene sequences. We then used two-tier screening to profile bacterial d-AA production, combining a d-amino acid oxidase-based enzymatic assay for rapid assessment of non-acidic d-AA amount and chiral LC-MS/MS to quantify individual d-AAs, revealing 19 out of the 38 isolated strains as d-AA producers. LC-MS/MS analysis of the eight top d-AA producers showed high levels of d-Ala in all strains tested, with substantial inter- and intra-species variations. Though results from the enzymatic assay and LC-MS/MS analysis aligned well, LC-MS/MS further revealed the existence of d-glutamate and d-aspartate, which are poor substrates for this enzymatic assay. We observed large inter- and intra-species variation of d-AA production profiles from rat gut microbiome species, demonstrating the importance of chemical profiling of gut microbiota in addition to sequencing, furthering the idea that microbial metabolites modulate host physiology.
Assuntos
Microbioma Gastrointestinal , Alanina , Aminoácidos/metabolismo , Animais , Cromatografia Líquida , Microbioma Gastrointestinal/fisiologia , Masculino , RNA Ribossômico 16S/genética , Ratos , Espectrometria de Massas em TandemRESUMO
Microbial cell factories have been extensively engineered to produce free fatty acids (FFAs) as key components of crucial nutrients, soaps, industrial chemicals, and fuels. However, our ability to control the composition of microbially synthesized FFAs is still limited, particularly, for producing medium-chain fatty acids (MCFAs). This is mainly due to the lack of high-throughput approaches for FFA analysis to engineer enzymes with desirable product specificity. Here we report a mass spectrometry (MS)-based method for rapid profiling of MCFAs in Saccharomyces cerevisiae by using membrane lipids as a proxy. In particular, matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) MS was used to detect shorter acyl chain phosphatidylcholines from membrane lipids and a higher m/z peak ratio at 730 and 758 was used as an indication for improved MCFA production. This colony-based method can be performed at a rate of ~2 s per sample, representing a substantial improvement over gas chromatography-MS (typically >30 min per sample) as the gold standard method for FFA detection. To demonstrate the power of this method, we performed site-saturation mutagenesis of the yeast fatty acid synthase and identified nine missense mutations that resulted in improved MCFA production relative to the wild-type strain. Colony-based MALDI-ToF MS screening provides an effective approach for engineering microbial fatty acid compositions in a high-throughput manner.
Assuntos
Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Graxo Sintases/genética , Ácidos Graxos/genética , Engenharia Metabólica/métodos , Engenharia de Proteínas/métodos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodosRESUMO
Most native producers of ribosomally synthesized and post-translationally modified peptides (RiPPs) utilize N-terminal leader peptides to avoid potential cytotoxicity of mature products to the hosts. Unfortunately, the native machinery of leader peptide removal is often difficult to reconstitute in heterologous hosts. Here we devised a general method to produce bioactive lanthipeptides, a major class of RiPP molecules, in Escherichia coli colonies using synthetic biology principles, where leader peptide removal is programmed temporally by protease compartmentalization and inducible cell autolysis. We demonstrated the method for producing two lantibiotics, haloduracin and lacticin 481, and performed analog screening for haloduracin. This method enables facile, high throughput discovery, characterization, and engineering of RiPPs.