Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38551603

RESUMO

BACKGROUND: Jianxin (JX) granules is a traditional Chinese medicine widely used in the treatment of heart failure (HF), but the mechanism is unclear. This study aimed to investigate the mechanism of JX granules in the treatment of HF based on network pharmacology analysis and in-vivo experiments. METHODS: A series of network pharmacology methods was employed to ascertain potential targets and critical pathways implicated in the therapeutic action of JX granules against HF. Subsequently, molecular docking was utilized to investigate the binding affinity of key active constituents within JX granules to these targets. In-vivo experiments, echocardiography, hematoxylin and eosin, Masson's trichrome assay, and western blot analysis were conducted to validate the efficacy and mechanism of JX granules in treating rats with HF. RESULTS: A total of 122 active components, 896 drug targets, 1216 HF-related targets, and 136 targets pertinent to drug-disease interactions were identified. 151 key targets and 725 core clusters were detected through protein-protein interaction network analysis. Among these, interleukin 6 (IL-6), vascular endothelial growth factor a (VEGFA), and serine/threonine kinase 1 (AKT1) were core hub genes. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis revealed the critical pathways, including epidermal growth factor receptor (EGFR), advanced glycation end products (AGEs) and their receptors (RAGE) pathway, along with hypoxia-inducible factor 1 (HIF-1) signaling pathway. Molecular docking studies demonstrated high binding affinities between key targets and the pivotal active ingredients of Danshenol A, salvianolic acid B, and arachidonic acid. Furthermore, animal studies corroborated that JX granules improve cardiac function and reduce myocardial fibrosis, potentially by modulating the expression of IL-6, VEGFA, and p-AKT1. CONCLUSIONS: The bioactive components within JX granules, such as Danshenol A, salvianolic acid B, and arachidonic acid may exert therapeutic effects on HF through modulation of IL-6, VEGFA, and AKT1 gene expression. This study provides a scientific basis for subsequent clinical application of JX granules and an in-depth investigation of their mechanisms of action.

2.
Discov Oncol ; 14(1): 196, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910338

RESUMO

Prostate cancer is the second incidence of malignant tumors in men worldwide. Its incidence and mortality are increasing year by year. Enhanced expression of Cav1 in prostate cancer has been linked to both proliferation and metastasis of cancer cells, influencing disease progression. Dysregulation of the Cav1 gene shows a notable association with prostate cancer. Nevertheless, there is no systematic review to report about molecular signal mechanism of Cav1 and drug treatment in prostate cancer. This article reviews the structure, physiological and pathological functions of Cav1, the pathogenic signaling pathways involved in prostate cancer, and the current drug treatment of prostate cancer. Cav1 mainly affects the occurrence of prostate cancer through AKT/mTOR, H-RAS/PLCε, CD147/MMPs and other pathways, as well as substance metabolism including lipid metabolism and aerobic glycolysis. Baicalein, simvastatin, triptolide and other drugs can effectively inhibit the growth of prostate cancer. As a biomarker of prostate cancer, Cav1 may provide a potential therapeutic target for the treatment of prostate cancer.

3.
Front Genet ; 14: 1198975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496715

RESUMO

[This corrects the article DOI: 10.3389/fgene.2022.974357.].

4.
Photoacoustics ; 31: 100523, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37362871

RESUMO

Delayed treatment of testicular torsion (TT) can lead to permanent loss of reproductive capacity. Photoacoustic imaging (PAI) and ultrasound imaging (USI) was tested for detecting TT at early stage in mice based on PAI-obtained oxygen saturation (sO2), and USI-collected color pixel density (CPD), peak systolic velocity (PSV) and resistance index (RI). For complete TT, both CPD (9.08 % ± 3.084 to almost zero) and sO2 data (70.09 % ± 1.656-59.84 % ± 1.427) showed an significant change 2 h post-torsion. For incomplete TT, sO2 data exhibited a strong time relationship (Mean values: 6 h, 64.83 % ± 1.898; 12 h, 60.67 % ± 3.555; 24 h, 57.85 % ± 3.575; P < 0.05). However, USI-collected CPD, PSV or IR data from the same TT models showed no significant difference. This study indicated that USI and PAI could identify complete TT. Meanwhile, PAI has shown great potential in the diagnosis of incomplete TT within 24 h based on time-related sO2 map.

5.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175741

RESUMO

Colorectal cancer (CRC) is one of the most common malignant tumors with a high lethal rate globally, and novel strategies for its prevention and therapy are urgently needed. In our previous work, 8-methoxyflindersine (8-MF), a quinoline alkaloid, was isolated from the Dictamni cortex, and its bioactivities were largely unknown. In this study, we found that 8-MF significantly inhibited cell viability in the CRC cell lines LoVo and RKO. The 8-MF-induced CRC cell apoptosis, as well as cell cycle disorder, were further verified by cyclins dysregulation in mRNA and protein levels. Further, the activation of MAPK family members p38 and ERK1/2 was observed after 8-MF treatment. Moreover, the protein-protein interaction of 8-MF with cyclins and MAPKs was demonstrated using the STRING database. The 8-MF could bind to p38 and ERK1/2 proteins in molecular docking. Taken together, we found that 8-MF induced apoptosis and cell cycle disorder involving MAPK signaling activation in CRC cells, indicating 8-MF as a novel lead compound candidate for the development of anti-tumor drugs for CRC.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Proliferação de Células , Ciclo Celular , Antineoplásicos/farmacologia , Apoptose , Ciclinas
6.
Front Genet ; 14: 947144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968607

RESUMO

Background: HAR1 is a 118-bp segment that lies in a pair of novel non-coding RNA genes. It shows a dramatic accelerated change with an estimated 18 substitutions in the human lineage since the human-chimpanzee ancestor, compared with the expected 0.27 substitutions based on the slow rate of change in this region in other amniotes. Mutations of HAR1 lead to a different HAR1 secondary structure in humans compared to that in chimpanzees. Methods: We cloned HAR1 into the EF-1α promoter vector to generate transgenic mice. Morris water maze tests and step-down passive avoidance tests were conducted to observe the changes in memory and cognitive abilities of mice. RNA-seq analysis was performed to identify differentially expressed genes (DEGs) between the experimental and control groups. Systematic bioinformatics analysis was used to confirm the pathways and functions that the DEGs were involved in. Results: Memory and cognitive abilities of the transgenic mice were significantly improved. The results of Gene Ontology (GO) analysis showed that Neuron differentiation, Dentate gyrus development, Nervous system development, Cerebral cortex neuron differentiation, Cerebral cortex development, Cerebral cortex development and Neurogenesis are all significant GO terms related to brain development. The DEGs enriched in these terms included Lhx2, Emx2, Foxg1, Nr2e1 and Emx1. All these genes play an important role in regulating the functioning of Cajal-Retzius cells (CRs). The DEGs were also enriched in glutamatergic synapses, synapses, memory, and the positive regulation of long-term synaptic potentiation. In addition, "cellular response to calcium ions" exhibited the second highest rich factor in the GO analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs showed that the neuroactive ligand-receptor interaction pathway was the most significantly enriched pathway, and DEGs also notably enriched in neuroactive ligand-receptor interaction, axon guidance, and cholinergic synapses. Conclusion: HAR1 overexpression led to improvements in memory and cognitive abilities of the transgenic mice. The possible mechanism for this was that the long non-coding RNA (lncRNA) HAR1A affected brain development by regulating the function of CRs. Moreover, HAR1A may be involved in ligand-receptor interaction, axon guidance, and synapse formation, all of which are important in brain development and evolution. Furthermore, cellular response to calcium may play an important role in those processes.

7.
Front Genet ; 13: 974357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36482889

RESUMO

Objective: N6-methyladenosine (m6A) is a common post-transcriptional modification of messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs). However, m6A-modified lncRNAs are still largely unexplored. This study aimed to investigate differentially m6A-modified lncRNAs and genes involved in neural tube defect (NTD) development. Methods: Pregnant Kunming mice (9-10 weeks of age) were treated with retinoic acid to construct NTD models. m6A levels and methyltransferase-like 3 (METTL3) expression were evaluated in brain tissues of the NTD models. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were performed on the NovaSeq platform and Illumina HiSeq 2,500 platform, respectively. Differentially m6A-methylated differentially expressed lncRNAs (DElncRNAs) and differentially expressed genes (DEGs) were identified, followed by GO biological process and KEGG pathway functional enrichment analyses. Expression levels of several DElncRNAs and DEGs were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for validation. Results: m6A levels and METTL3 expression levels were significantly lower in the brain tissues of the NTD mouse model than in controls. By integrating MeRIP-seq and RNA-seq data, 13 differentially m6A-methylated DElncRNAs and 170 differentially m6A-methylated DEGs were identified. They were significantly enriched in the Hippo signaling pathway and mannose-type O-glycan biosynthesis. The qRT-PCR results confirmed the decreased expression levels of lncRNAs, such as Mir100hg, Gm19265, Gm10544, and Malat1, and genes, such as Zfp236, Erc2, and Hmg20a, in the NTD group. Conclusion: METTL3-mediated m6A modifications may be involved in NTD development. In particular, decreased expression levels of Mir100hg, Gm19265, Gm10544, Malat1, Zfp236, Erc2, and Hmg20a may contribute to the development of NTD.

8.
Front Pharmacol ; 13: 882764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353477

RESUMO

Background: In recent years, gallstones have become a major condition affecting people's health. Cholecystectomy remains an effective treatment method, but it has large risk factors. It is well known that the hepatoenteric axis plays a key role in gallstone formation, and it is gradually becoming a research focus. Cholesterol homeostasis can be regulated by the liver and intestinal tract in our bodies, and intestinal flora can regulate the digestion and absorption of cholesterol. These two factors are closely related to the formation of gallstones. Aim: To investigate the effects of tauroursodeoxycholic acid (TUDCA) and/or intestinal probiotics on serum biochemical indexes and bile composition in patients with cholecystolithiasis. Methods: For this study, 96 patients with cholecystolithiasis were recruited at our hospital. The patients were randomly divided into four groups according to a random number table: group Ⅰ (TUDCA, 24 cases), group Ⅱ (intestinal probiotics, 24 cases), group Ⅲ (TUDCA and intestinal probiotics, 24 cases) and group Ⅳ (control group, 24 cases). All patients underwent laparoscopic gallbladder-preserving lithotomy or laparoscopic cholecystectomy. Bile samples were identified and extracted during the operation. Results: The results revealed that the levels of serum total bile acid (TBA), serum total cholesterol (TCHOL) and serum triglyceride in groups I, II and III before and after the intervention were statistically significant (p < 0.05). There were significant differences in serum low-density lipoprotein cholesterol (LDL-C) between groups I and II before and after the intervention (p < 0.05), but the serum LDL-C level in group Ⅲ before and after the intervention was similar (p > 0.05). Regarding bile, TBA levels demonstrated no significant difference between groups I and III (p > 0.05), and the differences between the other two groups were statistically significant (p < 0.05). No significant difference was identified in phospholipid and TCHOL levels between groups I and Ⅲ (p > 0.05), and the differences between the other two groups were statistically significant (p < 0.05). There were significant differences in the levels of free Ca2+, pH value and glycoprotein in bile among the four groups (p < 0.05). The levels of cholic acid, chenodeoxycholic acid and deoxycholic acid in bile were significantly different among the four groups (p < 0.05). The level of lithocholic acid (LCA) in groups Ⅱ and Ⅲ was similar, as was the level of LCA in groups I and ⅠV, but the difference in level between the other two groups was statistically significant (p < 0.05). Conclusion: The combination of TUDCA and intestinal probiotics did not enhance the effect of either treatment. The use of intestinal probiotics alone can maximise the reverse development of bile composition in patients with cholecystolithiasis compared with TUDCA alone and a combination of TUDCA and intestinal probiotics, thereby reducing gallstone formation.

9.
Ecotoxicol Environ Saf ; 246: 114193, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36270034

RESUMO

Microbial mineralization is increasingly used in bioremediation of heavy metal pollution, but better mechanistic understanding of the processes involved and how they are regulated are required to improve the practical application of microorganisms in bioremediation. We used a combination of morphological (TEM) and analytical (XRD, XPS, FTIR) methods, together with novel proteomic analyses, to investigate the detoxification mechanisms, used by a range of bacteria, including the strains Bacillus velezensis LB002, Escherichia coli DH5α, B. subtilis 168, Pseudomonas putida KT2440, and B. licheniformis MT-1, exposed to elevated concentrations of Cd2+ and combinations of Cd2+, Pb2+, Cu2+, and Zn2+, in the presence and absence of added CaCl2. Common features of detoxification included biomineralization, including the production of biological vaterite, up-regulation of proteins involved in flagellar movement and chemotaxis, biofilm synthesis, transmembrane transport of small molecules and organic matter decomposition. The putative roles of differentially expressed proteins in detoxification are discussed in relation to chemical and morphological data and together provide important tools to improve screening, selection, and practical application of bacterial isolates in bioremediation of polluted environments.


Assuntos
Metais Pesados , Pseudomonas putida , Cádmio/metabolismo , Proteômica , Metais Pesados/análise , Biodegradação Ambiental , Pseudomonas putida/metabolismo
10.
Stem Cell Res ; 53: 102322, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33848795

RESUMO

Achondroplasia (ACH; MIM #100800) is an autosomal dominant genetic disease caused by gain-of-function mutations in FGFR3 gene and results in short-limb dwarfism. Here, we generated an induced pluripotent stem cell line GZHMCi004-A derived from umbilical cord blood mononuclear cells (UCBMCs) of a fetus with heterozygous G380R mutation in FGFR3 gene. This iPSC line is a valuable in vitro model to study the pathological mechanism and the treatment of ACH.


Assuntos
Acondroplasia , Células-Tronco Pluripotentes Induzidas , Acondroplasia/genética , Feto , Humanos , Mutação , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
11.
Appl Microbiol Biotechnol ; 105(5): 2157-2169, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33555363

RESUMO

Serpentine has weak immobilization capacity for Pb(II), especially under acidic conditions. In order to improve its application potential, a new biological modification method was adopted, i.e., the serpentine powder was weathered by Aspergillus niger and the fungus-serpentine aggregation (FSA) formed was investigated for its Pb(II) immobilization potential and underlying mechanism. Batch adsorption of Pb(II) by FSA closely followed the Langmuir model, while the maximum adsorption capacity of FSA (370.37 mg/g) was significantly higher than fungal mycelium (31.85 mg/g) and serpentine (8.92 mg/g). The adsorption process can be accurately simulated by pseudo-second-order kinetic model. Our data revealed the loading of organic matter is closely related to the adsorption of FSA, and the stronger immobilization capacity was mainly related to its modified porous organic-inorganic composite structure with extensive exchangeable ions. Moreover, FSA is an economical bio-material with excellent Pb(II) adsorption (pH = 1-8) along with significantly lower desorption efficiency (pH = 3-8), especially under acidic conditions. These findings provide a new perspective to explore the usage of fungus-minerals aggregation on heavy metals immobilization in acidic environments. Key Points • Co-culture of Aspergillus niger and serpentine produced a porous composite material like fungus-serpentine aggregation. • Fungus-serpentine aggregation has a surprisingly higher adsorption capacity of Pb(II) and significantly lower desorption efficiency under acidic conditions. • The loading of organic matter is closely related to the adsorption of FSA.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Minerais , Poluentes Químicos da Água/análise
12.
Stem Cell Res ; 51: 102166, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33477036

RESUMO

Cleidocranial dysplasia (CCD; MIM #119600) is an autosomal dominant genetic disorder caused by heterozygous loss-of-function mutation of the RUNX2 gene, which is important in the differentiation of osteoblasts and maturation of chondrocytes. In this study, we generated an induced pluripotent stem cell line GZHMCi003-A derived from umbilical cord blood mononuclear cells (UCBMCs) of a fetus with heterozygous deletion of the exon 3 in RUNX2 gene. This iPSC line is an ideal in vitro model to study the pathological mechanism and the treatment of CCD.


Assuntos
Displasia Cleidocraniana , Células-Tronco Pluripotentes Induzidas , Displasia Cleidocraniana/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Éxons/genética , Feto , Humanos
13.
Nutr Cancer ; 73(11-12): 2491-2501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33076708

RESUMO

Glioblastoma is the most common and malignant tumor in human central nervous system with poor prognosis. From the dried stem of Sinomenium acutum, an herbal medicine, five compounds (sinomenine, syringin, corchoionoside C, protocatechuic acid and cannabisin D) were isolated, characterized and subjected to cytotoxicity screening on U-87 and U-251 glioblastoma cells. Cannabisin D presented effective inhibitory effects on the proliferation and migration of glioblastoma cells. By flow cytometry, real-time PCR and Western blotting, cell apoptosis and cell cycle arrest were proved to contribute to the anti-glioblastoma effects. Further, the activation of MAPKs signaling (p38 MAPK, p42/p44 MAPK and SAPK/JNK) was observed in glioblastoma cells upon cannabisin D treatment by Western blotting, indicating the involvement of MAPKs signaling in the inhibitory effects of cannabisin D. These data suggested that S. acutum is a novel natural source of cannabisin D and cannabisin D is a novel anti-glioblastoma agent candidate.


Assuntos
Glioblastoma , Sinomenium , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Transdução de Sinais , Sinomenium/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Int J Biol Macromol ; 114: 143-148, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29567500

RESUMO

Papain enzyme was successfully immobilized by covalent bonding onto biocompatible Fe3O4/SF nanoparticles, which were prepared with the soft template of silk fibroin (SF). The optimized immobilization condition is pH6.0, hydrolysis time of 60min, and an enzyme/support ratio of 10.0mg/g. Compared with free papain, the immobilized papain exhibits a high effective activity, broader working pH and temperature. This immobilized papain can be separated from the solution by the external magnetic field for cyclic utilization, and 70% of initial activity was retained after eight consecutive operations while completely loss of proteolytic activity for the free papain. Furthermore, the immobilized papain maintained 85% of their initial activity after being stored for 28days. Kinetic parameters, maximum reaction rate (Vmax) and Michaelis constant (Km) of immobilized papain, were determined as 4.95mg/l·min and 0.23mg/ml, larger than its free counterpart. All the results above indicated that the immobilized papain onto magnetic Fe3O4/SF nanoparticles would have potential industrial and medical applications.


Assuntos
Enzimas Imobilizadas/química , Nanopartículas de Magnetita/química , Papaína/química , Estabilidade Enzimática , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA