Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
IEEE Sens Lett ; 8(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948074

RESUMO

Studying animal social systems requires understanding variations in contact and interaction, influenced by factors like environmental conditions, resource availability, and predation risk. Traditional observational methods have limitations, but advancements in sensor technologies and data analytics provide new opportunities. We developed a wireless wearable sensor system, "Juxta," with features such as modular battery packs and a smartphone app for data collection. A pilot study on free-living prairie voles (Microtus ochrogaster), a species with complex social behavior, demonstrated Juxta's potential for studying social networks and behavior. We propose a framework for merging temporal, spatial, and event-driven data, which can help explore complex social dynamics across species and environments.

2.
J Drug Target ; : 1-10, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38753446

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death globally, with oxidative stress (OS) identified as a primary contributor to their onset and progression. Given the elevated incidence and mortality rates associated with CVDs, there is an imperative need to investigate novel therapeutic strategies. Nuclear factor erythroid 2-related factor 2 (Nrf2), ubiquitously expressed in the cardiovascular system, has emerged as a promising therapeutic target for CVDs due to its role in regulating OS and inflammation. This review aims to delve into the mechanisms and actions of the Nrf2 pathway, highlighting its potential in mitigating the pathogenesis of CVDs.

3.
J Autoimmun ; 146: 103214, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648706

RESUMO

INTRODUCTION: Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease characterized by joint inflammation and bone damage, that not only restricts patient activity but also tends to be accompanied by a series of complications, seriously affecting patient prognosis. Peroxisome proliferator-activated receptor gamma (PPARG), a receptor that controls cellular metabolism, regulates the function of immune cells and stromal cells. Previous studies have shown that PPARG is closely related to the regulation of inflammation. However, the role of PPARG in regulating the pathological processes of RA is poorly understood. MATERIALS AND METHODS: PPARG expression was examined in the synovial tissues and peripheral blood mononuclear cells (PBMCs) from RA patients and the paw of collagen-induced arthritis (CIA) model rats. Molecular biology experiments were designed to examine the effect of PPARG and cannabidiol (CBD) on RAW264.7 cells and CIA rats. RESULTS: The results reveal that PPARG accelerates reactive oxygen species (ROS) clearance by promoting autophagy, thereby inhibiting ROS-mediated macrophage polarization and NLRP3 inflammasome activation. Notably, CBD may be a promising candidate for understanding the mechanism by which PPARG regulates autophagy-mediated inflammation. CONCLUSIONS: Taken together, these findings indicate that PPARG may have a role for distinguishing between RA patients and healthy control, and for distinguishing RA activity; moreover, PPARG could be a novel pharmacological target for alleviating RA through the mediation of autophagy. CBD can act as a PPARG agonist that alleviates the inflammatory progression of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Autofagia , Inflamação , PPAR gama , Espécies Reativas de Oxigênio , Animais , Feminino , Humanos , Masculino , Camundongos , Ratos , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Artrite Reumatoide/imunologia , Autofagia/efeitos dos fármacos , Canabidiol/farmacologia , Modelos Animais de Doenças , Inflamassomos/metabolismo , Inflamação/metabolismo , Inflamação/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , PPAR gama/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
4.
Int Immunopharmacol ; 130: 111795, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447418

RESUMO

Treg cell-based therapy has exhibited promising efficacy in combatting rheumatoid arthritis (RA). Dihydroartemisinin (DHA) exerts broad immunomodulatory effects across various diseases, with its recent spotlight on T-cell regulation in autoimmune conditions. The modulation of DHA on Treg cells and its therapeutic role in RA has yet to be fully elucidated. This study seeks to unveil the influence of DHA on Treg cells in RA and furnish innovative substantiation for the potential of DHA to ameliorate RA. To this end, we initially scrutinized the impact of DHA-modulated Treg cells on osteoclast (OC) formation in vitro using Treg cell-bone marrow-derived monocyte (BMM) coculture systems. Subsequently, employing the collagen-induced arthritis (CIA) rat model, we validated the efficacy of DHA and probed its influence on Treg cells in the spleen and popliteal lymph nodes (PLN). Finally, leveraging deep proteomic analysis with data-independent acquisition (DIA) and parallel accumulation-serial fragmentation (PASEF) technology, we found the alterations in the Treg cell proteome in PLN by proteomic analysis. Our findings indicate that DHA augmented suppressive Treg cells, thereby impeding OC formation in vitro. Consistently, DHA mitigated erosive joint destruction and osteoclastogenesis by replenishing splenic and joint-draining lymph node Treg cells in CIA rats. Notably, DHA induced alterations in the Treg cell proteome in PLN, manifesting distinct upregulation of alloantigen Col2a1 (Type II collagen alfa 1 chain) and CD8a (T-cell surface glycoprotein CD8 alpha chain) in Treg cells, signifying DHA's targeted modulation of Treg cells, rendering them more adept at sustaining immune tolerance and impeding bone erosion. These results unveil a novel facet of DHA in the treatment of RA.


Assuntos
Artemisininas , Artrite Experimental , Artrite Reumatoide , Osteólise , Ratos , Animais , Linfócitos T Reguladores , Proteoma , Proteômica , Articulações/patologia , Osteólise/metabolismo
5.
Front Pharmacol ; 15: 1369337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487171

RESUMO

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovial inflammation, cartilage destruction, pannus formation and bone erosion. Various immune cells, including macrophages, are involved in RA pathogenesis. The heterogeneity and plasticity of macrophages render them pivotal regulators of both the induction and resolution of the inflammatory response. Predominantly, two different phenotypes of macrophages have been identified: classically activated M1 macrophages exacerbate inflammation via the production of cytokines, chemokines and other inflammatory mediators, while alternatively activated M2 macrophages inhibit inflammation and facilitate tissue repair. An imbalance in the M1/M2 macrophage ratio is critical during the initiation and progression of RA. Macrophage polarization is modulated by various transcription factors, epigenetic elements and metabolic reprogramming. Curcumin, an active component of turmeric, exhibits potent immunomodulatory effects and is administered in the treatment of multiple autoimmune diseases, including RA. The regulation of macrophage polarization and subsequent cytokine production as well as macrophage migration is involved in the mechanisms underlying the therapeutic effect of curcumin on RA. In this review, we summarize the underlying mechanisms by which curcumin modulates macrophage function and polarization in the context of RA to provide evidence for the clinical application of curcumin in RA treatment.

6.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293211

RESUMO

Understanding the dynamics of animal social systems requires studying variation in contact and interaction, which is influenced by environmental conditions, resource availability, and predation risk, among other factors. Traditional (direct) observational methods have limitations, but advancements in sensor technologies and data analytics provide unprecedented opportunities to study these complex systems in naturalistic environments. Proximity logging and tracking devices, capturing movement, temperature, and social interactions, offer non-invasive means to quantify behavior and develop empirical models of animal social networks. However, challenges remain in integrating different data types, incorporating more sensor modalities, and addressing logistical constraints. To address these gaps, we developed a wireless wearable sensor system with novel features (called "Juxta"), including modular battery packs, memory management for combining data types, reconfigurable deployment modes, and a smartphone app for data collection. We present data from a pilot study on prairie voles ( Microtus ochrogaster ), which is a small mammal species that exhibits relatively complex social behavior. We demonstrate the potential for Juxta to increase our understanding of the social networks and behavior of free-living animals. Additionally, we propose a framework to guide future research in merging temporal, spatial, and event-driven data. By leveraging wireless technology, battery efficiency, and smart sensing modalities, our wearable ecosystem offers a scalable solution for real-time, high-resolution data capture and analysis in animal social network studies, opening new avenues for exploring complex social dynamics across species and environments.

7.
Nutrition ; 119: 112284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38118383

RESUMO

OBJECTIVE: The aim of this study was to explore the effect of the ketogenic diet (KD) on ß-cell dedifferentiation and hepatic lipid accumulation in db/db mice. METHODS: After a 3-wk habituation, male db/db mice ages 8 wk were assigned into one of three groups: normal diet (ND), KD, and 75% calorie restriction (CR) group. Free access to a standard diet, a KD, and 75% of a standard diet, respectively, were given to each group. Additionally, sex-matched 8-wk-old C57BL/6 mice were used to construct a control (C) group. After a 4-wk dietary intervention, mouse body weight, fasting blood glucose (FBG), blood lipids, fasting insulin (FINS), glucose tolerance, and ß-hydroxybutyric acid level were measured. The morphologies of the islet and liver were observed by hematoxylin and eosin staining. Positive expressions of ß-cell-specific transcription factors in mouse islets were determined by double immunofluorescence staining. The size and number of lipid droplets in mouse liver were examined by Oil Red O staining. Real-time quantitative reverse transcription polymerase chain reaction detected relative levels of adipogenesis-associated and lipolysis-associated genes in mouse liver. Additionally, expressions of CD36 protein in the mouse liver were determined by immunohistochemical staining and Western blot. RESULTS: After a 4-wk dietary intervention, FBG, FINS, and glucose area under the curve in the KD group became significantly lower than in the ND group (all P < 0.05). Regular morphology of mouse islets was observed in the KD group, with an increased number of islet cells. The KD significantly reversed the decrease in ß-cell number, disarrangement of ß-cells, decline of ß/α-cell ratio, and downregulation of ß-cell-specific transcription factors in db/db mice. Serum levels of triacylglycerol, total cholesterol, and low-density lipoprotein cholesterol were comparable between the ND and KD groups. In contrast, serum triacylglycerol levels were significantly lower in the CR group than in the ND group (P < 0.05). Vacuolar degeneration and lipid accumulation in the liver were more prominent in the KD group than in the ND and CR groups. The mRNA levels of Pparα and Acox1 in the KD group were lower than those in the ND group, although no significant differences were detected. Relative levels of Cd36 and inflammatory genes in the mouse liver were significantly higher in the KD group than in the ND group (all P < 0.05). CONCLUSION: The KD significantly reduced FBG and FINS and improved glucose tolerance in db/db mice by upregulating ß-cell-specific transcription factors and reversing ß-cell dedifferentiation. However, the KD also induced hepatic lipid accumulation and aggravated inflammatory response in the liver of db/db mice.


Assuntos
Dieta Cetogênica , Masculino , Camundongos , Animais , Desdiferenciação Celular , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Glucose/metabolismo , Triglicerídeos , Lipídeos , Colesterol , Fatores de Transcrição/metabolismo , Glicemia/metabolismo
8.
Biol Pharm Bull ; 46(10): 1385-1393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779039

RESUMO

Cutaneous melanoma is an aggressive cancer, which is the most common type of melanoma. In our previous studies, gambogenic acid (GNA) inhibited the proliferation and migration of melanoma cells. Maternally expressed gene 3 (MEG3) is a long noncoding RNA (lncRNA) that has been shown to have inhibitory effects in a variety of cancers. However, the mechanisms in melanoma progression need to be further investigated. In the current study, we investigated the inhibitory effect of GNA on melanoma and its molecular mechanism through a series of cell and animal experiments. We found that GNA could improve epithelial mesenchymal transition by up-regulating the expression of the lncRNA MEG3 gene, thereby inhibiting melanoma metastasis in vitro and in vivo.


Assuntos
Melanoma , MicroRNAs , RNA Longo não Codificante , Neoplasias Cutâneas , Animais , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Movimento Celular/genética , MicroRNAs/metabolismo , Transição Epitelial-Mesenquimal
9.
Heliyon ; 9(6): e16693, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37332917

RESUMO

Chinese cities contributes a large amount of CO2 emissions. Reducing CO2 emissions through urban governance is an important issue. Despite the increasing attention paid on the CO2 emission prediction, few studies consider the collective and complex influence of governance element system. To predict and regulate CO2 emissions through comprehensive urban governance elements, this paper use the random forest model through the data from 1903 Chinese county-level cities in 2010, 2012 and 2015, and establish a CO2 forecasting platform based on the effects of urban governance elements. The results are as follows: (1) The municipal utility facilities element, the economic development & industrial structure element, and the city size &structure and road traffic facilities elements are crucial for residential, industrial and transportation CO2 emissions, respectively; (2) Governance elements have nonlinear relationship with CO2 emissions and most of the relations present obvious threshold effects; (3) Random forest can be used to predict CO2 emissions more accurately than can other predictive models. These findings can be used to conducts the CO2 scenario simulation and help government formulate active governance measurements.

10.
Materials (Basel) ; 16(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37297239

RESUMO

A Cu-2.35Ni-0.69Si alloy with low La content was designed in order to study the role of La addition on microstructure evolution and comprehensive properties. The results indicate that the La element demonstrates a superior ability to combine with Ni and Si elements, via the formation of La-rich primary phases. Owing to existing La-rich primary phases, restricted grain growth was observed, due to the pinning effect during solid solution treatment. It was found that the activation energy of the Ni2Si phase precipitation decreased with the addition of La. Interestingly, the aggregation and distribution of the Ni2Si phase, around the La-rich phase, was observed during the aging process, owing to the attraction of Ni and Si atoms by the La-rich phase during the solid solution. Moreover, the mechanical and conductivity properties of aged alloy sheets suggest that the addition of the La element showed a slight reducing effect on the hardness and electrical conductivity. The decrease in hardness was due to the weakened dispersion and strengthening effect of the Ni2Si phase, while the decrease in electrical conductivity was due to the enhanced scattering of electrons by grain boundaries, caused by grain refinement. More notably, excellent thermal stabilities, including better softening resistance ability and microstructural stability, were detected for the low-La-alloyed Cu-Ni-Si sheet, owing to the delayed recrystallization and restricted grain growth caused by the La-rich phases.

11.
Mol Cancer ; 22(1): 42, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859310

RESUMO

N6-methyladenosine (m6A) methylation is the most universal internal modification in eukaryotic mRNA. With elaborate functions executed by m6A writers, erasers, and readers, m6A modulation is involved in myriad physiological and pathological processes. Extensive studies have demonstrated m6A modulation in diverse tumours, with effects on tumorigenesis, metastasis, and resistance. Recent evidence has revealed an emerging role of m6A modulation in tumour immunoregulation, and divergent m6A methylation patterns have been revealed in the tumour microenvironment. To depict the regulatory role of m6A methylation in the tumour immune microenvironment (TIME) and its effect on immune evasion, this review focuses on the TIME, which is characterized by hypoxia, metabolic reprogramming, acidity, and immunosuppression, and outlines the m6A-regulated TIME and immune evasion under divergent stimuli. Furthermore, m6A modulation patterns in anti-tumour immune cells are summarized.


Assuntos
Evasão da Resposta Imune , Microambiente Tumoral , Humanos , Metilação , Adenosina , Carcinogênese
12.
Front Immunol ; 14: 1135014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993980

RESUMO

Objective: Necroptosis has recently been found to be associated with the pathogenesis of many autoimmune diseases, including rheumatoid arthritis (RA). This study was undertaken to explore the role of RIPK1-dependent necroptosis in the pathogenesis of RA and the potential new treatment options. Methods: The plasma levels of receptor-interacting protein kinase 1 (RIPK1) and mixed lineage kinase domain-like pseudokinase (MLKL) in 23 controls and 42 RA patients were detected by ELISA. Collagen-induced arthritis (CIA) rats were treated with KW2449 by gavage for 28 days. Arthritis index score, H&E staining, and Micro-CT analysis were used to evaluate joint inflammation. The levels of RIPK1-dependent necroptosis related proteins and inflammatory cytokines were detected by qRT-PCR, ELISA and Western blot, and the cell death morphology was detected by flow cytometry analysis and high-content imaging analysis. Results: The plasma levels of RIPK1 and MLKL in RA patients were higher than those in healthy people, and were positively correlated with the severity of RA. KW2449 could reduce joint swelling, joint bone destruction, tissue damage, and the plasma levels of inflammatory cytokines in CIA rats. Lipopolysaccharide combined with zVAD (LZ) could induce necroptosis in RAW 264.7 cells, which could be reduced by KW2449. RIPK1-dependent necroptosis related proteins and inflammatory factors increased after LZ induction and decreased after KW2449 treatment or knockdown of RIPK1. Conclusion: These findings suggest that the overexpression of RIPK1 is positively correlated with the severity of RA. KW2449, as a small molecule inhibitor targeting RIPK1, has the potential to be a therapeutic strategy for RA treatment by inhibiting RIPK1-dependent necroptosis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Proteínas Quinases/metabolismo , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Citocinas/metabolismo , Artrite Reumatoide/tratamento farmacológico
13.
ACS Appl Mater Interfaces ; 15(6): 8730-8741, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36735823

RESUMO

The artificial integration of inorganic materials onto polymers to create the analogues of natural biocomposites is an attractive field in materials science. However, due to significant diversity in the interfacial properties of two kinds of materials, advanced synthesis methods are quite complicated and the resultant materials are always vulnerable to external environments, which limits their application scenarios and makes them unsuitable for scalable production. Herein, we report a simple and universal approach to achieve robust and scalable surface mineralization of polymers using a rationally designed triple functional molecular bridge of fluorosilane, 3-[(perfluorohexyl sulfonyl) amino] propyltriethoxy silane (PFSS). In a two-step solution deposition, the fluoroalkyl and siloxane of the PFSS take charge of its adhesion and immobilization onto polymers by hydrophobic interaction and wrapping-like chemical cross-linking, and then the assembly and growth of inorganic nanoclusters for integration are achieved by strong chemical coordination of PFSS sulfonamide. The versatile mineralization of inorganic oxides (e.g., TiO2, SiO2, and Fe2O3) onto chemically inert polymer surfaces was realized very well. The resultant mineralized materials exhibit robust and multiple functionalities for hostile applications, such as hydrophilic membranes for removing oils in strong acidic and alkaline wastewaters, fabrics with advanced anti-bacteria for healthy wearing, and plates with strong mechanical performance for better use. Experimental results and theoretical calculations confirmed the homogenous distribution of the PFSS onto polymers via cross-linking for robust coordination with inorganic oxides. These results demonstrate a skillful enlightenment in the design of high-performance mineralized polymer materials used as membranes, fabrics, and medical devices.

14.
Front Pharmacol ; 14: 1077796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814488

RESUMO

The immune system plays a crucial role in regulating osteoclast formation and function and has significance for the occurrence and development of immune-mediated bone diseases. Kidney-tonifying Chinese herbs, based on the theory of traditional Chinese medicine (TCM) to unify the kidney and strengthen the bone, have been widely used in the prevention and treatment of bone diseases. The common botanical drugs are tonifying kidney-yang and nourishing kidney-yin herbs, which are divided into two parts: one is the compound prescription of TCM, and the other is the single preparation of TCM and its active ingredients. These botanical drugs regulate osteoclastogenesis directly and indirectly by immune cells, however, we have limited information on the differences between the two botanical drugs in osteoimmunology. In this review, the mechanism by which kidney-tonifying Chinese herbs inhibiting osteoclastogenesis was investigated, emphasizing the immune response. The differences in the mechanism of action between tonifying kidney-yang herbs and nourishing kidney-yin herbs were analysed, and the therapeutic value for immune-mediated bone diseases was evaluated.

15.
Br J Pharmacol ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624563

RESUMO

Autoimmune diseases (ADs) are closely related to malignant tumours. On the one hand, ADs can increase the incidence of tumours; on the other hand, malignant tumours can cause rheumatic disease-like manifestations. With the increasing depth of analysis into the mechanism of N6 -methyladenosine (m6A) modification, it has been found that changes in m6A-related modification enzymes are closely related to the occurrence and development of ADs and malignant tumours. In this review, we explore the pathogenesis of ADs and tumours based on m6A modification. According to systematic assessment of the similarities between ADs and tumours, m6A may represent a common target of both diseases. At present, most of the drugs targeting m6A are in the research and development stage, not in clinical trials. Therefore, advancing the development of drugs targeting m6A is of great significance for both the combined treatment of ADs and malignant tumours and improving the quality of life and prognosis of patients.

17.
Macromol Rapid Commun ; 44(6): e2200826, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36414542

RESUMO

Polymers of intrinsic microporosity (PIMs) are a class of microporous organic materials that contain interconnected pores of less than 2 nm in diameter. Such materials are of great potential used in membranes for molecular separation, such as drug fractionation in pharmaceutical industry. However, the PIMs membranes are often susceptible to low separation selectivity toward different molecules due to their wide pore size distribution. Herein, a linear polyimide, Matrimid, is incorporated with PIM-1 (a typical member of PIMs) by solution blending, and the blends are dip-coated onto a polyimide P84 support membrane to prepare thin-film composite (TFC) membranes to control pore size distribution while keep high microporosity. The component miscibility, pore characteristics, and molecular separation performances of the Matrimid/PIM-1 TFC membranes are investigated in detail. The Matrimid and PIM-1 are partially miscible due to their similar Hansen solubility parameters. The Matrimid endows the selective layers (coatings) with narrower pore size distribution due to more compact chain packing. The prepared Matrimid/PIM-1 TFC membranes show high selectivity for separation of riboflavin (80% of retention) and isatin (only 5% of retention). The developed membranes exhibit great potential for separating molecules with different molecular weights.


Assuntos
Fracionamento Químico , Membranas Artificiais , Polímeros , Solventes , Fracionamento Químico/métodos , Isatina/química , Isatina/isolamento & purificação , Permeabilidade , Polímeros/química , Porosidade , Riboflavina/química , Riboflavina/isolamento & purificação , Solubilidade , Solventes/química
18.
Front Immunol ; 13: 1041284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582238

RESUMO

Purpose: Rheumatoid arthritis (RA) is a chronic autoimmune disease (AD) characterized by persistent synovial inflammation, bone erosion and progressive joint destruction. This research aimed to elucidate the potential roles and molecular mechanisms of N6-methyladenosine (m6A) methylation regulators in RA. Methods: An array of tissues from 233 RA and 126 control samples was profiled and integrated for mRNA expression analysis. Following quality control and normalization, the cohort was split into training and validation sets. Five distinct machine learning feature selection methods were applied to the training set and validated in validation sets. Results: Among the six models, the LASSO_λ-1se model not only performed better in the validation sets but also exhibited more stringent performance. Two m6A methylation regulators were identified as significant biomarkers by consensus feature selection from all four methods. IGF2BP3 and YTHDC2, which are differentially expressed in patients with RA and controls, were used to predict RA diagnosis with high accuracy. In addition, IGF2BP3 showed higher importance, which can regulate the G2/M transition to promote RA-FLS proliferation and affect M1 macrophage polarization. Conclusion: This consensus of multiple machine learning approaches identified two m6A methylation regulators that could distinguish patients with RA from controls. These m6A methylation regulators and their target genes may provide insight into RA pathogenesis and reveal novel disease regulators and putative drug targets.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Humanos , Metilação , Artrite Reumatoide/genética , Adenosina , Consenso
19.
Antioxidants (Basel) ; 11(6)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35740050

RESUMO

Rheumatoid arthritis (RA) is an inflammatory disease that begins with a loss of tolerance to modified self-antigens and immune system abnormalities, eventually leading to synovitis and bone and cartilage degradation. Reactive oxygen species (ROS) are commonly used as destructive or modifying agents of cellular components or they act as signaling molecules in the immune system. During the development of RA, a hypoxic and inflammatory situation in the synovium maintains ROS generation, which can be sustained by increased DNA damage and malfunctioning mitochondria in a feedback loop. Oxidative stress caused by abundant ROS production has also been shown to be associated with synovitis in RA. The goal of this review is to examine the functions of ROS and related molecular mechanisms in diverse cells in the synovial microenvironment of RA. The strategies relying on regulating ROS to treat RA are also reviewed.

20.
Food Nutr Res ; 662022.
Artigo em Inglês | MEDLINE | ID: mdl-35721807

RESUMO

Background: Obesity is a growing problem for public health worldwide. Calorie restriction (CR) is a safety and effective life intervention to defend against obesity. Short-term moderate CR may be a more favorable strategy against this pathology. However, the mechanisms behind the effects of CR remain to be clarified. Increased energy expenditure in the liver and brown adipose tissue could potentially be manipulated to modulate and improve metabolism in obesity. Moreover, nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin-1 (SIRT1) and AMP-activated protein kinase (AMPK) are well-characterized metabolic modulators. We aim to explore the anti-obesity effects of short-term moderate CR by improving energy metabolism via the SIRT1/AMPK pathway in white adipocytes and liver in a mouse model of obesity. Methods: Male C57BL/6 mice were randomized into two groups receiving either a standard or a high-fat diet (HFD) for 8 weeks to induce obesity. The HFD-induced obese mice were further randomized into two groups: HFD group or CR group (received 75% of the food eaten by HFD group). Their energy metabolism, white adipose tissue (WAT) contents, hepatic fat deposition, the expression of AMPK, SIRT1, peroxisome proliferators γ-activated receptor coactivator-1α (PGC-1α), nuclear factor kappa B (NF-κB), endothelial nitric oxide synthase (eNOS) in WAT, and hepatic tissues were determined. Results: After 4 weeks, body weight, total serum cholesterol, fasting blood glucose, and insulin levels were significantly lower in the CR group. Moreover, CR ameliorated hepatocyte steatosis, attenuated white adipogenesis, and increased energy expenditure and expressions of SIRT1, PGC-1α, and phosphorylated AMPK in subcutaneous WAT and the hepatic tissues. In addition, CR reduced the protein levels of NF-κB and increased the eNOS expression. Conclusion: Short-term moderate CR decreases obesity, increases the thermogenesis, and inhibits inflammation in a mouse model of obesity, probably via the activation of the AMPK/SIRT1 pathway in WAT and liver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA