Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biofabrication ; 16(4)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39019062

RESUMO

Three-dimensional (3D) cell culture models capable of emulating the biological functions of natural tissues are pivotal in tissue engineering and regenerative medicine. Despite progress, the fabrication ofin vitroheterocellular models that mimic the intricate structures of natural tissues remains a significant challenge. In this study, we introduce a novel, scaffold-free approach leveraging the inertial focusing effect in rotating hanging droplets for the reliable production of heterocellular spheroids with controllable core-shell structures. Our method offers precise control over the core-shell spheroid's size and geometry by adjusting the cell suspension density and droplet morphology. We successfully applied this technique to create hair follicle organoids, integrating dermal papilla cells within the core and epidermal cells in the shell, thereby achieving markedly enhanced hair inducibility compared to mixed-structure models. Furthermore, we have developed melanoma tumor spheroids that accurately mimic the dynamic interactions between tumor and stromal cells, showing increased invasion capabilities and altered expressions of cellular adhesion molecules and proteolytic enzymes. These findings underscore the critical role of cellular spatial organization in replicating tissue functionalityin vitro. Our method represents a significant advancement towards generating heterocellular spheroids with well-defined architectures, offering broad implications for biological research and applications in tissue engineering.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Esferoides Celulares , Esferoides Celulares/citologia , Técnicas de Cultura de Células em Três Dimensões/métodos , Humanos , Engenharia Tecidual/métodos , Organoides/citologia , Folículo Piloso/citologia , Animais , Linhagem Celular Tumoral , Alicerces Teciduais/química , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/instrumentação
2.
Viruses ; 16(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38793551

RESUMO

Epstein-Barr Virus (EBV) is closely linked to nasopharyngeal carcinoma (NPC), notably prevalent in southern China. Although type II latency of EBV plays a crucial role in the development of NPC, some lytic genes and intermittent reactivation are also critical for viral propagation and tumor progression. Since T cell-mediated immunity is effective in targeted killing of EBV-positive cells, it is important to identify EBV-derived peptides presented by highly prevalent human leukocyte antigen class I (HLA-I) molecules throughout the EBV life cycle. Here, we constructed an EBV-positive NPC cell model to evaluate the presentation of EBV lytic phase peptides on streptavidin-tagged specific HLA-I molecules. Utilizing a mass spectrometry (LC-MS/MS)-based immunopeptidomic approach, we characterized eleven novel EBV peptides as well as two previously identified peptides. Furthermore, we determined these peptides were immunogenic and could stimulate PBMCs from EBV VCA/NA-IgA positive donors in an NPC endemic southern Chinese population. Overall, this work demonstrates that highly prevalent HLA-I-specific EBV peptides can be captured and functionally presented to elicit immune responses in an in vitro model, which provides insight into the epitopes presented during EBV lytic cycle and reactivation. It expands the range of viral targets for potential NPC early diagnosis and treatment.


Assuntos
Antígeno HLA-A11 , Antígeno HLA-A2 , Herpesvirus Humano 4 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Peptídeos , Humanos , Linhagem Celular Tumoral , China , Epitopos de Linfócito T/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/imunologia , Antígeno HLA-A11/imunologia , Antígeno HLA-A11/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/genética , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/virologia , Peptídeos/imunologia , Peptídeos/química , Proteômica , Espectrometria de Massas em Tandem
3.
Soft Matter ; 20(16): 3401-3410, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563244

RESUMO

Living active collectives have evolved with remarkable self-patterning capabilities to adapt to the physical and biological constraints crucial for their growth and survival. However, the intricate process by which complex multicellular patterns emerge from a single founder cell remains elusive. In this study, we utilize an agent-based model, validated through single-cell microscopy imaging, to track the three-dimensional (3D) morphodynamics of cells within growing bacterial biofilms encased by agarose gels. The confined growth conditions give rise to a spatiotemporally heterogeneous stress landscape within the biofilm. In the core of the biofilm, where high hydrostatic and low shear stresses prevail, cell packing appears disordered. In contrast, near the gel-cell interface, a state of high shear stress and low hydrostatic stress emerges, driving nematic ordering, albeit with a time delay inherent to shear stress relaxation. Strikingly, we observe a robust spatiotemporal correlation between stress anisotropy and nematic ordering within these confined biofilms. This correlation suggests a mechanism whereby stress anisotropy plays a pivotal role in governing the spatial organization of cells. The reciprocity between stress anisotropy and cell ordering in confined biofilms opens new avenues for innovative 3D mechanically guided patterning techniques for living active collectives, which hold significant promise for a wide array of environmental and biomedical applications.


Assuntos
Biofilmes , Estresse Mecânico , Anisotropia , Modelos Biológicos
4.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656445

RESUMO

The prevention of drying-induced cracking is crucial in maintaining the mechanical integrity and functionality of colloidal deposits and coatings. Despite exploring various approaches, controlling drying-induced cracking remains a subject of great scientific interest and practical importance. By introducing chain-like particles composed of the same material and with comparable size into commonly used colloidal suspensions of spherical silica nanoparticles, we can significantly reduce the cracks formed in dried particle deposits and achieve a fivefold increase in the critical cracking thickness of colloidal silica coatings. The mechanism underlying the crack suppression is attributed to the increased porosity and pore sizes in dried particle deposits containing chain-like particle, which essentially leads to reduction in internal stresses developed during the drying process. Meanwhile, the nanoindentation measurements reveal that colloidal deposits with chain-like particles exhibit a smaller reduction in hardness compared to those reported using other cracking suppression approaches. This work demonstrates a promising technique for preparing colloidal coatings with enhanced crack resistance while maintaining desirable mechanical properties.

5.
Sci Total Environ ; 929: 172263, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583623

RESUMO

The relationships between α-diversity and ecosystem functioning (BEF) have been extensively examined. However, it remains unknown how spatial heterogeneity of microbial community, i.e., microbial ß-diversity within a region, shapes ecosystem functioning. Here, we examined microbial community compositions and soil respiration (Rs) along an elevation gradient of 853-4420 m a.s.l. in the southeastern Tibetan Plateau, which is renowned as one of the world's biodiversity hotspots. There were significant distance-decay relationships for both bacterial and fungal communities. Stochastic processes played a dominant role in shaping bacterial and fungal community compositions, while soil temperature was the most important environmental factor that affected microbial communities. We evaluated BEF relationships based on α-diversity measured by species richness and ß-diversity measured by community dispersions, revealing significantly positive correlations between microbial ß-diversities and Rs. These correlations became stronger with increasing sample size, differing from those between microbial α-diversities and Rs. Using Structural Equation Modeling (SEM), we found that soil temperature, soil moisture, and total nitrogen were the most important edaphic properties in explaining Rs. Meanwhile, stochastic processes (e.g., homogenous dispersal and dispersal limitation) significantly mediated effects between microbial ß-diversities and Rs. Microbial α-diversity poorly explained Rs, directly or indirectly. In a nutshell, we identified a previously unknown BEF relationship between microbial ß-diversity and Rs. By complementing common practices to examine BEF with α-diversity, we demonstrate that a focus on ß-diversity could be leveraged to explain Rs.


Assuntos
Microbiota , Microbiologia do Solo , Solo , Solo/química , Tibet , Biodiversidade , Ecossistema , Bactérias/classificação , Fungos
6.
J Mol Cell Cardiol ; 190: 62-75, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583797

RESUMO

Intimal hyperplasia is a complicated pathophysiological phenomenon attributable to in-stent restenosis, and the underlying mechanism remains unclear. Interleukin enhancer-binding factor 3 (ILF3), a double-stranded RNA-binding protein involved in regulating mRNA stability, has been recently demonstrated to assume a crucial role in cardiovascular disease; nevertheless, its impact on intimal hyperplasia remains unknown. In current study, we used samples of human restenotic arteries and rodent models of intimal hyperplasia, we found that vascular smooth muscle cell (VSMC) ILF3 expression was markedly elevated in human restenotic arteries and murine ligated carotid arteries. SMC-specific ILF3 knockout mice significantly suppressed injury induced neointimal formation. In vitro, platelet-derived growth factor type BB (PDGF-BB) treatment elevated the level of VSMC ILF3 in a dose- and time-dependent manner. ILF3 silencing markedly inhibited PDGF-BB-induced phenotype switching, proliferation, and migration in VSMCs. Transcriptome sequencing and RNA immunoprecipitation sequencing depicted that ILF3 maintained its stability upon binding to the mRNA of the high-mobility group box 1 protein (HMGB1), thereby exerting an inhibitory effect on the transcription of dual specificity phosphatase 16 (DUSP16) through enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3). Therefore, the results both in vitro and in vivo indicated that the loss of ILF3 in VSMC ameliorated neointimal hyperplasia by regulating the STAT3/DUSP16 axis through the degradation of HMGB1 mRNA. Our findings revealed that vascular injury activates VSMC ILF3, which in turn promotes intima formation. Consequently, targeting specific VSMC ILF3 may present a potential therapeutic strategy for ameliorating cardiovascular restenosis.


Assuntos
Proteína HMGB1 , Hiperplasia , Camundongos Knockout , Músculo Liso Vascular , Miócitos de Músculo Liso , Proteínas do Fator Nuclear 90 , Estabilidade de RNA , Fator de Transcrição STAT3 , Túnica Íntima , Animais , Humanos , Masculino , Camundongos , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patologia , Proteínas do Fator Nuclear 90/metabolismo , Proteínas do Fator Nuclear 90/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Túnica Íntima/metabolismo , Túnica Íntima/patologia
7.
Mikrochim Acta ; 191(5): 276, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644435

RESUMO

Solid-phase microextraction (SPME) coupled with electrospray ionization mass spectrometry (ESI-MS) was developed for rapid and sensitive determination of endogenous androgens. The SPME probe is coated with covalent organic frameworks (COFs) synthesized by reacting 1,3,5-tri(4-aminophenyl)benzene (TPB) with 2,5-dioctyloxybenzaldehyde (C8PDA). This COFs-SPME probe offers several advantages, including enhanced extraction efficiency and stability. The analytical method exhibited wide linearity (0.1-100.0 µg L-1), low limits of detection (0.03-0.07 µg L-1), high enrichment factors (37-154), and satisfactory relative standard deviations (RSDs) for both within one probe (4.0-14.8%) and between different probes (3.4-12.7%). These remarkable performance characteristics highlight the reliability and precision of the COFs-SPME-ESI-MS method. The developed method was successfully applied to detect five kinds of endogenous androgens in female serum samples, indicating that the developed analytical method has great potential for application in preliminary clinical diagnosis.


Assuntos
Androgênios , Limite de Detecção , Microextração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray , Microextração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Humanos , Androgênios/sangue , Androgênios/análise , Androgênios/química , Feminino , Estruturas Metalorgânicas/química , Reprodutibilidade dos Testes
8.
Biosens Bioelectron ; 254: 116195, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479341

RESUMO

The fluorescence-quenching method is crucial in vitro analysis, particularly for immunochromatographic test strips (ICTs) using noble metal nanoparticles as probes. However, ICTs still fall short in meeting the requirements for the detection of traces biomarkers due to the noble metal nanoparticles can only quench fluorescence of the dyes within a confined distance. Interestingly, noble metal nanoparticles, such as Pt NPs cannot only perform fluorescence-quenching ability based on the Förster resonance energy transfer (FRET), but also show perfect oxidase-like catalytic performance on many kinds of substrates, such as 3,3',5,5' -tetramethylbenzidine (TMB). We observed that the oxTMB (the oxidation products of TMB) exhibited notable effectiveness in quenching Cy5 fluorescence by the strong inner filter effect (IFE), which obviously improved the fluorescence-quenching efficiency with extremely low background signal. Through the dual-enhanced fluorescence quenching mechanism, the fluorescence quenching constant (Kn) was 661.24-fold that of only Pt NPs on the NC membrane. To validate the feasibility of this technique, we employed two types of biomarkers, namely microRNA (miR-15a-5p) and the signature protein (PSA). The sensitivity of miR-15a-5p was 9.286 × 10-18 mol/L and 17.5-fold more than that based on Pt NPs. As for the PSA, the LOD (0.6265 pg/mL) was 15.5-fold enhancement more sensitive after catalysis. Overall, the dual-enhanced fluorescence quenching rFICTs could act as a practical detection for biomarker in real samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Nanopartículas Metálicas/química , Transferência Ressonante de Energia de Fluorescência , Biomarcadores
9.
Nat Phys ; 19(12): 1936-1944, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39055904

RESUMO

Active nematics are the nonequilibrium analogue of passive liquid crystals. They consist of anisotropic units that consume free energy to drive emergent behaviour. Like liquid crystal molecules in displays, ordering and dynamics in active nematics are sensitive to boundary conditions. However, unlike passive liquid crystals, active nematics have the potential to regulate their boundaries through self-generated stresses. Here, we show how a three-dimensional, living nematic can actively shape itself and its boundary to regulate its internal architecture through growth-induced stresses, using bacterial biofilms confined by a hydrogel as a model system. We show that biofilms exhibit a sharp transition in shape from domes to lenses upon changing environmental stiffness or cell-substrate friction, which is explained by a theoretical model that considers the competition between confinement and interfacial forces. The growth mode defines the progression of the boundary, which in turn determines the trajectories and spatial distribution of cell lineages. We further demonstrate that the evolving boundary and corresponding stress anisotropy define the orientational ordering of cells and the emergence of topological defects in the biofilm interior. Our findings may provide strategies for the development of programmed microbial consortia with emergent material properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA