Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Materials (Basel) ; 15(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36233993

RESUMO

Poor subgrade conditions usually induce various subgrade diseases in railways, leading to some adverse influences. An innovative technology that involves installing a prestressed reinforcement structure (PRS) that consists of steel bars and lateral pressure plates (LPP) for subgrade was introduced to improve its stress field and provide compulsive lateral deformation constraints for slope. In this study, an investigation into the dynamic acceleration responses of railway subgrade strengthened according to different PRS schemes was presented using a 1:5 scale model test, aiming to explore the effects of the axle load, the reinforcement pressure, and the loading cycles on the acceleration characteristics of the subgrade. The experimental results showed that (1) after pretension of the steel bar, prestress loss occurred due to the soil creep behavior and group anchor effect, so a moderate amount of over-tension in practices would be necessary; (2) a distinctive periodical behavior of subgrade subjected to the cyclic loads was observed, the horizontal accelerations were generally less than the vertical accelerations at the same measurement heights, and the vibration energy attenuated gradually from the shoulder to the toe along the slope; (3) in the short-term tests, the peak accelerations at all measurement points had a linear correlation with the axle load, and oppositely, it showed an approximately linear decrease with the increasing reinforcement pressure; And (4) in the long-term tests, to simulate the heavy haul wagon with a 35 t axle load, the variation in the effective acceleration with loading cycles under reinforcement pressure 100 kPa initially exhibited a decrease and subsequently tended to be stable, which is apparently less than that without reinforcement pressure. Consequently, it was demonstrated that the PRS itself and increasing reinforcement pressure can effectively mitigate the subgrade vibration, and provide an appropriate alternative to improve the dynamic performance of railway subgrade under the moving train loads.

2.
Materials (Basel) ; 14(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640109

RESUMO

Critical dynamic stress (σcri) and accumulative plastic strain (εp) are primary indicators regarding the dynamic stability of unbound granular materials (UGMs). This study aims to seek an effective method to evaluate the dynamic stability of UGMs used in railway subgrades. First, the dynamic characteristics of an UGM used in railway subgrade bed construction were investigated by performing a series of large-scale cyclic triaxial tests, with the results showing that εp versus cycle number (N) curves can be categorized into stable, failure, and critical patterns. Grey relational analyses were then established, where the analyzed results demonstrated that the εp-N curve pattern and final accumulative plastic strain (εs) of the stable curves are strongly correlated with the moisture content (w), confining pressure (σ3), and dynamic deviator stress (σd). The analyzed grey relational grades distributed in a narrow range of 0.72 to 0.81, indicating that w, σ3, and σd have similar degrees of importance on determining the εp-N curve patterns and the values of εs of the UGM. Finally, a data processing method using a back-propagation (BP) neural network is introduced to analyze the test data, and an empirical approach is developed to evaluate the σcri (considering the effects of σ3 and w) and εs (considering the effects of σ3, w, and σd) of the UGM. The analyzed results illustrated that the developed method can effectively reflect the linear/non-linear relationships of σcri and εs with respect to σ3 and/or σd. The σcri approximately increases linearly with increasing σ3, and a simple empirical formula is proposed for the σcri. In addition, εs and its variation rate increase non-linearly with increasing σd but decrease non-linearly as σ3 increases.

3.
Adv Mater ; 33(43): e2103923, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34510598

RESUMO

T cell activation-induced cell death (AICD) during tumor pathogenesis is a tumor immune escape process dependent on dendritic cells (DCs). Proper immune-modulatory therapies effectively inhibit tumor-specific CD8+ T cell exhaustion and enhance antitumor immune responses. Here, high-pressure homogenization is utilized to drive immunomodulator IL10-modified bacteria to extrude through the gap and self-assemble into bacterial biomimetic vesicles exposing IL10 (IL10-BBVs) on the surface with high efficiency. IL10-BBVs efficiently target DCs in tumor-draining lymph nodes and thus increase the interaction between IL10 on BBVs and IL10R on DCs to suppress AICD and mitigate CD8+ T cell exhaustion specific to tumor antigens. Two subcutaneous peripheral injections of IL10-BBVs 1 week apart in tumor-bearing mice effectively increase systemic and intratumoral proportions of CD8+ T cells to suppress tumor growth and metastasis. Tumor-specific antigen E7 is enclosed into the periplasm of IL10-BBVs (IL10-E7-BBVs) to realize concurrent actions of the immunomodulator IL10 and the tumor antigen human papillomavirus (HPV) 16E7 in lymph nodes, further enhancing the antitumor effects mediated by CD8+ T cells. The development of this modified BBV delivery platform will expand the application of bacterial membranes and provide novel immunotherapeutic strategies for tumor treatment.


Assuntos
Biomimética
4.
ACS Appl Mater Interfaces ; 13(28): 32703-32715, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34251169

RESUMO

Drug resistance of Klebsiella pneumoniae severely threatens human health. Overcoming the mechanisms of K. pneumoniae resistance to develop novel vaccines against drug-resistant K. pneumoniae is highly desired. Here, we report a technology platform that uses high pressure to drive drug-resistant K. pneumoniae to pass through a gap, inducing the formation of stable artificial bacterial biomimetic vesicles (BBVs). These BBVs had little to no bacterial intracellular protein or nucleic acid and had high yields. BBVs were efficiently taken up by dendritic cells to stimulate their maturation. BBVs as K. pneumoniae vaccines had the dual functions of inducing bacteria-specific humoral and cellular immune responses to increase animals' survival rate and reduce pulmonary inflammation and bacterial loads. We believe that BBVs are new-generation technology for bacterial vesicle preparation. Establishment of this BBV vaccine platform can maximally expand preparation technology for vaccines against drug-resistant K. pneumoniae.


Assuntos
Vacinas Bacterianas/uso terapêutico , Materiais Biomiméticos/uso terapêutico , Vesículas Extracelulares/imunologia , Infecções por Klebsiella/terapia , Klebsiella pneumoniae/imunologia , Animais , Vacinas Bacterianas/síntese química , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/toxicidade , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/toxicidade , Fracionamento Celular/métodos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Feminino , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Klebsiella pneumoniae/química , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Pressão
5.
ACS Appl Mater Interfaces ; 12(49): 54399-54414, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33215918

RESUMO

Tumor vaccines based on synthetic human papillomavirus (HPV) oncoprotein E7 and/or E6 peptides have shown encouraging results in preclinical model studies and human clinical trials. However, the clinical efficacy may be limited by the disadvantages of vulnerability to enzymatic degradation and low immunogenicity of peptides. To further improve the potency of vaccine, we developed a poly(lactide-co-glycolide)-acid (PLGA) nanoparticle, which encapsulated the antigenic peptide HPV16 E744-62, and used adenosine triphosphate (ATP), one of the most important intracellular metabolites and an endogenous extracellular danger signal for the immune system, as a new adjuvant component. The results showed that PLGA nanoparticles increased the in vivo stability, lymph node accumulation, and dendritic cell (DC) uptake of the E7 peptide; in addition, ATP further increased the migration, nanoparticle uptake, and maturation of DCs. Preventive immunization with ATP-adjuvanted nanoparticles completely abolished the growth of TC-1 tumors in mice and produced long-lasting immunity against tumor rechallenge. When tumors were fully established, therapeutic immunization with ATP-adjuvanted nanoparticles still significantly inhibited tumor progression. Mechanistically, ATP-adjuvanted nanoparticles significantly improved the systemic generation of antitumor effector cells, boosted the local functional status of these cells in tumors, and suppressed the generation and tumor infiltration of immunosuppressive Treg cells and myeloid-derived suppressor cells. These findings indicate that ATP is an effective vaccine adjuvant and that nanoparticles adjuvanted with ATP were able to elicit robust antitumor cellular immunity, which may provide a promising therapeutic vaccine candidate for the treatment of clinical malignancies, such as cervical cancer.


Assuntos
Trifosfato de Adenosina/metabolismo , Vacinas Anticâncer/imunologia , Imunidade Celular , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Neoplasias/terapia , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/imunologia , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Transplante Heterólogo
6.
Acta Biomater ; 108: 300-312, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32251780

RESUMO

Using monoclonal antibodies to block tumor angiogenesis has yielded effective antitumor effects. However, this treatment method has long cycles and is very expensive; therefore, its long-term and extensive application is limited. In this study, we developed a nanovaccine using bacterial biomembranes as carriers for antitumor therapy. The whole basic fibroblast growth factor (BFGF) molecule (154 amino acids (aa)) was loaded onto bacterial outer membrane vesicles (OMVs) using gene recombination technology. The strong adjuvant effect of OMVs was used to induce the host to produce anti-BFGF autoantibodies. We proved that persistent anti-BFGF autoantibodies can be induced in mice after only 3 immunizations to antagonize BFGF functions. The effects included multiple tumor suppression functions, including inhibition of tumor angiogenesis, induction of tumor cell apoptosis, reversal of tumor immune barriers, and promotion of tumor-specific cytotoxic T lymphocytes (CTLs), eventually causing tumor regression. We confirmed that bacterial biomembranes can be used as a vaccine delivery system to induce the production of antibodies against autoantigens, which may be used for tumor therapy. This study expands the application fields of bacterial biomembrane systems and provides insight for tumor immunotherapy other than monoclonal antibody technology. STATEMENT OF SIGNIFICANCE: In this study, we proved that bacteria-released outer membrane vesicles (OMVs) modified via genetic engineering can be used as a vaccine carrier to break autoimmune tolerance and induce the body to produce autoantibodies to antagonize pathological molecules and block pathological signaling pathways for tumor therapy. OMVs naturally released by bacteria were used to successfully load the full-length BFGF protein (154 aa). We proved that persistent anti-BFGF autoantibodies can be induced in tumor-bearing mice after only 3 immunizations to effectively inhibit tumors. Furthermore, the production of these antibodies successfully inhibited tumor angiogenesis, promoted tumor cell apoptosis, reversed the tumor immunosuppressive microenvironment, increased the cytotoxic T lymphocyte (CTL) reaction, and eventually inhibited tumor growth.


Assuntos
Autoanticorpos , Membrana Externa Bacteriana , Animais , Sistemas de Liberação de Medicamentos , Imunização , Imunoterapia , Camundongos
7.
Nanoscale ; 12(5): 3076-3089, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31965136

RESUMO

Human papillomavirus (HPV) is the identified causative agent of cervical cancer. Current therapeutic HPV vaccine candidates lack significant clinical efficacy, which can be attributed to insufficient activation of effector cells, lack of effective modification of the immunosuppressive tumor microenvironment, and the limitations of applied tumor models for preclinical vaccine evaluation. Here, a mouse model of orthotopic genital tumors was used to assess the effect of self-assembled nanofibers on eliciting a robust antitumor response via local mucosal immunization. A candidate vaccine was obtained by fusing HPV16 E744-62 to the self-assembling peptide Q11, which was assembled into nanofibers in a salt solution. Mice bearing an established genital TC-1 tumor were immunized with nanofibers through the intravaginal, intranasal, or subcutaneous route. Mucosal vaccination, especially via the intravaginal route, was more effective for suppressing tumor growth than subcutaneous immunization. The potential underlying mechanisms include promoting the systemic generation and tumor accumulation of antigen-specific cytotoxic T lymphocytes expressing high levels of interferon (IFN)-γ or granzyme-B, and reducing the tumor infiltration of immunosuppressive regulatory T cells and myeloid-derived suppressor cells. The levels of IFN-γ, the chemokines CXCL9 and CXCL10, and CXCR3+CD8+ T cells were significantly increased in tumor tissues, which may account for the improved recruitment of effector T cells into the tumor. Local mucosal immunization of nanofibers via the intravaginal route represents a new and promising vaccination strategy for the treatment of genital tumor lesions such as cervical cancer.


Assuntos
Vacinas Anticâncer/imunologia , Imunidade Celular , Imunização , Nanofibras , Neoplasias Experimentais/imunologia , Linfócitos T/imunologia , Neoplasias do Colo do Útero/imunologia , Animais , Linhagem Celular Tumoral , Citocinas/imunologia , Feminino , Camundongos , Neoplasias Experimentais/patologia , Proteínas E7 de Papillomavirus/imunologia , Peptídeos/imunologia , Linfócitos T/patologia , Neoplasias do Colo do Útero/patologia
8.
J Control Release ; 317: 1-22, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31738965

RESUMO

Conventionally used antibiotics are present in low concentrations at the infection site and require multiple administrations to sustain a continuous bactericidal effect, which not only increases their systemic toxicity but also results in bacterial drug resistance. In this study, we first identified an interesting drug resistance mechanism mediated by bacterial outer membrane vesicles (OMVs) and then designed novel antibiotic-loaded OMVs using this mechanism. We show that these antibiotic-loaded OMVs can effectively enter and kill pathogenic bacteria in vitro. In a mouse model of intestinal bacterial infection, one low-dose oral administration of antibiotic-loaded OMVs showed that the drug was retained in the intestine for 36 h, and no systemic spread was detected 12 h after drug administration. The antibiotic-loaded OMVs significantly reduced the bacterial load in the small intestine and feces of infected mice. Safety experiments confirmed that the antibiotic-loaded OMVs had excellent biocompatibility. This study extends the application range of OMVs and provides new ideas for the development of antibacterial drugs.


Assuntos
Vesículas Extracelulares , Preparações Farmacêuticas , Animais , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa , Farmacorresistência Bacteriana , Camundongos
9.
Int J Nanomedicine ; 14: 8209-8219, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632028

RESUMO

BACKGROUND: Vaccines are one of the most promising strategies for immunotherapy of HPV associated tumors; however, they generally lack significant clinical efficacy at present. This inefficacy might be due to inefficient generation of anti-tumor cellular immune responses. PURPOSE: This study aimed to assess the potential of using self-assembled nanofibers as a new vaccine platform to elicit potent HPV antigen - specific anti-tumor immunity. METHODS: A HPV16 E744-62 peptide was chemically appended to the N terminus of self-assembling peptide Q11. The nanofibers were prepared and used to immunize mice through a preventive or therapeutic strategy in a TC-1 graft tumor model. RESULTS: Preventive immunization with nanofibers almost completely suppressed the growth of primarily grafted TC-1 tumors and even a re-challenge of tumor cells after a six-week rest. Therapeutic immunization significantly increased the levels of effector Th1 cells, CTLs and the cytokines IFN-γ and TNF-α in E7 peptide-stimulated splenocytes, and the immunization reduced Th2, MDSC and IL-4 contents compared to the controls. The nanofiber immunization significantly suppressed the growth of established tumors and achieved 66.7% and 50% tumor-free in mice carrying 2-3 mm tumors and even larger tumors with a diameter of 5-6 mm respectively. In addition, the nanofibers were more efficient than the corresponding unassembled peptides for the treatment of established larger size tumors. CONCLUSION: The results indicated that self-assembling nanofibers could elicit robust HPV antigen -specific anti-tumor cellular immunity and are a potent antigen delivery system for HPV related tumor vaccines.


Assuntos
Vacinas Anticâncer/imunologia , Imunidade Celular , Nanofibras/química , Transplante de Neoplasias , Neoplasias/imunologia , Proteínas E7 de Papillomavirus/imunologia , Vacinas contra Papillomavirus/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Imunização , Camundongos Endogâmicos C57BL , Nanofibras/ultraestrutura , Neoplasias/patologia , Peptídeos/química , Linfócitos T Citotóxicos/imunologia , Células Th1/imunologia
10.
Front Microbiol ; 10: 1379, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275290

RESUMO

Acinetobacter baumannii often causes serious nosocomial infections. Because of its serious drug resistance problems, complex drug resistance mechanism, and rapid adaptation to antibiotics, it often shows pan-drug resistance and high fatality rates, which represent great challenges for clinical treatment. Therefore, identifying new ways to overcome antibiotic resistance is particularly important. In this study, mice immunized with A. baumannii outer membrane vesicles (AbOMVs) produced high IgG levels for a long time, and this antiserum significantly increased the small molecule intracellular aggregation rate and concentrations. In vitro experiments demonstrated that the combined used of anti-AbOMV serum and quinolone antibiotics significantly increased the sensitivity of the bacteria to these antibiotics. Mouse sepsis model experiments demonstrated that delivery of these antibodies using both active and passive immunization strategies significantly improved the susceptibility to quinolone antibiotics, improved the survival rate of mice infected with A. baumannii, and reduced the bacterial load in the organs. In a pneumonia model, the combination of serum anti-AbOMVs and levofloxacin improved levofloxacin sensitivity, which significantly reduced the bacterial loads in the lung and spleen compared with those of the antibiotic or antibody alone. This combination also significantly reduced lung inflammatory cell infiltration and inflammatory cytokine aggregation. In this study, the main protein targets that bound to these antibodies were identified. Structural modeling showed that seven of the proteins were porins. Therefore, we speculated that the anti-AbOMV antibodies mainly improved the intracellular aggregation of antibiotics by affecting porins, thus improving susceptibility to quinolone antibiotics. This study provides a method to improve susceptibility to existing antibiotics and a novel idea for the prevention and treatment of pan-drug-resistant A. baumannii.

11.
J Cell Mol Med ; 22(11): 5333-5345, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30079588

RESUMO

General control nondepressible 5 (GCN5), the first identified transcription-related lysine acetyltransferase (KAT), is an important catalytic component of a transcriptional regulatory SAGA (Spt-Ada-GCN5-Acetyltransferase) and ATAC (ADA2A-containing) complex. While GCN5 has been implicated in cancer development, its role in cervical cancer is not known. The human papillomavirus (HPV) oncoprotein E7 abrogates the G1 cell cycle checkpoint and induces genomic instability, which plays a central role in cervical carcinogenesis. In this study, we observed that GCN5 was up-regulated in HPV E7-expressing cells, knockdown of GCN5 inhibited cell cycle progression and DNA synthesis in HPV E7-expressing cells. Notably, GCN5 knockdown reduced the steady-state levels of transcription factor E2F1. Depletion of E2F1 caused G1 arrest while overexpression of E2F1 rescued the inhibitory effects of GCN5 knockdown on G1/S progression in HPV E7-expressing cells. Results from chromatin immunoprecipitation (ChIP) assays demonstrated that GCN5 bound to the E2F1 promoter and increased the extent of histone acetylation within these regions. GCN5 also acetylated c-Myc and increased its ability to bind to the E2F1 promoter. Knockdown of c-Myc reduced the steady-state levels of E2F1 and caused G1 arrest. These results revealed a novel mechanism of E7 function whereby elevated GCN5 acetylates histones and c-Myc to regulate E2F1 expression and cell cycle progression.


Assuntos
Fator de Transcrição E2F1/genética , Proteínas E7 de Papillomavirus/genética , Neoplasias do Colo do Útero/genética , Fatores de Transcrição de p300-CBP/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Instabilidade Genômica/genética , Humanos , Papillomaviridae/genética , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Proteínas Proto-Oncogênicas c-myc/genética , Ativação Transcricional/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
12.
Cell Death Dis ; 9(6): 583, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789527

RESUMO

Regulator of chromatin condensation 1 (RCC1) is a major guanine-nucleotide exchange factor for Ran GTPase and plays key roles in nucleo-cytoplasmic transport, mitosis, and nuclear envelope assembly. RCC1 is known to be a critical cell cycle regulator whose loss causes G1 phase arrest, but the molecular basis for this regulation is poorly understood. Furthermore, little is known about the relationship between RCC1 and carcinomas. Human papillomavirus (HPV) infection is highly associated with the development of cervical cancer. The expression and function of RCC1 in HPV-related cervical cancer and cell cycle regulation have not yet been explored. In this study, we first observed that RCC1 immunostaining was mildly increased in cervical cancer tissues and significantly upregulated in HPV E7-expressing cells; this localization was primarily nuclear. We showed that the transcription factor c-Jun transcriptionally upregulates RCC1 via a direct interaction with the RCC1 promoter. Moreover, siRNA-mediated knockdown of RCC1 inhibited G1/S cell cycle progression and DNA synthesis, while overexpression of RCC1 abrogated the G1 checkpoint. RCC1 knockdown downregulated the protein levels of the transcription factor E2F1, especially nuclear E2F1, by promoting its degradation in HPV E7-expressing cells. Overexpression of E2F1 rescued RCC1 knockdown-mediated inhibition of G1/S progression. Additionally, we showed that cyclin-dependent kinase 1 (Cdk1), a known target of E2F1, is involved in G1 checkpoint regulation, as Cdk1 knockdown hindered G1/S progression, while Cdk1 overexpression rescued RCC1 knockdown-mediated effect on G1 cell cycle progression. Furthermore, RCC1 knockdown reduced HPV E7 protein levels, which may in turn downregulate E2F1. Our study explores the function of RCC1 in G1/S cell cycle progression and suggests that RCC1 may be involved in HPV E7-mediated genomic instability.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Células 3T3 , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Replicação do DNA , Fator de Transcrição E2F1/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Camundongos , Proteínas Nucleares/genética , Proteólise , Regulação para Cima/genética , Neoplasias do Colo do Útero/virologia
13.
Cell Cycle ; 17(3): 300-308, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29157076

RESUMO

UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1) is an important epigenetic regulator that plays a part in DNA methylation, protein methylation and ubiquitination. It is also frequently overexpressed in many types of cancers, including cervical cancer, which is caused by human papillomavirus (HPV). In this study, we showed that UHRF1 was up-regulated in HPV oncogene E7 expressing cells and HPV-positive cervical cancer cells. We demonstrated that UHRF1 down-regulated the expression of UBE2L6 gene that encodes the ISG15-conjugating enzyme UbcH8. Overexpression of UHRF1 reduced UBE2L6 while knockdown UHRF1 elevated the expression of UBE2L6. We showed that UHRF1 regulated UBE2L6 gene by promoter hypermethylation in cervical cancer cells. Consistent with the functions of UHRF1, restored expression of UbcH8 induced apoptosis. These findings establish UBE2L6 as a novel target of UHRF1 that regulates the apoptosis function of UHRF1. Our studies suggest that UHRF1/ UbcH8 can be manipulated for therapy in cervical cancer.


Assuntos
Apoptose/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Regulação para Baixo/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Enzimas de Conjugação de Ubiquitina/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Sequência de Bases , Linhagem Celular Tumoral , Metilação de DNA/genética , Feminino , Células HeLa , Humanos , Proteínas E7 de Papillomavirus/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases , Regulação para Cima/genética
14.
Sci Rep ; 7(1): 2927, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592805

RESUMO

The human papillomavirus (HPV) plays a central role in cervical carcinogenesis and its oncogene E7 is essential in this process. We showed here that E7 abrogated the G1 cell cycle checkpoint under hypoxia and analyzed key cell cycle related proteins for their potential role in this process. To further explore the mechanism by which E7 bypasses hypoxia-induced G1 arrest, we applied a proteomic approach and used mass spectrometry to search for proteins that are differentially expressed in E7 expressing cells under hypoxia. Among differentially expressed proteins identified, Cdc6 is a DNA replication initiation factor and exhibits oncogenic activities when overexpressed. We have recently demonstrated that Cdc6 was required for E7-induced re-replication. Significantly, here we showed that Cdc6 played a role in E7-mediated G1 checkpoint abrogation under hypoxic condition, and the function could possibly be independent from its role in DNA replication initiation. This study uncovered a new function of Cdc6 in regulating cell cycle progression and has important implications in HPV-associated cancers.


Assuntos
Proteínas de Ciclo Celular/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Expressão Gênica , Hipóxia/genética , Proteínas Nucleares/genética , Proteínas E7 de Papillomavirus/genética , Proteínas de Ciclo Celular/metabolismo , Hipóxia Celular , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Células Epiteliais/metabolismo , Feminino , Humanos , Hipóxia/metabolismo , Proteínas Nucleares/metabolismo , Proteoma , Proteômica/métodos
15.
J Virol ; 90(13): 6071-6084, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27099318

RESUMO

UNLABELLED: The E7 oncoprotein of the high-risk human papillomavirus (HPV) plays a major role in HPV-induced carcinogenesis. E7 abrogates the G1 cell cycle checkpoint and induces genomic instability, but the mechanism is not fully understood. In this study, we performed RNA sequencing (RNA-seq) to characterize the transcriptional profile of keratinocytes expressing HPV 16 (HPV-16) E7. At the transcriptome level, 236 genes were differentially expressed between E7 and vector control cells. A subset of the differentially expressed genes, most of them novel to E7-expressing cells, was further confirmed by real-time PCR. Of interest, the activities of multiple transcription factors were altered in E7-expressing cells. Through bioinformatics analysis, pathways altered in E7-expressing cells were investigated. The upregulated genes were enriched in cell cycle and DNA replication, as well as in the DNA metabolic process, transcription, DNA damage, DNA repair, and nucleotide metabolism. Specifically, we focused our studies on the gene encoding WDHD1 (WD repeat and high mobility group [HMG]-box DNA-binding protein), one of the genes that was upregulated in E7-expressing cells. WDHD1 is a component of the replisome that regulates DNA replication. Recent studies suggest that WDHD1 may also function as a DNA replication initiation factor as well as a G1 checkpoint regulator. We found that in E7-expressing cells, the steady-state level of WDHD1 protein was increased along with the half-life. Moreover, downregulation of WDHD1 reduced E7-induced G1 checkpoint abrogation and rereplication, demonstrating a novel function for WDHD1. These studies shed light on mechanisms by which HPV induces genomic instability and have therapeutic implications. IMPORTANCE: The high-risk HPV types induce cervical cancer and encode an E7 oncoprotein that plays a major role in HPV-induced carcinogenesis. However, the mechanism by which E7 induces carcinogenesis is not fully understood; specific anti-HPV agents are not available. In this study, we performed RNA-seq to characterize transcriptional profiling of keratinocytes expressing HPV-16 E7 and identified more than 200 genes that were differentially expressed between E7 and vector control cells. Through bioinformatics analysis, pathways altered in E7-expressing cells were identified. Significantly, the WDHD1 gene, one of the genes that is upregulated in E7-expressing cells, was found to play an important role in E7-induced G1 checkpoint abrogation and rereplication. These studies shed light on mechanisms by which HPV induces genomic instability and have therapeutic implications.


Assuntos
Carcinogênese , Proteínas de Ligação a DNA/metabolismo , Papillomavirus Humano 16/fisiologia , Queratinócitos/virologia , Proteínas E7 de Papillomavirus/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Biologia Computacional , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Perfilação da Expressão Gênica , Instabilidade Genômica , Meia-Vida , Papillomavirus Humano 16/genética , Humanos , Redes e Vias Metabólicas/genética , Proteínas E7 de Papillomavirus/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA