RESUMO
Objectives: To construct an improved air health index (AHI) based on cardiovascular years of life lost (YLL) in Tianjin and assess its utility. Methods: We derived the exposure-response coefficients from time-series models and calculated the excess YLL (EYLL) for simultaneous exposure to air pollution and non-optimum temperature. The AHI was developed using the EYLL at the WHO 2021 Air Quality Guideline annual mean values and optimum temperature as a reference. We assessed the validity of AHI by comparing the correlations and model fit between the AHI, air quality health index (AQHI), and air quality index (AQI) with cause-specific YLLs. Results: Each inter quartile range (IQR) increase in AHI was associated with 256.31 (95%CI: 183.05, 329.57), 150.34 (95%CI: 108.23, 192.46), 90.41 (95%CI: 64.80, 116.02) and 60.80 (95%CI:33.41, 88.18) person-year increments for non-accidental, cardiovascular, ischaemic, and cerebrovascular YLL, respectively. The AHI, in contrast to the AQHI and AQI, showed the strongest correlations with the risks of cause-specific YLLs, both in the total population and subpopulations. Conclusion: The AHI based on cardiovascular YLL has a greater predictive ability for health risks.
Assuntos
Poluição do Ar , Doenças Cardiovasculares , Humanos , China , Doenças Cardiovasculares/epidemiologia , Poluição do Ar/análise , Masculino , Exposição Ambiental , Feminino , Pessoa de Meia-Idade , Idoso , Poluentes Atmosféricos/análiseRESUMO
This study investigates the impact of theory of mind, anticipated emotions before actual behavior, and consequential emotions following the behavior on sharing and allocation behavior in 4-6-year-old children. In Experiment 1, 95 children were randomly assigned to three conditions (external emotion expectancy condition, internal emotion expectancy condition, and control condition) to explore the role of cognition and emotions in children's sharing and allocation behaviors. Experiment 2 employed a dictator game to further validate the influence of theory of mind and consequential emotions on behavior. The findings indicated that both anticipated and consequential emotions influence sharing behavior, but neither serves as a key predictor of allocation behavior. Theory of mind influences children's sharing behavior and is related to the fairness of allocation. Children with higher levels of theory of mind tend to rate consequential emotions more positively, while those with lower ratings of consequential emotions are more likely to reconsider sharing after reflection. Notably, theory of mind and emotional factors demonstrate distinct motivational effects on children's prosocial sharing and resource allocation, with negative emotions exhibiting a more pronounced impact on decision-making processes.
RESUMO
BACKGROUND: Air quality health index (AQHI), as a developed air quality risk communication tool, has been proved to be more accurate in predicting air quality related health risks than air quality index (AQI) by previous studies. However, the standard method to construct AQHI is summing the excess risks of single-pollutant models directly, which may ignore the joint effect of air pollutant mixtures. METHODS: In this study, a new method which could solve the aforementioned problem, Analytic hierarchy process (AHP), was introduced. Based on this method, we constructed the respiratory health related AQHI using years of life lost (YLL) as indicator of health outcome and compared its validity with AQI. RESULTS: There was a correlation between daily AQI and AQHI in 2019 (R2 = 0.830, P < 0.01), and the chi-square test between the two excellent rates showed a statistically significant difference (χ2 = 4.156, P < 0.05). Both AQI and AQHI were correlated with the daily respiratory YLL (P < 0.01), however, the coefficient of AQHI was larger than those of AQI. CONCLUSIONS: This study indicated that compared with AQI, the constructed AQHI based on AHP may predict the health risk of air pollution more effectively. AHP may become a new method to construct AQHI which needs to be proved by taking into consideration by more studies.
Assuntos
Poluição do Ar , Humanos , China , Poluição do Ar/análise , Poluição do Ar/efeitos adversos , Doenças Respiratórias , Medição de Risco , Poluentes Atmosféricos/análise , Reprodutibilidade dos TestesRESUMO
Diabetic foot ulcers, pressure ulcers, and bedsores can easily develop into chronic wounds with bacterial infections, complicating wound healing. This work reports a two-step strategy for treating infected chronic wounds. Firstly, LL37 mimetic peptide-W379 peptides were rapidly released to eliminate the bacterial biofilm on the wound. Then, 3D radially aligned nanofiber scaffolds loaded with W379 antimicrobial peptide and PDGF-BB were used to treat the wound to prevent bacterial infection recurrence and promote angiogenesis and granulation tissue regeneration, thereby accelerating wound healing. In the presented study, we found that the combined use of burst and controlled release of W379 antimicrobial peptide effectively clears the bacterial biofilm and prevents the recurrence of bacterial infection. Additionally, we found that the removal of the bacterial biofilm contributed to modulating the local inflammatory response from a pro-inflammatory type to a pro-regenerative type. Furthermore, the use of PDGF-BB significantly promotes neovascularization and granulation tissue regeneration in the wound bed, resulting in accelerating re-epithelialization and wound closure. Our study provides a promising treatment method for the repair of infected chronic wounds.
RESUMO
Photoelectric dual-mode sensors, which respond to strain signal through photoelectric dual-signals, hold great promise as wearable sensors in human motion monitoring. In this work, a photoelectric dual-mode sensor based on photonic crystals hydrogel was developed for human joint motion detection. The optical signal of the sensor originated from the structural color of photonic crystals, which was achieved by tuning the polymethyl methacrylate (PMMA) microspheres diameter. The reflective peak of the sensor, based on 250 nm PMMA PCs, shifted from 623 nm to 492 nm with 100% strain. Graphene was employed to enhance the electrical signal of the sensor, resulting in a conductivity increase from 9.33 × 10-4 S/m to 2 × 10-3 S/m with an increase in graphene from 0 to 8 mg·mL-1. Concurrently, the resistance of the hydrogel with 8 mg·mL-1 graphene increased from 160 kΩ to 485 kΩ with a gauge factor (GF) = 0.02 under 100% strain, while maintaining a good cyclic stability. The results of the sensing and monitoring of finger joint bending revealed a significant shift in the reflective peak of the photoelectric dual-mode sensor from 624 nm to 526 nm. Additionally, its resistance change rate was measured at 1.72 with a 90° bending angle. These findings suggest that the photoelectric dual-mode sensor had the capability to detect the strain signal with photoelectric dual-mode signals, and indicates its great potential for the sensing and monitoring of joint motion.
RESUMO
Background: The associations between sugary beverages and genetic predisposition to depression risk remain unclear. Aims: This study aimed to investigate the associations of sugar-sweetened beverages (SSBs), artificially sweetened beverages (ASBs) and natural juices (NJs) with depression and to assess whether these associations were modified by genetic predisposition. Methods: We used data from the UK Biobank of 180 599 individuals aged 39-72 years who were depression-free at baseline. Dietary intake of SSBs, ASBs and NJs was accessed by a 24-hour dietary recall between 2009 and 2012. The Polygenic Risk Score for depression was estimated and categorised as low (lowest tertile), intermediate (tertile 2) and high (highest tertile). Cox proportional hazard and substitution models were conducted to evaluate hazard ratios (HRs) and 95% CIs. Results: Over the 12-year follow-up, 4915 individuals developed depression. Higher consumption (>2 units/day) of SSBs (HR: 1.26, 95% CI 1.12 to 1.43) and ASBs (HR: 1.40, 95% CI 1.23 to 1.60) were both associated with an increased risk of depression. However, moderate consumption (>0-1 units/day) of NJs was associated with a lower risk of depression (HR: 0.89, 95% CI 0.83 to 0.95). Furthermore, genetic predisposition did not modify these associations (p interaction>0.05). In substitution models, the HRs for depression risk were 0.94 (95% CI 0.89 to 0.99) and 0.89 (95% CI 0.85 to 0.94), respectively, when 1 unit/day of SSBs or ASBs was replaced by an equivalent intake of NJs. Conclusions: Higher consumption of SSBs and ASBs was associated with an increased risk of depression; in contrast, moderate consumption of NJs was inversely associated with a lower risk of depression. In theory, substituting SSBs and ASBs with NJs would suppose a reduction of depression risk.
RESUMO
Antimicrobial resistance is a global healthcare challenge that urgently needs the development of new therapeutic agents. Antimicrobial peptides and mimics thereof are promising candidates but mostly suffer from inherent toxicity issues due to the non-selective binding of cationic groups with mammalian cells. To overcome this toxicity issue, this work herein reports the synthesis of a smart antimicrobial dendron with masked cationic groups (Gal-Dendron) that could be uncaged in the presence of ß-galactosidase enzyme to form the activated Enz-Dendron and confer antimicrobial activity. Enz-Dendron show bacteriostatic activity toward Gram-negative (P. aeruginosa and E. coli) and Gram-positive (S. aureus) bacteria with minimum inhibitory concentration values of 96 µm and exerted its antimicrobial mechanism via a membrane disruption pathway, as indicated by inner and outer membrane permeabilization assays. Crucially, toxicity studies confirmed that the masked prodrug Gal-Dendron exhibited low hemolysis and is at least 2.4 times less toxic than the uncaged cationic Enz-Dendron, thus demonstrating the advantage of masking the cationic groups with responsive immolative linkers to overcome toxicity and selectivity issues. Overall, this study highlights the potential of designing new membrane-disruptive antimicrobial agents that are more biocompatible via the amine uncaging strategy.
Assuntos
Antibacterianos , Dendrímeros , Escherichia coli , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Dendrímeros/química , Dendrímeros/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Hemólise/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Humanos , Membrana Celular/efeitos dos fármacos , Animais , Estrutura MolecularRESUMO
In recent years, enveloped micro-nanobubbles have garnered significant attention in research due to their commendable stability, biocompatibility, and other notable properties. Currently, the preparation methods of enveloped micro-nanobubbles have limitations such as complicated preparation process, large bubble size, wide distribution range, low yield, etc. There exists an urgent demand to devise a simple and efficient method for the preparation of enveloped micro-nanobubbles, ensuring both high concentration and a uniform particle size distribution. Magnetic lipid bubbles (MLBs) are a multifunctional type of enveloped micro-nanobubble combining magnetic nanoparticles with lipid-coated bubbles. In this study, MLBs are prepared simply and efficiently by a magneto internal heat bubble generation process based on the interfacial self-assembly of iron oxide nanoparticles induced by the thermogenic effect in an alternating magnetic field. The mean hydrodynamic diameter of the MLBs obtained was 384.9 ± 8.5 nm, with a polydispersity index (PDI) of 0.248 ± 0.021, a zeta potential of -30.5 ± 1.0 mV, and a concentration of (7.92 ± 0.46) × 109 bubbles/mL. Electron microscopy results show that the MLBs have a regular spherical stable core-shell structure. The superparamagnetic iron oxide nanoparticles (SPIONs) and phospholipid layers adsorbed around the spherical gas nuclei of the MLBs, leading the particles to demonstrate commendable superparamagnetic and magnetic properties. In addition, the effects of process parameters on the morphology of MLBs, including phospholipid concentration, phospholipid proportiona, current intensity, magnetothermal time, and SPION concentration, were investigated and discussed to achieve controlled preparation of MLBs. In vitro imaging results reveal that the higher the concentration of MLBs loaded with iron oxide nanoparticles, the better the in vitro ultrasound (US) imaging and magnetic resonance imaging (MRI) results. This study proves that the magneto internal heat bubble generation process is a simple and efficient technique for preparing MLBs with high concentration, regular structure, and commendable properties. These findings lay a robust foundation for the mass production and application of enveloped micro-nanobubbles, particularly in biomedical fields and other related domains.
Assuntos
Fosfolipídeos , Fosfolipídeos/química , Tamanho da Partícula , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas de Magnetita/química , Gases/química , Microbolhas , Campos MagnéticosRESUMO
The combination of magnetic fields and magnetic nanoparticles (MNPs) to kill cancer cells by magneto-mechanical force represents a novel therapy, offering advantages such as non-invasiveness, among others. Pulsed magnetic fields (PMFs) hold promise for application in this therapy due to advantages such as easily adjustable parameters; however, they suffer from the drawback of narrow pulse width. In order to fully exploit the potential of PMFs and MNPs in this therapy, while maximizing therapeutic efficacy within the constraints of the narrow pulse width, a feature-matching theory is proposed, encompassing the matching of three aspects: (1) MNP volume and critical volume of Brownian relaxation, (2) relaxation time and pulse width, and (3) MNP shape and the intermittence of PMF. In the theory, a microsecond-PMF generator was developed, and four kinds of MNPs were selected for in vitro cell experiments. The results demonstrate that the killing rate of the experimental group meeting the requirements of the theory is at least 18% higher than the control group. This validates the accuracy of our theory and provides valuable guidance for the further application of PMFs in this therapy.
Assuntos
Campos Magnéticos , Melanoma , Humanos , Linhagem Celular Tumoral , Melanoma/patologia , Melanoma/terapia , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêuticoRESUMO
Ultrasound has been widely used in industry due to its high energy and efficiency. This study optimized the ultrasonic-assisted extraction (UAE) process of frosted figs pectin (FFP) using response surface methodology (RSM), and further investigated the effect of ultrasonic power on the structural characteristics and antioxidant activities of FFPs. The UAE method of FFP through RSM was optimized, and the optimal extraction process conditions, particle size of 100 mesh, pH value of 1.95, liquid-solid ratio of 47:1 (mL/g), extraction temperature of 50 °C and extraction time of 65 min, were obtained. The extraction rate of FFP under this condition was 37.97 ± 2.56 %. Then, the four FFPs modified by ultrasound were obtained by changing the ultrasonic power. Research had found that ultrasonic power had little effect on the monosaccharide composition, Zeta potential, as well as the thermal stability and appearance structure of the four FFPs. However, ultrasonic power had a significant impact on other properties of FFP: as the ultrasonic power increased, the DM% and particle size decreased continuously, while the total carbohydrate content increased. Meanwhile, ultrasonic power also had a significant impact on antioxidant activities of FFPs. From the research results, it could be seen that different ultrasonic power had certain changes in its spatial structure and properties, and the structural changes also affected the biological activity of FFP. The study of the effects of ultrasonic power on the physicochemical properties and biological activity of FFP lays the foundation for the development and application of FFP in food additives and natural drug carriers.
Assuntos
Antioxidantes , Fenômenos Químicos , Ficus , Pectinas , Ondas Ultrassônicas , Pectinas/química , Pectinas/isolamento & purificação , Ficus/química , Antioxidantes/química , Temperatura , Tamanho da Partícula , Concentração de Íons de HidrogênioRESUMO
Pulsed magnetic field treatment can enhance cell membrane permeability, allowing large molecular substances that normally cannot pass through the cell membrane to enter the cell. This research holds significant prospects for biomedical applications. However, the mechanism underlying pulsed magnetic field-induced cell permeabilization remains unclear, impeding further progress in research related to pulsed magnetic field. Currently, hypotheses about the mechanism are struggling to explain experimental results. Therefore, this study developed a parameter-adjustable pulsed magnetic field generator and designed experiments. Starting from the widely accepted hypothesis of "induced electric fields by pulsed magnetic field," we conducted a preliminary exploration of the biophysical mechanisms underlying pulsed magnetic field-induced cell permeabilization. Finally, we have arrived at an intriguing conclusion: under the current technical parameters, the impact of the pulsed magnetic field itself is the primary factor influencing changes in cell membrane permeability, rather than the induced electric field. This conclusion holds significant implications for understanding the biophysical mechanisms behind pulsed magnetic field therapy and its potential biomedical applications.
Assuntos
Permeabilidade da Membrana Celular , Campos Magnéticos , Permeabilidade da Membrana Celular/efeitos da radiação , Permeabilidade da Membrana Celular/fisiologia , Animais , Humanos , Membrana Celular/efeitos da radiação , Membrana Celular/fisiologiaRESUMO
Hydrogel actuators with anisotropic structures exhibit reversible responsiveness upon the trigger of various external stimuli, rendering them promising for applications in many fields including artificial muscles and soft robotics. However, their effective operation across multiple environments remains a persistent challenge, even for widely studied thermo-responsive polymers like poly(N-isopropyl acrylamide) (PNIPAm). Current attempts to address this issue are hindered by complex synthetic procedures or specific substrates. This study introduces a straightforward methodology to grow a thin, dense PNIPAm nanoparticle layer on diverse hydrogel surfaces, creating a highly temperature-sensitive hydrogel actuator. This actuator demonstrates adaptability across various environments, including water, oil, and open air, owing to its distinct structure facilitating self-water circulation during actuation. The thin PNIPAm layer consists of interconnected PNIPAm nanoparticles synthesized via in situ interfacial precipitation polymerization, seamlessly bonded to the hydrogel substrate through an interfacial layer containing hybrid hydrogel/PNIPAm nanoparticles. This unique anisotropic structure ensures exceptional structural stability without interfacial delamination, even enduring harsh treatments such as freezing, ultrasonic irradiation, and prolonged water immersion. Remarkably, PNIPAm films on hydrogel surfaces which enable programmable 3D actuation can also be precisely patterned. This synthetic approach opens a novel pathway for fabricating advanced hydrogel actuators with broad-ranging applications.
RESUMO
It remains a significant challenge to develop a kind of cost-effective and eco-friendly adsorbent with strong immobilization capabilities for ammonium in farmland. In this work, we employed Ca/Al layered double hydroxide-supported carbon dots (CDs@Ca/Al-LDHs) as a novel and efficient adsorbent for ammonium immobilization both in aqueous and soil environments. Such a composite could exhibit a high adsorption capacity towards ammonium in solution, which was four times higher than zeolite and three times higher than biochar under the same conditions. The mechanism investigations revealed that electrostatic interactions between the negatively charged CDs and the positively charged ammonium played a key role in the adsorption. In 30-day leaching experiments, the fabricated composite cumulatively reduced ammonium and nitrate by 6.3% and 9.7%, respectively at a dosage of 0.1% (w/w). Incubation experiments further confirmed that the developed composite could effectively inhibit ammonia volatilization and nitrification by immobilizing the ammonium within soil matrices. Our results demonstrated that CDs@Ca/Al-LDHs represented a promising candidate for cost-effective and eco-friendly immobilization of excess ammonium from over-fertilized farmland.
Assuntos
Compostos de Amônio , Carbono , Nitrogênio , Fazendas , Hidróxidos , Adsorção , SoloRESUMO
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common congenital facial malformation with a complex, incompletely understood origin. Long noncoding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, potentially shedding light on NSCL/P's etiology. This study aimed to identify critical lncRNAs and construct regulatory networks to unveil NSCL/P's underlying molecular mechanisms. Integrating gene expression profiles from the Gene Expression Omnibus (GEO) database, we pinpointed 30 dysregulated NSCL/P-associated lncRNAs. Subsequent analyses enabled the creation of competing endogenous RNA (ceRNA) networks, lncRNA-RNA binding protein (RBP) interaction networks, and lncRNA cis and trans regulation networks. RT-qPCR was used to examine the regulatory networks of lncRNA in vivo and in vitro. Furthermore, protein levels of lncRNA target genes were validated in human NSCL/P tissue samples and murine palatal shelves. Consequently, two lncRNAs and three mRNAs: FENDRR (log2FC = - 0.671, P = 0.040), TPT1-AS1 (log2FC = 0.854, P = 0.003), EIF3H (log2FC = - 1.081, P = 0.041), RBBP6 (log2FC = 0.914, P = 0.037), and SRSF1 (log2FC = 0.763, P = 0.026) emerged as potential contributors to NSCL/P pathogenesis. Functional enrichment analyses illuminated the biological functions and pathways associated with these lncRNA-related networks in NSCL/P. In summary, this study comprehensively delineates the dysregulated transcriptional landscape, identifies associated lncRNAs, and reveals pivotal sub-networks relevant to NSCL/P development, aiding our understanding of its molecular progression and setting the stage for further exploration of lncRNA and mRNA regulation in NSCL/P.
Assuntos
Fenda Labial , Fissura Palatina , RNA Longo não Codificante , Humanos , Animais , Camundongos , Fissura Palatina/genética , Fenda Labial/genética , RNA Longo não Codificante/genética , Bases de Dados Factuais , Hidrolases , RNA Mensageiro/genética , Proteínas de Ligação a DNA , Ubiquitina-Proteína Ligases , Fatores de Processamento de Serina-ArgininaRESUMO
Integrating hydrogel with other materials is always challenging due to the low mass content of hydrogels and the abundance of water at the interfaces. Adhesion through nanoparticles offers characteristics such as ease of use, reversibility, and universality, but still grapples with challenges like weak bonding. Here, a simple yet powerful strategy using the formation of nanoparticles in situ is reported, establishing strong interfacial adhesion between various hydrogels and substrates including elastomers, plastics, and biological tissue, even under wet conditions. The strong interfacial bonding can be formed in a short time (60 s), and gradually strengthened to 902 J m-2 adhesion energy within an hour. The interfacial layer's construction involves chain entanglement and other non-covalent interactions like coordination and hydrogen bonding. Unlike the permanent bonding seen in most synthetic adhesives, these nanoparticle adhesives can be efficiently triggered for removal by acidic solutions. The simplicity of the precursor diffusion and precipitation process in creating the interfacial layer ensures broad applicability to different substrates and nanoparticle adhesives without compromising robustness. The tough adhesion provided by nanoparticles allows the hydrogel-elastomer hybrid to function as a triboelectric nanogenerator (TENG), facilitating reliable electrical signal generation and output performance due to the robust interface.
RESUMO
Epidemiological studies of sugar-sweetened beverages (SSBs) and artificially sweetened beverages (ASBs) with Alzheimer's disease (AD) have provided controversial findings. Furthermore, little is known about the association between pure fruit/vegetable juices and AD. The present study aims to estimate the associations of SSBs, ASBs, and pure fruit/vegetable juices with AD, and to evaluate the theoretical effects of replacing SSBs and ASBs with the different consumption of pure fruit/vegetable juices on the risk of AD. This prospective cohort study of the UK Biobank included 206,606 participants aged 39-72 years free of dementia at baseline between 2006 and 2010. Dietary intake of SSBs, ASBs, and pure fruit/vegetable juices (naturally sweet juices) were collected using a 24-h dietary recall questionnaire completed between 2009 and 2012. Incident AD was identified by medical and mortality records. Cox proportional hazard models and substitution models were conducted to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). A total of 699 cases of AD were identified over a median follow-up of 9.5 years. The consumption of SSBs and ASBs (> 2 units/d) were associated with a higher risk of AD. However, participants who drank > 1-2 units/d of pure fruit/vegetable juices were associated with a lower risk of AD. In substitution models, replacing SSBs with an equivalent consumption of pure fruit/vegetable juices could be associated with a risk reduction of AD.
Assuntos
Doença de Alzheimer , Açúcares , Humanos , Açúcares/efeitos adversos , Edulcorantes/efeitos adversos , Doença de Alzheimer/epidemiologia , Estudos Prospectivos , Inquéritos e QuestionáriosRESUMO
Human skin comprises multiple hierarchical layers that perform various functions such as protection, sensing, and structural support. Developing electronic skin (E-skin) with similar properties has broad implications in health monitoring, prosthetics, and soft robotics. While previous efforts have predominantly concentrated on sensory capabilities, this study introduces a hierarchical polymer system that not only structurally resembles the epidermis-dermis bilayer structure of skin but also encompasses sensing functions. The system comprises a polymeric hydrogel, representing the "dermis", and a superimposed nanoporous polymer film, forming the "epidermis". Within the film, interconnected nanoparticles mimic the arrangement of interlocked corneocytes within the epidermis. The fabrication process employs a robust in situ interfacial precipitation polymerization of specific water-soluble monomers that become insoluble during polymerization. This process yields a hybrid layer establishing a durable interface between the film and hydrogel. Beyond the structural mimicry, this hierarchical structure offers functionalities resembling human skin, which includes (1) water loss protection of hydrogel by tailoring the hydrophobicity of the upper polymer film; (2) tactile sensing capability via self-powered triboelectric nanogenerators; (3) built-in gold nanowire-based resistive sensor toward temperature and pressure sensing. This hierarchical polymeric approach represents a potent strategy to replicate both the structure and functions of human skin in synthetic designs.
Assuntos
Biomimética , Dispositivos Eletrônicos Vestíveis , Humanos , Pele/química , Hidrogéis , ÁguaRESUMO
Self-propelled nanomotors represent a promising class of adaptable and versatile technologies with broad applications in the realms of biomedicine and environmental remediation. Herein, we report a biocatalytic nanomotor based on a covalent-organic framework (COF) that demonstrates intelligent and switchable motion triggered by a blue-to-red light switch. Consequently, when exposed to blue light, the nanomotor significantly enhances the removal of contaminants in aqueous solutions due to its elevated mobility. Conversely, it effectively deactivates its motion and contaminant removal upon exposure to red light. This study explores the heterogeneous assembly strategy of the COF-based nanomotor and its light-controlled propulsion performance and provides a novel strategy for the regulation of movement, offering valuable insights for the design and practical applications of nanomotors.
RESUMO
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells capable of inhibiting T-cell responses. MDSCs have a crucial role in the regulation of the immune response of the body to pathogens, especially in inflammatory response and pathogenesis during anti-infection. Pathogens such as bacteria and viruses use MDSCs as their infectious targets, and even some pathogens may exploit the inhibitory activity of MDSCs to enhance pathogen persistence and chronic infection of the host. Recent researches have revealed the pathogenic significance of MDSCs in pathogens such as bacteria and viruses, despite the fact that the majority of studies on MDSCs have focused on tumor immune evasion. With the increased prevalence of viral respiratory infections, the resurgence of classical tuberculosis, and the advent of medication resistance in common bacterial pneumonia, research on MDSCs in these illnesses is intensifying. The purpose of this work is to provide new avenues for treatment approaches to pulmonary infectious disorders by outlining the mechanism of action of MDSCs as a biomarker and therapeutic target in pulmonary infectious diseases.
Assuntos
Células Supressoras Mieloides , Pneumonia Bacteriana , Vírus , Humanos , Pulmão , Linfócitos T , BiomarcadoresRESUMO
The protein contents of hydrolyzed sludge supernatant are commonly determined with the Kjeldahl method, but this method suffers from complicated operations, long process times, and large quantities of chemicals consumed. In this paper, the Lowry, bicinchoninic acid (BCA), and Bradford methods were used to test the precision and spiked recovery of proteins from sludge supernatants hydrolyzed by alkaline-thermal hydrolysis (ATH), enzymatic hydrolysis (EH), and ultrasound-assisted enzymatic hydrolysis (UEH), and the results were compared with those obtained with the Kjeldahl method. For all the hydrolytic processes, the sludge protein values determined with the three tested methods were within 0.05 of each other, which met the experimental requirement for accuracy. Both the Lowry and BCA methods had recovery rates of 95-105%, while the Bradford method showed large deviations and was not highly reliable. The three protein determination methods showed significant differences with the Kjeldahl method (P<0.05). However, the relative deviation between the Kjeldahl and BCA methods was the smallest (3-5%), followed by those between the Kjeldahl and the Lowry (11-21%) and Bradford methods (21-90%), and the causes of the deviations were analyzed based on the protein hydrolysate components and the mechanisms for the different detection methods. On the basis of these results, the BCA method was chosen as the most appropriate quantification method for use with sludge protein extraction, and it was used to analyze the protein contents extracted from residual sludge samples obtained from two sewage treatment plants. The reliability of the method was verified, and this lays a foundation for the extraction and reclamation of sludge proteins.