Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
PLoS One ; 19(2): e0292469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319930

RESUMO

In environmentally sensitive areas, especially the arid and semi-arid regions, the greening stability process and its influencing factors can directly affect the sustainable development of the ecological environment. In this study, multi-source remote sensing data such as land use/cover data, MODIS NDVI, and soil moisture, methods such as stability index, vegetation quantitative remote sensing, and Geodetector were employed to analyze the sustainability of the greening process in the Mu Us Sandy in 2000-2020, which were viewed from three aspects: changes in stability of land use types and function, soil moisture change and influencing factors on greening stability. The results showed that, (1) From the stability of land use types, continuous stable ecological land accounted for more than 50%, showing that decreased from northwest toward southeast. (2) From the functional stability, NDVI showed a fluctuated growth (0.035/a), with an increasing distribution pattern from northwest to southeast. Additionally, Vegetation changes were unstable and concentrated in the western part of the study area (OtogBanner and Otog Front Banner), while the eastern part was stable, in which vegetation improvement took the main position. Moreover, mobile dunes almost disappeared, and semi-fixed dunes decreased and gradually shrank to the west of the sandy area, while fixed dunes soared and were concentrated in the middle of the sandy land. (3) From the soil moisture change, soil moisture at different underground depths showed an overall increasing trend, but the deep soil moisture was higher than the shallow, and spatial distribution varied greatly. (4) From the influencing factors, natural factors significantly influence greening stability, among which precipitation had a particularly profound impact, and interactions with other natural and social factors were higher explanatory. The paper aims to explore whether the ecological environment is developing in a good and orderly direction in the Mu Us Sandy Land, and the potential factors that cause its changes, to provide a theoretical basis for scientific governance in the Mu Us Sandy Land and other arid and semi-arid areas in the future.


Assuntos
Areia , Solo , Clima Desértico , Desenvolvimento Sustentável , China , Ecossistema
2.
Nat Commun ; 14(1): 6463, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833261

RESUMO

The persistent pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants accentuates the great demand for developing effective therapeutic agents. Here, we report the development of an orally bioavailable SARS-CoV-2 3C-like protease (3CLpro) inhibitor, namely simnotrelvir, and its preclinical evaluation, which lay the foundation for clinical trials studies as well as the conditional approval of simnotrelvir in combination with ritonavir for the treatment of COVID-19. The structure-based optimization of boceprevir, an approved HCV protease inhibitor, leads to identification of simnotrelvir that covalently inhibits SARS-CoV-2 3CLpro with an enthalpy-driven thermodynamic binding signature. Multiple enzymatic assays reveal that simnotrelvir is a potent pan-CoV 3CLpro inhibitor but has high selectivity. It effectively blocks replications of SARS-CoV-2 variants in cell-based assays and exhibits good pharmacokinetic and safety profiles in male and female rats and monkeys, leading to robust oral efficacy in a male mouse model of SARS-CoV-2 Delta infection in which it not only significantly reduces lung viral loads but also eliminates the virus from brains. The discovery of simnotrelvir thereby highlights the utility of structure-based development of marked protease inhibitors for providing a small molecule therapeutic effectively combatting human coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Feminino , Masculino , Animais , Humanos , Ratos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Inibidores de Proteases/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Inibidores Enzimáticos
3.
J Mol Cell Cardiol ; 185: 13-25, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871528

RESUMO

BACKGROUND: Epoxyeicosatrienoic acids (EETs), which exert multiple endogenous protective effects, are hydrolyzed into less active dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). However, commercial drugs related to EETs or sEH are not yet in clinical use. METHODS: Firstly, the plasma concentration of EETs and DHETs of 316 patients with heart failure (HF) were detected and quantitated by liquid chromatography-tandem mass spectrometry. Then, transverse aortic constriction (TAC)-induced HF was introduced in cardiomyocyte-specific Ephx2-/- mice. Moreover, Western blot, real-time PCR, luciferase reporter, ChIP assays were employed to explore the underlying mechanism. Finally, multiple sEH inhibitors were designed, synthesized, and validated in vitro and in vivo. RESULTS: The ratios of DHETs/EETs were increased in the plasma from patients with HF. Meanwhile, the expression of sEH was upregulated in the heart of patients and mice with HF, especially in cardiomyocytes. Cardiomyocyte-specific Ephx2-/- mice ameliorated cardiac dysfunction induced by TAC. Consistently, Ephx2 knockdown protected Angiotensin II (AngII)-treated cardiomyocytes via increasing EETs in vitro. Mechanistically, AngII could enhance the expression of transcript factor Krüppel-like factor 15 (KLF15), which in turn upregulated sEH. Importantly, glimepiride was identified as a novel sEH inhibitor, which benefited from the elevated EETs during HF. CONCLUSIONS: Glimepiride attenuates HF in mice in part by increasing EETs. CLINICAL TRIAL IDENTIFIER: NCT03461107 (https://clinicaltrials.gov).


Assuntos
Epóxido Hidrolases , Insuficiência Cardíaca , Humanos , Camundongos , Animais , Insuficiência Cardíaca/tratamento farmacológico , Eicosanoides/metabolismo , Coração
4.
Bioorg Med Chem ; 87: 117316, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37187077

RESUMO

In this paper, a series of peptidomimetic SARS-CoV-2 3CL protease inhibitors with new P2 and P4 positions were synthesized and evaluated. Among these compounds, 1a and 2b exhibited obvious 3CLpro inhibitory activities with IC50 of 18.06 nM and 22.42 nM, respectively. 1a and 2b also showed excellent antiviral activities against SARS-CoV-2 in vitro with EC50 of 313.0 nM and 170.2 nM, respectively, the antiviral activities of 1a and 2b were 2- and 4-fold better than that of nirmatrelvir, respectively. In vitro studies revealed that these two compounds had no significant cytotoxicity. Further metabolic stability tests and pharmacokinetic studies showed that the metabolic stability of 1a and 2b in liver microsomes was significantly improved, and 2b had similar pharmacokinetic parameters to that of nirmatrelvir in mice.


Assuntos
COVID-19 , Peptidomiméticos , Animais , Camundongos , Inibidores de Proteases/farmacologia , Peptidomiméticos/farmacologia , SARS-CoV-2 , Nitrilas , Antivirais/farmacologia
5.
Eur J Med Chem ; 257: 115512, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37253309

RESUMO

A series of peptidomimetic compounds containing benzothiazolyl ketone and [2.2.1] azabicyclic ring was designed, synthesized and evaluated in the hope of obtaining potent oral 3CLpro inhibitors with improved pharmacokinetic properties. Among the target compounds, 11b had the best enzymatic potency (IC50 = 0.110 µM) and 11e had the best microsomal stability (t1/2 > 120 min) and good enzyme activity (IC50 = 0.868 µM). Therefore, compounds 11b and 11e were chosen for further evaluation of pharmacokinetics in ICR mice. The results exhibited that the AUC(0-t) of 11e was 5143 h*ng/mL following single-dose oral administration of 20 mg/kg, and the F was 67.98%. Further structural modification was made to obtain compounds 11g-11j based on 11e. Among them, 11j exhibited the best enzyme inhibition activity against SARS-CoV-2 3CLpro (IC50 = 1.646 µM), the AUC(0-t) was 32473 h*ng/mL (20 mg/kg, po), and the F was 48.1%. In addition, 11j displayed significant anti-SARS-CoV-2 activity (EC50 = 0.18 µM) and low cytotoxicity (CC50 > 50 µM) in Vero E6 cells. All of the above results suggested that compound 11j was a promising lead compound in the development of oral 3CLpro inhibitors and deserved further research.


Assuntos
COVID-19 , Peptidomiméticos , Animais , Camundongos , Peptidomiméticos/farmacologia , Peptidomiméticos/química , SARS-CoV-2 , Inibidores de Proteases/química , Cetonas , Camundongos Endogâmicos ICR , Antivirais/química
6.
J Clin Invest ; 133(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36976648

RESUMO

Neural differentiation, synaptic transmission, and action potential propagation depend on membrane sphingolipids, whose metabolism is tightly regulated. Mutations in the ceramide transporter CERT (CERT1), which is involved in sphingolipid biosynthesis, are associated with intellectual disability, but the pathogenic mechanism remains obscure. Here, we characterize 31 individuals with de novo missense variants in CERT1. Several variants fall into a previously uncharacterized dimeric helical domain that enables CERT homeostatic inactivation, without which sphingolipid production goes unchecked. The clinical severity reflects the degree to which CERT autoregulation is disrupted, and inhibiting CERT pharmacologically corrects morphological and motor abnormalities in a Drosophila model of the disease, which we call ceramide transporter (CerTra) syndrome. These findings uncover a central role for CERT autoregulation in the control of sphingolipid biosynthetic flux, provide unexpected insight into the structural organization of CERT, and suggest a possible therapeutic approach for patients with CerTra syndrome.


Assuntos
Ceramidas , Esfingolipídeos , Humanos , Ceramidas/metabolismo , Homeostase , Mutação , Esfingolipídeos/genética , Esfingolipídeos/metabolismo
7.
J Clin Invest ; 132(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35917186

RESUMO

Autism spectrum disorder (ASD) represents a group of neurodevelopmental phenotypes with a strong genetic component. An excess of likely gene-disruptive (LGD) mutations in GIGYF1 was implicated in ASD. Here, we report that GIGYF1 is the second-most mutated gene among known ASD high-confidence risk genes. We investigated the inheritance of 46 GIGYF1 LGD variants, including the highly recurrent mutation c.333del:p.L111Rfs*234. Inherited GIGYF1 heterozygous LGD variants were 1.8 times more common than de novo mutations. Among individuals with ASD, cognitive impairments were less likely in those with GIGYF1 LGD variants relative to those with other high-confidence gene mutations. Using a Gigyf1 conditional KO mouse model, we showed that haploinsufficiency in the developing brain led to social impairments without significant cognitive impairments. In contrast, homozygous mice showed more severe social disability as well as cognitive impairments. Gigyf1 deficiency in mice led to a reduction in the number of upper-layer cortical neurons, accompanied by a decrease in proliferation and increase in differentiation of neural progenitor cells. We showed that GIGYF1 regulated the recycling of IGF-1R to the cell surface. KO of GIGYF1 led to a decreased level of IGF-1R on the cell surface, disrupting the IGF-1R/ERK signaling pathway. In summary, our findings show that GIGYF1 is a regulator of IGF-1R recycling. Haploinsufficiency of GIGYF1 was associated with autistic behavior, likely through interference with IGF-1R/ERK signaling pathway.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Camundongos , Neurônios/metabolismo , Fenótipo , Transdução de Sinais
8.
J Genet Genomics ; 49(9): 881-890, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35331928

RESUMO

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders that cause severe social, communication, and behavioral problems. Recent studies show that the variants of a histone methyltransferase gene KMT5B cause neurodevelopmental disorders (NDDs), including ASD, and the knockout of Kmt5b in mice is embryonic lethal. However, the detailed genotype-phenotype correlations and functional effects of KMT5B in neurodevelopment are unclear. By targeted sequencing of a large Chinese ASD cohort, analyzing published genome-wide sequencing data, and mining literature, we curated 39 KMT5B variants identified from NDD individuals. A genotype-phenotype correlation analysis for 10 individuals with KMT5B pathogenic variants reveals common symptoms, including ASD, intellectual disability, languages problem, and macrocephaly. In vitro knockdown of the expression of Kmt5b in cultured mouse primary cortical neurons leads to a decrease in neuronal dendritic complexity and an increase in dendritic spine density, which can be rescued by expression of human KMT5B but not that of pathogenic de novo missense mutants. In vivo knockdown of the Kmt5b expression in the mouse embryonic cerebral cortex by in utero electroporation results in decreased proliferation and accelerated migration of neural progenitor cells. Our findings reveal essential roles of histone methyltransferase KMT5B in neuronal development, prenatal neurogenesis, and neuronal migration.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Feminino , Histona Metiltransferases , Humanos , Deficiência Intelectual/genética , Camundongos , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Gravidez
9.
J Cell Mol Med ; 25(17): 8432-8441, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302427

RESUMO

High myopia is one of the leading causes of visual impairment worldwide with high heritability. We have previously identified the genetic contribution of SLC39A5 to nonsyndromic high myopia and demonstrated that disease-related mutations of SLC39A5 dysregulate the TGF-ß pathway. In this study, the mechanisms underlying SLC39A5 involvement in the pathogenesis of high myopia are determined. We observed the morphogenesis and migration abnormalities of the SLC39A5 knockout (KO) human embryonic kidney cells (HEK293) and found a significant injury of ECM constituents. RNA-seq and qRT-PCR revealed the transcription decrease in COL1A1, COL2A1, COL4A1, FN1 and LAMA1 in the KO cells. Further, we demonstrated that TGF-ß signalling, the regulator of ECM, was inhibited in SLC39A5 depletion situation, wherein the activation of receptor Smads (R-Smads) via phosphorylation was greatly blocked. SLC39A5 re-expression reversed the phenotype of TGF-ß signalling and ECM synthesis in the KO cells. The fact that TGF-ß signalling was zinc-regulated and that SLC39A5 was identified as a zinc transporter urged us to check the involvement of intracellular zinc in TGF-ß signalling impairment. Finally, we determined that insufficient zinc chelation destabilized Smad proteins, which naturally inhibited TGF-ß signalling. Overall, the SLC39A5 depletion-induced zinc deficiency destabilized Smad proteins, which inhibited the TGF-ß signalling and downstream ECM synthesis, thus contributing to the pathogenesis of high myopia. This discovery provides a deep insight into myopic development.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Matriz Extracelular/metabolismo , Miopia/metabolismo , Proteínas Smad/metabolismo , Zinco/metabolismo , Células HEK293 , Humanos , Mutação
10.
Hum Genet ; 140(4): 579-592, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33048237

RESUMO

We aimed to detect the causative gene in five unrelated families with recessive inheritance pattern neurological disorders involving the central nervous system, and the potential function of the NEMF gene in the central nervous system. Exome sequencing (ES) was applied to all families and linkage analysis was performed on family 1. A minigene assay was used to validate the splicing effect of the relevant discovered variants. Immunofluorescence (IF) experiment was performed to investigate the role of the causative gene in neuron development. The large consanguineous family confirms the phenotype-causative relationship with homozygous frameshift variant (NM_004713.6:c.2618del) as revealed by ES. Linkage analysis of the family showed a significant single-point LOD of 4.5 locus. Through collaboration in GeneMatcher, four additional unrelated families' likely pathogenic NEMF variants for a spectrum of central neurological disorders, two homozygous splice-site variants (NM_004713.6:c.574+1G>T and NM_004713.6:c.807-2A>C) and a homozygous frameshift variant (NM_004713.6: c.1234_1235insC) were subsequently identified and segregated with all affected individuals. We further revealed that knockdown (KD) of Nemf leads to impairment of axonal outgrowth and synapse development in cultured mouse primary cortical neurons. Our study demonstrates that disease-causing biallelic NEMF variants result in central nervous system impairment and other variable features. NEMF is an important player in mammalian neuron development.


Assuntos
Antígenos de Neoplasias/genética , Axônios , Doenças do Sistema Nervoso Central/genética , Mutação com Perda de Função , Proteínas de Transporte Nucleocitoplasmático/genética , Polineuropatias/genética , Adolescente , Adulto , Alelos , Animais , Encéfalo/metabolismo , Células Cultivadas , Consanguinidade , Feminino , Perfilação da Expressão Gênica , Genes Recessivos , Homozigoto , Humanos , Masculino , Camundongos Endogâmicos C57BL , Linhagem , RNA-Seq , Sequenciamento do Exoma , Adulto Jovem
11.
J Clin Gastroenterol ; 55(2): 159-168, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122601

RESUMO

INTRODUCTION: The aim of this study was to evaluate the effectiveness of nonsurgical secondary prophylaxis interventions for esophageal varices (EV) rebleeding in cirrhotic patients using network meta-analysis. MATERIALS AND METHODS: Secondary prophylaxis of EV rebleeding in cirrhosis is searched on PubMed, Embase, and the Cochrane Library databases. The quality of literatures was extracted by 2 independent investigators according to the requirements of Cochrane Handbook for Systematic Reviews of Interventions, Version 5.0.0. Meta-analysis was performed on Review Manager 5.3 software for the incidence of cirrhosis EV rebleeding, rebleeding-related mortality, and overall mortality; and STATA 15.1 software was used for network meta-analysis. RESULTS: In all, 57 randomized controlled trials were reviewed. Endoscopic band ligation (EBL)+argon plasma coagulation has not been recommended by guidelines, and it is rarely used; the number of existing studies and the sample size are small. Considering poor stability of the combined results, these studies were excluded; 55 literatures were included. In terms of reducing the incidence of rebleeding, transjugular intrahepatic portosystemic shunt (TIPS) surface under the cumulative ranking curve (SUCRA) (94.3%) was superior to EBL+endoscopic injection sclerotherapy (EIS) (84.4%), EIS+ß-blockers (77.9%), EBL (59.8%), EBL+ß-blockers+isosorbide-5-mononitrate (52.7%), EBL+ß-blockers (51.4%), EIS (34.2%), ß-blockers+isosorbide-5-mononitrate (23.7%), ß-blockers (20.8%), and placebo (0.8%). In reducing rebleeding-related mortality, TIPS SUCRA (87.2%) was more efficacious than EBL+EIS (83.5%), EIS (47.9%), EBL+ß-blockers (47.4%), ß-blockers (41.8%), EBL (34.5%), and placebo (7.6%). In reducing overall mortality, TIPS SUCRA (81.1%) was superior to EBL+EIS (68.9%), EIS+ß-blockers (59.2%), EBL+ß-blockers (55.4%), EIS (48.8%), EBL (48.7%), ß-blockers (34.2%), placebo (3.6%). CONCLUSIONS: TIPS was more effective in reducing the incidence of cirrhosis EV rebleeding, rebleeding-related mortality, and overall mortality in cirrhosis. Combined with the above results, TIPS is more likely to be recommended as a secondary prophylaxis intervention for EV in cirrhosis.


Assuntos
Varizes Esofágicas e Gástricas , Derivação Portossistêmica Transjugular Intra-Hepática , Humanos , Varizes Esofágicas e Gástricas/etiologia , Varizes Esofágicas e Gástricas/prevenção & controle , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/prevenção & controle , Ligadura , Cirrose Hepática/complicações , Metanálise em Rede , Escleroterapia , Prevenção Secundária
12.
Am J Hum Genet ; 107(5): 963-976, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157009

RESUMO

NCKAP1/NAP1 regulates neuronal cytoskeletal dynamics and is essential for neuronal differentiation in the developing brain. Deleterious variants in NCKAP1 have been identified in individuals with autism spectrum disorder (ASD) and intellectual disability; however, its clinical significance remains unclear. To determine its significance, we assemble genotype and phenotype data for 21 affected individuals from 20 unrelated families with predicted deleterious variants in NCKAP1. This includes 16 individuals with de novo (n = 8), transmitted (n = 6), or inheritance unknown (n = 2) truncating variants, two individuals with structural variants, and three with potentially disruptive de novo missense variants. We report a de novo and ultra-rare deleterious variant burden of NCKAP1 in individuals with neurodevelopmental disorders which needs further replication. ASD or autistic features, language and motor delay, and variable expression of intellectual or learning disability are common clinical features. Among inherited cases, there is evidence of deleterious variants segregating with neuropsychiatric disorders. Based on available human brain transcriptomic data, we show that NCKAP1 is broadly and highly expressed in both prenatal and postnatal periods and demostrate enriched expression in excitatory neurons and radial glias but depleted expression in inhibitory neurons. Mouse in utero electroporation experiments reveal that Nckap1 loss of function promotes neuronal migration during early cortical development. Combined, these data support a role for disruptive NCKAP1 variants in neurodevelopmental delay/autism, possibly by interfering with neuronal migration early in cortical development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Deficiências da Aprendizagem/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adolescente , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Criança , Feminino , Expressão Gênica , Genótipo , Células HEK293 , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Deficiências da Aprendizagem/diagnóstico , Deficiências da Aprendizagem/patologia , Masculino , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Fenótipo , Gravidez , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Adulto Jovem
13.
J Mol Neurosci ; 70(12): 2085-2092, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32524419

RESUMO

TBL1XR1 is a member of the WD40 repeat-containing gene family. Mutations of TBL1XR1 have been reported in neurodevelopmental disorders (NDDs). Although the phenotypes of some patients have been described in single studies, few studies have reviewed the genotype and phenotype relationships using a relatively large cohort of patients with TBL1XR1 mutations. Herein, we report a new de novo frameshift mutation in TBL1XR1 (NM_024665.4, c.388_389delAC, p.T130Sfs*14) in a patient with autism spectrum disorder (ASD). To explore the correlations between genotypes and phenotypes for TBL1XR1 in NDDs, we manually curated and analyzed 38 variants and the associated phenotypes from 50 individuals with NDDs. TBL1XR1 mutations lead to a wide range of phenotypic defects. We conclude that the most common phenotypes associated with TBL1XR1 mutations were language and motor developmental delay, intellectual disabilities, facial deformity, hypotonia, and microcephaly. Our study provides a comprehensive spectrum of neurodevelopmental phenotypes caused by TBL1XR1 mutations, which is important for genetic diagnosis and precision clinical management.


Assuntos
Transtorno do Espectro Autista/genética , Fenótipo , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Transtorno do Espectro Autista/patologia , Criança , Mutação da Fase de Leitura , Genótipo , Humanos , Masculino
14.
Bioorg Med Chem ; 28(7): 115377, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32081629

RESUMO

High-level of sialic acid (SA) expression on the surface of cancer cells is observed extremely common. Phenylboronic acids (PBAs) have a high affinity with SA. The cellular uptake efficiency could be enhanced by the strategy of introducing PBA fragments to the compounds. In this work, we synthesized five new probes with the Dicyanomethylene-4H-pyran (DCM) fluorophore, three of them conjugated with different phenylboronic acid fragments. By cellular uptake experiments, DLCB and DLAB showed enhanced cellular uptake abilities compared with DLN and DLO. These two effective phenylboronic acid fragments were then conjugated with SN-38 and the conjugates showed enhanced cellular uptake abilities by 3-fold or 7-fold compared with irinotecan. In summary, the strategy of introducing 4-carboxyphenylboronic acid and 3-amino-benzoxaborole groups shows great potential in drug delivery system. Moreover, the released linkers between boric acid and drugs deserve further studies.


Assuntos
Antineoplásicos/metabolismo , Ácidos Borônicos/química , Desenho de Fármacos , Irinotecano/metabolismo , Piranos/química , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacologia , Transporte Biológico , Proliferação de Células/efeitos dos fármacos , Corantes Fluorescentes , Células Hep G2 , Humanos , Irinotecano/química , Estrutura Molecular
15.
ACS Omega ; 5(1): 350-357, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956782

RESUMO

7-Ethyl-10-hydroxycamptothecin (SN38) and vorinostat (SAHA) are quite promising combination therapy agents applied to the clinical treatment of cancer. In this study, we designed and synthesized a series of novel SN38-SAHA co-prodrugs, which were conjugated by four different amino acids including glycine, alanine, aminobutyric acid, and 6-aminocaproic acid. The hydrolytic reconversion rate to SN38 and SAHA critically depended on the carbon chain length, which were evaluated in PBS (pH 6.0/7.4) and plasma (human/mouse). With decreasing amino acid chain length, the hydrolytic reconversion rate increased gradually. The in vitro cytotoxicity test was evaluated by the sulforhodamine B (SRB) assay on the human lung adenocarcinoma cell line A549 and human colorectal cancer cell line HCT116. With the evaluation of stability and in vitro cytotoxicity, an appropriate linker was found, and the active drug can be released efficiently from compound 3a, which exhibited strong antiproliferative activity in A549 and HCT-116 cell lines correspondingly. These results indicated that the well-designed co-prodrug 3a and this kind of strategy can be a promising approach for anticancer therapy.

16.
Sci Adv ; 5(9): eaax2166, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31579823

RESUMO

RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neurodevelopmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely gene-disrupting variants in CSDE1 (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITS-CLIP revealed that Csde1-binding targets are enriched in autism-associated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity-related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in Drosophila result in defects in synapse growth and synaptic transmission. Our study defines a new autism-related syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission.


Assuntos
Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença , Variação Genética , Neurogênese/genética , Proteínas de Ligação a RNA/genética , Transmissão Sináptica/genética , Adolescente , Animais , Transtorno Autístico/psicologia , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Estudos de Associação Genética , Loci Gênicos , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Linhagem , Fenótipo , Proteínas de Ligação a RNA/metabolismo , Sinapses/genética , Sinapses/metabolismo , Adulto Jovem
17.
Eur J Med Chem ; 176: 419-430, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31125896

RESUMO

Lenalidomide and its analogs have exhibited extensive anti-tumor, anti-inflammatory and immunomodulatory properties in pharmaceutical research. In this work, a series of novel thioether-containing lenalidomide analogs were designed and synthesized for biological evaluation. Lenalidomide showed significant anti-proliferative activity against the MM.1S cell line (IC50 = 50 nM) while it displayed no anti-proliferative activity against other treated tumor cell lines. Compared with lenalidomide, compound 3j exhibited preferable anti-proliferative activity against the MM.1S (IC50 = 1.1 nM), Mino (IC50 = 2.3 nM) and RPMI 8226 cell lines (IC50 = 5.5 nM). In addition, compound 3j displayed selective anti-proliferative activity against several tumor cell lines, including various B-NHL, MM and AML cell lines, and showed no cytotoxicity on the normal human cell line PBMC, suggesting a good safety profile. Following oral administration, compound 3j achieved a Cmax of 283 ng/mL at 0.83 h, and had a higher relative oral bioavailability value (F = 39.2%) than that of CC-220 (F = 22.8%), but its oral exposure in vivo was somewhat low (AUC = 755 h ng/mL). Furthermore, it was found that oral administration of compound 3j at dosages of 60 mg/kg could delay RPMI 8226 tumor growth in the female CB-17 SCID mice. The current work confirmed that installing thioether moiety at the 4-position of isoindolinone is an effective strategy for identifying new promising lenalidomide analogs with anti-tumor activities in preclinical study.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Lenalidomida/análogos & derivados , Lenalidomida/farmacologia , Sulfetos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Desenho de Fármacos , Feminino , Humanos , Lenalidomida/síntese química , Lenalidomida/farmacocinética , Camundongos Endogâmicos BALB C , Camundongos SCID , Estrutura Molecular , Relação Estrutura-Atividade , Sulfetos/síntese química , Sulfetos/química , Sulfetos/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biosci Rep ; 39(5)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30971501

RESUMO

Gastric cancer (GC) patients have high mortality due to late-stage diagnosis, which is closely associated with lymph node metastasis. Exploring the molecular mechanisms of lymphatic metastasis may inform the research into early diagnostics of GC. In the present study, we obtained RNA-Seq data from The Cancer Genome Altas and used Limma package to identify differentially expressed genes (DEGs) between lymphatic metastases and non-lymphatic metastases in GC tissues. Then, we used an elastic net-regularized COX proportional hazard model for gene selection from the DEGs and constructed a regression model composed of 28-gene signatures. Furthermore, we assessed the prognostic performance of the 28-gene signature by analyzing the receive operating characteristic curves. In addition, we selected the gene PELI2 amongst 28 genes and assessed the roles of this gene in GC cells. The good prognostic performance of the 28-gene signature was confirmed in the testing set, which was also validated by GSE66229 dataset. In addition, the biological experiments showed that PELI2 could promote the growth and metastasis of GC cells by regulating vascular endothelial growth factor C. Our study indicates that the identified 28-gene signature could be considered as a sensitive predictive tool for lymphatic metastasis in GC.


Assuntos
Metástase Linfática/genética , Proteínas de Neoplasias/genética , Prognóstico , Neoplasias Gástricas/genética , Biomarcadores Tumorais/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metástase Linfática/patologia , Masculino , Modelos de Riscos Proporcionais , Neoplasias Gástricas/patologia , Transcriptoma/genética
19.
Bioorg Med Chem ; 27(7): 1405-1413, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30819618

RESUMO

Paclitaxel (PTX) is the first-line treatment drug for breast cancer. However, drug resistance after a course of treatment and low selectivity restricted its clinical utility sometimes. In this study, we successfully bound PTX and vorinostat (SAHA) to form co-prodrugs based on the synergistic anticancer effects. The PTX-SAHA co-prodrugs were conjugated by glycine (1a) and succinic acid (1b) respectively and the former has shown better activity in cytotoxicity, cell cycle arrest and western-blot experiments. Therefore, 1a was further prepared to nanomicelles with mPEG2000-PLA1750 as the carrier by using thin film method. PTX-SAHA co-prodrug nanomicelles were spherical with a particle size of 20-100 nm. In vitro drug release test showed 1a nanomicelles had sustained release effect, which could reduce the resistance of PTX. In vitro cytotoxicity was evaluated by SRB assay in HCT-116 cells, MCF-7 cells and drug-resistant MCF-7/ADR cells. The results showed 1a nanomicelles had comparable or even better cytotoxicity than PTX especially in the MCF-7/ADR cells. All the results suggested that PTX-SAHA co-prodrug nanomicelles were promising treatment for PTX resistance cancer.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Paclitaxel/farmacologia , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Vorinostat/farmacologia , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Células MCF-7 , Estrutura Molecular , Paclitaxel/química , Pró-Fármacos/química , Relação Estrutura-Atividade , Vorinostat/química
20.
Am J Med Genet A ; 176(12): 2668-2676, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30537371

RESUMO

SHANK3 has been identified as the causative gene of 22q13.3 microdeletion syndrome phenotype. De novo mutations (DNMs) of SHANK3 were subsequently identified in patients with several neurodevelopmental disorders, including autism spectrum disorders (ASDs), schizophrenia (SCZ), a Rett syndrome-like phenotype, and intellectual disability (ID). Although broad developmental phenotypes of these patients have been described in single studies, few studies have reviewed the genotype and phenotype relationships using a relatively large cohort of patients with SHANK3 DNMs. In this study, we identified a de novo splice mutation (NM_033517.1: c.2265+1G>A) that functionally impairs mRNA splicing, produces multiple splice variants, and results in the reduction of the amounts of mRNA. To analyze the genotype and phenotype correlations for SHANK3 DNMs, we reviewed 37 previously published patients with 28 SHANK3 DNMs. Our results revealed that haploinsufficiency of SHANK3 causes a broad spectrum of neurodevelopmental phenotypes with impaired social interaction, repetitive behavior, speech impairment, ID, and regression as the most common observations. Seizures, hypotonia, global development delay, dysmorphic features, and several other features also occurred recurrently. Specific phenotypes are also observed in certain genotypes. Our study provides the frequency of the heterogeneous co-occurring conditions caused by SHANK3 DNMs, which will be beneficial for diagnosis and clinical management.


Assuntos
Genótipo , Mutação , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Alelos , Processamento Alternativo , Pré-Escolar , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA