Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Front Plant Sci ; 15: 1381243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817937

RESUMO

Reducing plant height (PH) is one of the core contents of the "Green Revolution", which began in the 1960s in wheat. A number of 27 reduced-height (Rht) genes have been identified and a great number of quantitative trait loci (QTLs) for PH have been mapped on all 21 chromosomes. Nonetheless, only several genes regulated PH have been cloned. In this study, we found the interval of QTL QPh-1B included an EST-SSR marker swes1079. According to the sequence of swes1079, we cloned the TaOSCA1.4 gene. We developed a CAPS marker to analyze the variation across a natural population. The result showed that the PH was significantly different between the two haplotypes of TaOSCA1.4-1B under most of the 12 environments and the average values of irrigation and rainfed conditions. This result further demonstrated that TaOSCA1.4 was associated with PH. Then, we validated the TaOSCA1.4 via RNAi technology. The average PHs of the wild-type (WT), RNAi lines 1 (Ri-1) and 2 (Ri-2) were 94.6, 83.6 and 79.2 cm, respectively, with significant differences between the WT and Ri-1 and Ri-2. This result indicated that the TaOSCA1.4 gene controls PH. TaOSCA1.4 is a constitutively expressed gene and its protein localizes to the cell membrane. TaOSCA1.4 gene is a member of the OSCA gene family, which regulates intracellular Ca2+ concentration. We hypothesized that knock down mutants of TaOSCA1.4 gene reduced regulatory ability of Ca2+, thus reducing the PH. Furthermore, the cell lengths of the knock down mutants are not significantly different than that of WT. We speculate that TaOSCA1.4 gene is not directly associated with gibberellin (GA), which should be a novel mechanism for a wheat Rht gene.

2.
Environ Pollut ; : 124237, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38801882

RESUMO

Luteolin has shown great potential in inhibiting Microcystis-dominated cyanobacterial blooms (MCBs). However, widespread microplastics (MPs) in natural aquatic systems can serve as substrates for cyanobacterial growth, potentially impacting their resistance to external stress and might interfere with luteolin's algicidal effect. This study investigated the impact of virgin and diversely-aged polystyrene microplastics (PS-MPs) on the inhibitory effect of luteolin involving Microcystis growth and microcystins (MCs) content in water. Moreover, the underlying mechanism was also revealed by jointly analyzing the SEM images, oxidative stress, exopolymeric substances (EPSs) content and functional gene expression. Result suggested that 0.5, 5 and 50 mg/L virgin and diversely-aged PS-MPs almost reduced growth inhibition ratio and oxidative damage of Microcysits by both doses of luteolin by stimulating EPSs secretion and inducing cell self-aggregate or hetero-aggregate with PS-MPs. Compared to virgin PS-MPs, photo-aged PS-MPs possessed rougher flaky surfaces, and hydrothermal-aging cracks the MPs internally, which were more conducive to interacting and hetero-aggregating with cells, and exhibiting more significant protective effects to Microcystis. However, MPs further reduced MCs content in water, possibly attributed to their adsorption effect on MCs, compared to luteolin stress alone. Such toxic hetero-aggregate formed by MCs, MPs, and Microcystis cells are more likely to be consumed, thus entering the food chain and triggering toxic bioaccumulation, posing greater eco-risks. This is the first study to clarify the impact and mechanisms of virgin and diversely-aged MPs on allelopathic algicidal effects from the perspective of microalgal inherent detoxifying abilities and self-protective strategies.

3.
Ecol Evol ; 14(5): e11408, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766313

RESUMO

Biodiversity in tropical regions is facing threats from agricultural expansion and intensification. Therefore, a promising future for local ecosystem conservation depends not only on traditional protected areas but also on well-managed agricultural landscapes. In this study, we compared the ecological traits of bird species in paddy fields outside of protected areas and natural forests within the protected areas of Xishuangbanna, southern China. There were 148 species in total, of which 98 were in forests and 55 in paddy fields. The abundance of birds in paddy fields was 176 per kilometer, which was much higher than the 60 per kilometer in forests. There were 26 law-protected species observed, half of which were found in each habitat. The main functional groups living in nature reserves are invertivores and frugivores, whereas paddy fields provide habitats for aquatic predator and granivore bird species. Our results indicate that paddy fields act as a refuge for wetland and grassland bird species when natural wetlands disappear, highlighting the urgent need to focus more on wetland protection and eco-friendly agricultural schemes at the landscape scale in future conservation policies.

4.
Plant Mol Biol ; 114(3): 62, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771394

RESUMO

Fusarium head blight (FHB) stands out as one of the most devastating wheat diseases and leads to significantly grain yield losses and quality reductions in epidemic years. Exploring quantitative trait loci (QTL) for FHB resistance is a critical step for developing new FHB-resistant varieties. We previously constructed a genetic map of unigenes (UG-Map) according to the physical positions using a set of recombinant-inbred lines (RILs) derived from the cross of 'TN18 × LM6' (TL-RILs). Here, the number of diseased spikelets (NDS) and relative disease index (RDI) for FHB resistance were investigated under four environments using TL-RILs, which were distributed across 13 chromosomes. A number of 36 candidate genes for NDS and RDI from of 19 stable QTLs were identified. The average number of candidate genes per QTL was 1.89, with 14 (73.7%), two (10.5%), and three (15.8%) QTLs including one, two, and 3-10 candidate genes, respectively. Among the 24 candidate genes annotated in the reference genome RefSeq v1.1, the homologous genes of seven candidate genes, including TraesCS4B02G227300 for QNds/Rdi-4BL-4553, TraesCS5B02G303200, TraesCS5B02G303300, TraesCS5B02G303700, TraesCS5B02G303800 and TraesCS5B02G304000 for QNds/Rdi-5BL-9509, and TraesCS7A02G568400 for QNds/Rdi-7AL-14499, were previously reported to be related to FHB resistance in wheat, barely or Brachypodium distachyon. These genes should be closely associated with FHB resistance in wheat. In addition, the homologous genes of five genes, including TraesCS1A02G037600LC for QNds-1AS-2225, TraesCS1D02G017800 and TraesCS1D02G017900 for QNds-1DS-527, TraesCS1D02G018000 for QRdi-1DS-575, and TraesCS4B02G227400 for QNds/Rdi-4BL-4553, were involved in plant defense responses against pathogens. These genes should be likely associated with FHB resistance in wheat.


Assuntos
Mapeamento Cromossômico , Resistência à Doença , Fusarium , Doenças das Plantas , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/microbiologia , Locos de Características Quantitativas/genética , Fusarium/fisiologia , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Genes de Plantas , Cromossomos de Plantas/genética
5.
Curr Microbiol ; 81(7): 191, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797770

RESUMO

A new isolate designated as 1XM1-14T was isolated from a tidal flat sediment of Xiamen Island. The yellow-pigmented colonies and rod-shaped cells were observed. Strain 1XM1-14T could hydrolyze Tweens 20, 40, 60, aesculin, and skim milk, and was chemoheterotrophic and mesophilic, required NaCl for the growth. The 16S rRNA gene-based phylogenetic analysis indicated that strain 1XM1-14T was the most closely related to Altererythrobacter epoxidivorans CGMCC 1.7731T (97.0%), followed by other type strain of the genus Altererythrobacter with identities below 97.0%. The DNA-DNA hybridization and average nucleotide identity values between strain 1XM1-14T and its relatives of the genus Altererythrobacter were below the respective thresholds for prokaryotic species demarcation. The phylogenomic inference further revealed that strain 1XM1-14T formed a separate branch distinct from the type strains of the recognized species within the genus Altererythrobacter. The major cellular fatty acids of strain 1XM1-14T were identified as summed feature 8 (C18:1 ω6c and/or C18:1 ω7c), C17:1 ω6c, and C16:0; the profile of polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, an unidentified glycolipid, and two unidentified lipids; the respiratory quinone was determined to ubiquinone-10. The genomic size and DNA G+C content of strain 1XM1-14T were 2.5 Mbp and 62.71%. The key carotenoid biosynthetic genes were determined in the genome of strain 1XM1-14T and the generated carotenoids were detected. The combined genotypic and phenotypic characteristics supported the classification of strain 1XM1-14T (= GDMCC 1.2383T = KCTC 82612T) as a novel species in the genus Altererythrobacter, for which the name Altererythrobacter litoralis sp. nov. is proposed.


Assuntos
Composição de Bases , Carotenoides , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Filogenia , RNA Ribossômico 16S , Carotenoides/metabolismo , RNA Ribossômico 16S/genética , Ácidos Graxos/metabolismo , DNA Bacteriano/genética , Sedimentos Geológicos/microbiologia , Técnicas de Tipagem Bacteriana , Genoma Bacteriano , Hibridização de Ácido Nucleico , Análise de Sequência de DNA , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Alphaproteobacteria/metabolismo , Fosfolipídeos/análise
6.
Heliyon ; 10(7): e28280, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560173

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) ravaged the world, and Coronavirus Disease 2019 (COVID-19) exhibited highly prevalent oral symptoms that had significantly impacted the lives of affected patients. However, the involvement of four human coronavirus (HCoVs), namely SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-229E, in oral cavity infections remained poorly understood. We integrated single-cell RNA sequencing (scRNA-seq) data of seven human oral tissues through consistent normalization procedure, including minor salivary gland (MSG), parotid gland (PG), tongue, gingiva, buccal, periodontium and pulp. The Seurat, scDblFinder, Harmony, SingleR, Ucell and scCancer packages were comprehensively used for analysis. We identified specific cell clusters and generated expression profiles of SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) in seven oral regions, providing direction for predicting the tropism of four HCoVs for oral tissues, as well as for dental clinical treatment. Based on our analysis, it appears that various SCARFs, including ACE2, ASGR1, KREMEN1, DPP4, ANPEP, CD209, CLEC4G/M, TMPRSS family proteins (including TMPRSS2, TMPRSS4, and TMPRSS11A), and FURIN, are expressed at low levels in the oral cavity. Conversely, BSG, CTSB, and CTSL exhibit enrichment in oral tissues. Our study also demonstrates widespread expression of restriction factors, particularly IFITM1-3 and LY6E, in oral cells. Additionally, some replication, assembly, and trafficking factors appear to exhibit broad oral tissues expression patterns. Overall, the oral cavity could potentially serve as a high-risk site for SARS-CoV-2 infection, while displaying a comparatively lower degree of susceptibility towards other HCoVs (including SARS-CoV, MERS-CoV and HCoV-229E). Specifically, MSG, tongue, and gingiva represent potential sites of vulnerability for four HCoVs infection, with the MSG exhibiting a particularly high susceptibility. However, the expression patterns of SCARFs in other oral sites demonstrate relatively intricate and may only be specifically associated with SARS-CoV-2 infection. Our study sheds light on the mechanisms of HCoVs infection in the oral cavity as well as gains insight into the characteristics and distribution of possible HCoVs target cells in oral tissues, providing potential therapeutic targets for HCoVs infection in the oral cavity.

7.
Front Genet ; 15: 1380828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680421

RESUMO

Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a persistent infectious disease threatening human health. The existing diagnostic methods still have significant shortcomings, including a low positivity rate in pathogen-based diagnoses and the inability of immunological diagnostics to detect active TB. Hence, it is urgent to develop new techniques to detect TB more accurate and earlier. This research aims to scrutinize and authenticate DNA methylation markers suitable for tuberculosis diagnosis. Concurrently, Providing a new approach for tuberculosis diagnosis. Methods: Blood samples from patients with newly diagnosed tuberculosis and healthy controls (HC) were utilized in this study. Examining methylation microarray data from 40 whole blood samples (22TB + 18HC), we employed two procedures: signature gene methylated position analysis and signature region methylated position analysis to pinpoint distinctive methylated positions. Based on the screening results, diagnostic classifiers are constructed through machine learning, and validation was conducted through pyrosequencing in a separate queue (22TB + 18HC). Culminating in the development of a new tuberculosis diagnostic method via quantitative real-time methylation specific PCR (qMSP). Results: The combination of the two procedures revealed a total of 10 methylated positions, all of which were located in the promoter region. These 10 signature methylated positions facilitated the construction of a diagnostic classifier, exhibiting robust diagnostic accuracy in both cross-validation and external test sets. The LDA model demonstrated the best classification performance, achieving an AUC of 0.83, specificity of 0.8, and sensitivity of 0.86 on the external test set. Furthermore, the validation of signature methylated positions through pyrosequencing demonstrated high agreement with screening outcomes. Additionally, qMSP detection of 2 potential hypomethylated positions (cg04552852 and cg12464638) exhibited promising results, yielding an AUC of 0.794, specificity of 0.720, and sensitivity of 0.816. Conclusion: Our study demonstrates that the validated signature methylated positions through pyrosequencing emerge as plausible biomarkers for tuberculosis diagnosis. The specific methylation markers in the TSPAN4 gene, identified in whole blood samples, hold promise for improving tuberculosis diagnosis. This approach could significantly enhance diagnostic accuracy and speed, offering a new avenue for early detection and treatment.

8.
Curr Ther Res Clin Exp ; 100: 100743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617895

RESUMO

Objective: This study aims to analyze a severe adverse reaction of pulmonary fibrosis induced by dronedarone hydrochloride tablets, and to provide a reference for clinical rational medication through drug precautions. Methods: A case of pulmonary fibrosis induced by dronedarone hydrochloride tablets, along with related literature was retrospectively analyzed. Results: Patients over 65 years old with a history of exposure to amiodarone may increase the incidence of pulmonary toxicity induced by dronedarone, and dronedarone should not be selected as a substitute treatment drug for patients with amiodarone-induced pulmonary toxicity. Conclusions: It is recommended that clinicians monitor the diffusion capacity of carbon monoxide and lung ventilation function of patients before and after using dronedarone for treatment. For patients with a history of amiodarone exposure, intermittent monitoring of chest X-rays and lung function is necessary. If lung function decreases, dronedarone should be immediately discontinued.

9.
Pathogens ; 13(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535561

RESUMO

Between 7 December 2022 and 28 February 2023, China experienced a new wave of COVID-19 that swept across the entire country and resulted in an increasing amount of respiratory infections and hospitalizations. The purpose of this study is to reveal the intensity and composition of coinfecting microbial agents. In total, 196 inpatients were recruited from The Third People's Hospital of Shenzhen, and 169 respiratory and 73 blood samples were collected for metagenomic next-generation sequencing. The total "Infectome" was characterized and compared across different groups defined by the SARS-CoV-2 detection status, age groups, and severity of disease. Our results revealed a total of 22 species of pathogenic microbes (4 viruses, 13 bacteria, and 5 fungi), and more were discovered in the respiratory tract than in blood. The diversity of the total infectome was highly distinguished between respiratory and blood samples, and it was generally higher in patients that were SARS-CoV-2-positive, older in age, and with more severe disease. At the individual pathogen level, HSV-1 seemed to be the major contributor to these differences observed in the overall comparisons. Collectively, this study reveals the highly complex respiratory infectome and high-intensity coinfection in patients admitted to the hospital during the period of the 2023 COVID-19 pandemic in China.

10.
J Chromatogr A ; 1720: 464813, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38490142

RESUMO

Estrogens and bisphenols are typical endocrine disruptors (EDs) that pose a potential hazard to the human body due to their widespread presence in aqueous environments. In this study, a ß-cyclodextrin porous crosslinked polymer (ß-CD-PCP) was prepared in-situ on a glass fiber surface by a nucleophilic substitution reaction. An effective and sensitive solid phase microextraction method using functionalized glass fiber with ß-CD-PCP coating as the adsorbent was established for the detection of 11 EDs in a water environment. The ß-CD-PCP was in-situ prepared on a glass fiber surface by a nucleophilic substitution reaction. The ß-CD-PCP successfully separated five estrogens (ESTs) and six bisphenols (BPs) through hydrophobic and π-π interactions. The conditions affecting extraction were optimized. Under the optimized conditions, the ESTs obtained a high enrichment effect (1795-2328), low limits of detection (0.047 µg L-1) and a good linearity range (0.2-15.0 µg L-1). Furthermore, the spiked recoveries of analyte ESTs in aqueous environments were between 82.9-115.7 %. The results indicated that the prepared functionalized glass fibers exhibited good adsorption properties, and the established analytical method was reliable for monitoring trace ESTs and BPs in aqueous environments.


Assuntos
Disruptores Endócrinos , Vidro , Humanos , Disruptores Endócrinos/análise , Água/química , Microextração em Fase Sólida/métodos , Estrogênios/análise
11.
Front Bioeng Biotechnol ; 12: 1349010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425995

RESUMO

Polyester plastics are widely used in daily life, but also cause a large amount of waste. Degradation by microbial enzymes is the most promising way for the biobased upcycling of the wastes. However, there is still a shortage of high-performance enzymes, and more efficient polyester hydrolases need to be developed. Here we identified two polyester hydrolases, jmPE13 and jmPE14, from a previously isolated strain Pseudomonas sp. JM16B3. The proteins were recombinantly expressed and purified in E. coli, and their enzymatic properties were characterized. JmPE13 and jmPE14 showed hydrolytic activity towards polyethylene terephthalate (PET) and Poly (butylene adipate-co-terephthalate) (PBAT) at medium temperatures. The enzyme activity and stability of jmPE13 were further improved to 3- and 1.5-fold, respectively, by rational design. The results of our research can be helpful for further engineering of more efficient polyester plastic hydrolases and their industrial applications.

12.
Front Immunol ; 15: 1341985, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352870

RESUMO

Introduction: The host immune response determines the differential outcome of acute or chronic viral infections. The comprehensive comparison of lymphoid tissue immune cells at the single-cell level between acute and chronic viral infections is largely insufficient. Methods: To explore the landscape of immune responses to acute and chronic viral infections, single-cell RNA sequencing(scRNA-seq), scTCR-seq and scBCR-seq were utilized to evaluate the longitudinal dynamics and heterogeneity of lymph node CD45+ immune cells in mouse models of acute (LCMV Armstrong) and chronic (LCMV clone 13) viral infections. Results: In contrast with acute viral infection, chronic viral infection distinctly induced more robust NK cells and plasma cells at the early stage (Day 4 post-infection) and acute stage (Day 8 post-infection), respectively. Moreover, chronic viral infection exerted decreased but aberrantly activated plasmacytoid dendritic cells (pDCs) at the acute phase. Simultaneously, there were significantly increased IgA+ plasma cells (MALT B cells) but differential usage of B-cell receptors in chronic infection. In terms of T-cell responses, Gzma-high effector-like CD8+ T cells were significantly induced at the early stage in chronic infection, which showed temporally reversed gene expression throughout viral infection and the differential usage of the most dominant TCR clonotype. Chronic infection also induced more robust CD4+ T cell responses, including follicular helper T cells (Tfh) and regulatory T cells (Treg). In addition, chronic infection compromised the TCR diversity in both CD8+ and CD4+ T cells. Discussion: In conclusion, gene expression and TCR/BCR immune repertoire profiling at the single-cell level in this study provide new insights into the dynamic and differential immune responses to acute and chronic viral infections.


Assuntos
Linfócitos T CD8-Positivos , Coriomeningite Linfocítica , Camundongos , Animais , Vírus da Coriomeningite Linfocítica , Infecção Persistente , Receptores de Antígenos de Linfócitos T , Linfonodos , Análise de Sequência de RNA
13.
Front Endocrinol (Lausanne) ; 15: 1335913, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38405156

RESUMO

Objective: The aim of this study is to determine the residual C-peptide level and to explore the clinical significance of preserved C-peptide secretion in glycemic control in Chinese individuals with type 1 diabetes (T1D). Research design and methods: A total of 534 participants with T1D were enrolled and divided into two groups, low-C-peptide group (fasting C-peptide ≤10 pmol/L) and preserved-C-peptide group (fasting C-peptide >10 pmol/L), and clinical factors were compared between the two groups. In 174 participants who were followed, factors associated with C-peptide loss were also identified by Cox regression. In addition, glucose metrics derived from intermittently scanned continuous glucose monitoring were compared between individuals with low C-peptide and those with preserved C-peptide in 178 participants. Results: The lack of preserved C-peptide was associated with longer diabetes duration, glutamic acid decarboxylase autoantibody, and higher daily insulin doses, after adjustment {OR, 1.10 [interquartile range (IQR), 1.06-1.14]; OR, 0.46 (IQR, 0.27-0.77); OR, 1.04 (IQR, 1.02-1.06)}. In the longitudinal analysis, the percentages of individuals with preserved C-peptide were 71.4%, 56.8%, 71.7%, 62.5%, and 22.2% over 5 years of follow-up. Preserved C-peptide was also associated with higher time in range after adjustment of diabetes duration [62.4 (IQR, 47.3-76.6) vs. 50.3 (IQR, 36.2-63.0) %, adjusted P = 0.003]. Conclusions: Our results indicate that a high proportion of Chinese patients with T1D had preserved C-peptide secretion. Meanwhile, residual C-peptide was associated with favorable glycemic control, suggesting the importance of research on adjunctive therapy to maintain ß-cell function in T1D.


Assuntos
Peptídeo C , Diabetes Mellitus Tipo 1 , Hiperinsulinismo , Humanos , Glicemia/análise , Automonitorização da Glicemia/métodos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hiperinsulinismo/tratamento farmacológico , Hipoglicemiantes/uso terapêutico
14.
Cell Death Dis ; 15(2): 171, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402183

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancer types, with a low 5-year survival rate of ~20%. Our prior research has suggested that DNA Polymerase iota (Pol ι), a member of Y-family DNA polymerase, plays a crucial role in the invasion and metastasis of ESCC. However, the underlying mechanism is not well understood. In this study, we utilized ChIP-PCR and luciferase reporter assays to investigate the binding of HIF-1α to the promoter of the Pol ι gene. Transwell, wound healing, and mouse models were employed to assess the impact of Pol ι and HIF-1α on the motility of ESCC cells. Co-immunoprecipitation and Western blot were carried out to explore the interaction between Pol ι and HIF-1α, while qRT-PCR and Western blot were conducted to confirm the regulation of Pol ι and HIF-1α on their downstream targets. Our results demonstrate that HIF-1α activates the transcription of the Pol ι gene in ESCC cells under hypoxic conditions. Furthermore, the knockdown of Pol ι impeded HIF-1α-induced invasion and metastasis. Additionally, we found that Pol ι regulates the expression of genes involved in epithelial-mesenchymal transition (EMT) and initiates EMT through the stabilization of HIF-1α. Mechanistically, Pol ι maintains the protein stability of HIF-1α by recruiting USP7 to mediate the deubiquitination of HIF-1α, with the residues 446-578 of Pol being crucial for the interaction between Pol ι and USP7. Collectively, our findings unveil a novel feedforward molecular axis of HIF-1α- Pol ι -USP7 in ESCC that contributes to ESCC metastasis. Hence, our results present an attractive target for intervention in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular , DNA Polimerase iota , Transição Epitelial-Mesenquimal/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Peptidase 7 Específica de Ubiquitina/metabolismo
16.
Heliyon ; 10(1): e23446, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163137

RESUMO

Background: Endoscopic nipple-sparing mastectomy (E-NSM) is a promising procedure in the treatment of breast cancer, but the limitations of endoscopic tools and intrinsic technical complexity of the technique hinder its applicability. Here, we introduce a novel surgery, gasless endoscopic transaxillary subcutaneous mastectomy and immediate reconstruction with implants (GETSMIRI), for breast cancer. and early effects. Methods: A retrospective analysis of the clinical data of 11 female patients, aged 50 (27-78) years, admitted to our hospital from January to December 2022, who underwent gasless endoscopic transaxillary subcutaneous mastectomy and immediate reconstruction with implants (GETSMIRI), was conducted. This study was designed to assess patient satisfaction before and after breast reconstruction, early complications, and breast function. Results: The tumors were all solitary, with a mean maximum diameter of 1.0 (0-2.0) cm and a mean distance of 2.3 (2-4) cm from the nipple, the mean intraoperative bleeding volume was 47.5 mL, and the mean hospital stay was 1.5 d. Postoperatively, 1 patient developed depigmentation of the nipple due to mild ischemia. There were no incisional complications, subcutaneous emphysema, infection, areola necrosis, skin flap necrosis, or removal of the prosthesis and/or patch. No tumor recurrence or metastasis was observed during the follow-up period. The difference between breast satisfaction and psychosocial health scores was not statistically significant (P = 0.680; P = 0.612). Conclusion: GETSMIRI, immediate implantable breast reconstruction, is less invasive than other such procedures, and short-term follow-up results show good postoperative satisfaction, making it an alternative surgical method.

17.
CNS Neurosci Ther ; 30(2): e14363, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37469216

RESUMO

AIMS: Acute kidney injury (AKI) has been associated with a variety of neurological problems, while the neurobiological mechanism remains unclear. In the present study, we utilized resting-state functional magnetic resonance imaging (rs-fMRI) to detect brain injury at an early stage and investigated the impact of microglia on the neuropathological mechanism of AKI. METHODS: Rs-fMRI data were collected from AKI rats and the control group with a 9.4-Tesla scanner at 24, 48, and 72 h post administration of contrast medium or saline. The amplitude of low-frequency fluctuations (ALFF) was then compared across the groups at each time course. Additionally, flow cytometry and SMART-seq2 were employed to evaluate microglia. Furthermore, pathological staining and Western blot were used to analyze the samples. RESULTS: MRI results revealed that AKI led to a decreased ALFF in the hippocampus, particularly in the 48 h and 72 h groups. Additionally, western blot suggested that AKI-induced the neuronal apoptosis at 48 h and 72 h. Flow cytometry and confocal microscopy images demonstrated that AKI activated the aggregation of microglia into neurons at 24 h, with a strong upregulation of M1 polarization at 48 h and peaking at 72 h, accompanying with the release of proinflammatory cytokines. The ALFF value was strongly correlated with the proportion of microglia (|r| > 0.80, p < 0.001). CONCLUSIONS: Our study demonstrated that microglia aggregation and inflammatory factor upregulation are significant mechanisms of AKI-induced neuronal apoptosis. We used fMRI to detect the alterations in hippocampal function, which may provide a noninvasive method for the early detection of brain injury after AKI.


Assuntos
Injúria Renal Aguda , Lesões Encefálicas , Ratos , Animais , Microglia , Hipocampo/diagnóstico por imagem , Apoptose , Injúria Renal Aguda/diagnóstico por imagem
18.
Technol Health Care ; 32(2): 695-704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37522232

RESUMO

BACKGROUND: Bone defects and deep periodontal pockets often exist distal to the second molar after mandibular third molar extraction, seriously threatening the periodontal health of the second molar. OBJECTIVE: To evaluate the effect of socket preservation with bone substitute materials on alveolar bone resorption and prevention of the distal periodontal defect of the adjacent tooth after mandibular impacted third molar extraction compared with natural healing. METHODS: Ninety-nine patients with mandibular impacted teeth, treated in our hospital from January 2018 to December 2020, were randomly divided into the control and experimental groups. The experimental group underwent minimally invasive tooth extraction and socket preservation using the deproteinised bovine bone mineral, Bio-Oss and the bioabsorbable collagen membrane, Bio-Gide. The control group healed naturally after minimally invasive tooth extraction. The alveolar ridge dimension of the extraction sites, the probing depth, tooth mobility and gingival index on the distal aspect of the mandibular second molars were examined and recorded before and six months after the operations. RESULTS: There was a significant difference between the experimental group and the control group in the alveolar bone width (P< 0.05) and height (P< 0.05) before and after surgery. The probing depth of the extraction sites in both groups was reduced. CONCLUSION: Using Bio-Oss and Bio-Gide to preserve extraction sites of impacted teeth can promote recovery more effectively than natural healing on the height of the distal alveolar bone and the width of the alveolar crest of the second molar and thus improve the periodontal status of the adjacent second molar.


Assuntos
Perda do Osso Alveolar , Dente Impactado , Humanos , Bovinos , Animais , Dente Serotino/cirurgia , Dente Impactado/cirurgia , Matriz Óssea , Minerais/uso terapêutico , Extração Dentária , Produtos Biológicos
19.
In Vivo ; 38(1): 134-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148077

RESUMO

BACKGROUND/AIM: As one of the common clinical diseases, fractures have many causes, mechanisms, healing and influencing factors; especially fracture healing is a long-term and complex process. Animal fracture models can simulate the various states of human fractures, and on this basis, the prevention, mechanism, and treatment of fractures can be studied to further guide clinical practice. MATERIALS AND METHODS: Here, we developed a novel and portable device to create a closed fracture model in mice. We then compared this novel closed fracture model with the traditional open model in multiple dimensions to evaluate the modelling process of establishment and healing. The two models were evaluated by imaging, immunostaining, and behavioral tests, which fully demonstrated the stability, universality and operability of the modified fracture model in mice. RESULTS: Surgical quality assessment revealed that the closed fracture model had a shorter operation time and smaller wound than the open model. X-ray and micro-CT results showed no differences between the two models in the evaluation of radiographic and morphological changes during fracture healing. Histological examination revealed the process of the typical intrachondral osteogenic pathway after fracture. Moreover, animal gait analysis indicated reduced postoperative pain in the closed group compared to the open group. CONCLUSION: This study provides a constructive strategy for a closed fracture model in mice and demonstrates the effectiveness and feasibility of the closed fracture model in studying the typical intrachondral osteogenic pathway of fractures from multiple dimensions.


Assuntos
Fraturas Ósseas , Fraturas Fechadas , Camundongos , Humanos , Animais , Fraturas Ósseas/diagnóstico por imagem , Consolidação da Fratura , Modelos Animais , Osteogênese , Resultado do Tratamento
20.
Front Microbiol ; 14: 1250151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075875

RESUMO

Quorum sensing (QS) is one of the most well-studied cell-to-cell communication mechanisms in microorganisms. This intercellular communication process in Saccharomyces cerevisiae began to attract more and more attention for researchers since 2006, and phenylethanol, tryptophol, and tyrosol have been proven to be the main quorum sensing molecules (QSMs) of S. cerevisiae. In this paper, the research history and hotspots of QS in S. cerevisiae are reviewed, in particular, the QS system of S. cerevisiae is introduced from the aspects of regulation mechanism of QSMs synthesis, influencing factors of QSMs production, and response mechanism of QSMs. Finally, the employment of QS in adaptation to stress, fermentation products increasing, and food preservation in S. cerevisiae was reviewed. This review will be useful for investigating the microbial interactions of S. cerevisiae, will be helpful for the fermentation process in which yeast participates, and will provide an important reference for future research on S. cerevisiae QS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA