Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mol Ther Nucleic Acids ; 33: 890-897, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37680986

RESUMO

Prime editor (PE) is a versatile genome editing tool that does not need extra DNA donors or inducing double-strand breaks. However, in vivo implementation of PE remains a challenge because of its oversized composition. In this study, we screened out the smallest truncated Moloney murine leukemia virus (MMLV) reverse transcriptase (RT) with the F155Y mutation to keep gene editing efficiency. We discovered the most efficient gene editing variants of MMLV RT with the smallest size. After optimization of the pegRNAs and incorporation with nick sgRNAs, the mini-PE delivered up to 10% precise editing at target sites in human and mouse cells. It also edited the mouse Hsf1 gene in the mouse retina precisely after delivery with adeno-associated viruses (AAVs), although the editing efficiency was lower than 1%. We will focus on improving the editing efficiency of mini-PE and exploiting its therapeutic potential against human genetic diseases.

2.
Nucleic Acids Res ; 51(18): 10075-10093, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37650635

RESUMO

None of the existing approaches for regulating gene expression can bidirectionally and quantitatively fine-tune gene expression to desired levels. Here, on the basis of precise manipulations of the Kozak sequence, which has a remarkable influence on translation initiation, we proposed and validated a novel strategy to directly modify the upstream nucleotides of the translation initiation codon of a given gene to flexibly alter the gene translation level by using base editors and prime editors. When the three nucleotides upstream of the translation initiation codon (named KZ3, part of the Kozak sequence), which exhibits the most significant base preference of the Kozak sequence, were selected as the editing region to alter the translation levels of proteins, we confirmed that each of the 64 KZ3 variants had a different translation efficiency, but all had similar transcription levels. Using the ranked KZ3 variants with different translation efficiencies as predictors, base editor- and prime editor-mediated mutations of KZ3 in the local genome could bidirectionally and quantitatively fine-tune gene translation to the anticipated levels without affecting transcription in vitro and in vivo. Notably, this strategy can be extended to the whole Kozak sequence and applied to all protein-coding genes in all eukaryotes.


Assuntos
Edição de Genes , Iniciação Traducional da Cadeia Peptídica , Códon/genética , Códon de Iniciação/genética , Nucleotídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Células Eucarióticas
3.
Sci Total Environ ; 877: 162690, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36894075

RESUMO

Floodplain lakes share characteristics of both deep and shallow lakes throughout any given year. Seasonal fluctuations in their water depth drive changes in nutrients and total primary productivity, which directly and indirectly affect submerged macrophyte biomass. To investigate how water depth and environmental variables affect submerged macrophyte biomass, we surveyed six sub-lakes in the Poyang Lake floodplain, China, during the flood and dry seasons of 2021. Dominant submerged macrophytes include Vallisneria spinulosa and Hydrilla verticillata. The effect of water depth on the biomass of these macrophytes varied between the flood and dry seasons. In the flood season, there was a direct effect of water depth on biomass, while in the dry season only an indirect effect was observed. During the flood season, the direct effect of water depth on the biomass of V. spinulosa was less than the indirect effect, with water depth primarily affecting the total nitrogen, total phosphorus and water column transparency. Water depth directly, positively affected H. verticillata biomass, with this effect being greater than the indirect effect by affecting the carbon, nitrogen and phosphorus content in the water column and sediment. During the dry season, water depth affected H. verticillata biomass indirectly through sediment carbon and nitrogen content, while for V. spinulosa, the effect on biomass was indirect through carbon content of the sediment and water column. The main environmental variables affecting submerged macrophyte biomass in the Poyang Lake floodplain during the flood and dry seasons, and the mechanisms through which water depth affects dominant submerged macrophyte biomass, are identified. An understanding of these variables and mechanisms will enable improved management and restoration of wetland.


Assuntos
Hydrocharitaceae , Lagos , Biomassa , Estações do Ano , Água , Inundações , China , Fósforo , Nitrogênio , Carbono
5.
Front Cell Dev Biol ; 11: 1330684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38178872

RESUMO

Vitrification is a common technique for cryopreserving oocytes or embryos. However, manual vitrification is tedious and labor-intensive, and can be subject to variations caused by human factors. To address these challenges, we developed an automated vitrification-thawing system (AVTS) based on a cryo-handle. Our study firstly assessed the efficiency of cryoprotectant exchange through comparing the osmolalities of fresh and collected solutions during automated vitrification and thawing, and evaluated the cooling and warming rates of the cryo-handle. We also compared mouse oocyte survival, fertilization and embryo development after thawing and ICSI, and the development of re-frozen cleavage embryos between manual operation and automated system. The results showed that the osmolalities of collected samples were within normal range and comparable to fresh solutions. Furthermore, the automated system could obtain the reliable cooling and warming rates. Particularly, there were no significant differences in oocyte survival rates, fertilization rates, and subsequent embryo development and its quality between two procedures. Our findings suggest that AVTS has no impact on osmolalities of vitrification and thawing solutions, ensuring the proper exchange of cryoprotectants. The cryo-handle also shows the ability to achieve reliable cooling and warming rates, which benefits for the cryopreservation and thawing process. Moreover, the results from mouse oocytes and embryos indicate that automated system has effectively maintained the survival and fertilization of frozen oocytes and supported subsequent embryo development. Therefore, the automated vitrification and thawing system will inevitably represent a superior alternative to manual operation.

6.
Commun Biol ; 5(1): 1163, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323848

RESUMO

Cas12a can process multiple sgRNAs from a single transcript of CRISPR array, conferring advantages in multiplexed base editing when incorporated into base editor systems, which is extremely helpful given that phenotypes commonly involve multiple genes or single-nucleotide variants. However, multiplexed base editing through Cas12a-derived base editors has been barely reported, mainly due to the compromised efficiencies and restricted protospacer-adjacent motif (PAM) of TTTV for wild-type Cas12a. Here, we develop Cas12a-mediated cytosine base editor (CBE) and adenine base editor (ABE) systems with elevated efficiencies and expanded targeting scope, by combining highly active deaminases with Lachnospiraceae bacterium Cas12a (LbCas12a) variants. We confirm that these CBEs and ABEs can perform efficient C-to-T and A-to-G conversions, respectively, on targets with PAMs of NTTN, TYCN, and TRTN. Notably, multiplexed base editing can be conducted using the developed CBEs and ABEs in somatic cells and embryos. These Cas12a variant-mediated base editors will serve as versatile tools for multiplexed point mutation, which is notably important in genetic improvement, disease modeling, and gene therapy.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Citosina , Adenina , Mutação Puntual
7.
Nucleic Acids Res ; 50(9): 5384-5399, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35544322

RESUMO

Establishing saturated mutagenesis in a specific gene through gene editing is an efficient approach for identifying the relationships between mutations and the corresponding phenotypes. CRISPR/Cas9-based sgRNA library screening often creates indel mutations with multiple nucleotides. Single base editors and dual deaminase-mediated base editors can achieve only one and two types of base substitutions, respectively. A new glycosylase base editor (CGBE) system, in which the uracil glycosylase inhibitor (UGI) is replaced with uracil-DNA glycosylase (UNG), was recently reported to efficiently induce multiple base conversions, including C-to-G, C-to-T and C-to-A. In this study, we fused a CGBE with ABE to develop a new type of dual deaminase-mediated base editing system, the AGBE system, that can simultaneously introduce 4 types of base conversions (C-to-G, C-to-T, C-to-A and A-to-G) as well as indels with a single sgRNA in mammalian cells. AGBEs can be used to establish saturated mutant populations for verification of the functions and consequences of multiple gene mutation patterns, including single-nucleotide variants (SNVs) and indels, through high-throughput screening.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Mutação INDEL , Mamíferos/genética , Mutação , Uracila-DNA Glicosidase/genética
8.
Sci China Life Sci ; 65(11): 2269-2286, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35596888

RESUMO

Inducible expression systems are indispensable for precise regulation and in-depth analysis of biological process. Binary Tet-On system has been widely employed to regulate transgenic expression by doxycycline. Previous pig models with tetracycline regulatory elements were generated through random integration. This process often resulted in uncertain expression and unpredictable phenotypes, thus hindering their applications. Here, by precise knock-in of binary Tet-On 3G elements into Rosa26 and Hipp11 locus, respectively, a double knock-in reporter pig model was generated. We characterized excellent properties of this system for controllable transgenic expression both in vitro and in vivo. Two attP sites were arranged to flank the tdTomato to switch reporter gene. Single or multiple gene replacement was efficiently and faithfully achieved in fetal fibroblasts and nuclear transfer embryos. To display the flexible application of this system, we generated a pig strain with Dox-inducing hKRASG12D expression through phiC31 integrase-mediated cassette exchange. After eight months of Dox administration, squamous cell carcinoma developed in the nose, mouth, and scrotum, which indicated this pig strain could serve as an ideal large animal model to study tumorigenesis. Overall, the established pig models with controllable and switchable transgene expression system will provide a facilitating platform for transgenic and biomedical research.


Assuntos
Terapia Genética , Integrases , Masculino , Animais , Suínos , Integrases/genética , Integrases/metabolismo , Transgenes , Animais Geneticamente Modificados , Expressão Gênica
9.
Stem Cell Reports ; 17(5): 1059-1069, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35427483

RESUMO

Obtaining functional human cells through interspecies chimerism with human pluripotent stem cells (hPSCs) remains unsuccessful due to its extremely low efficiency. Here, we show that hPSCs failed to differentiate and contribute teratoma in the presence of mouse PSCs (mPSCs), while MYCN, a pro-growth factor, dramatically promotes hPSC contributions in teratoma co-formation by hPSCs/mPSCs. MYCN combined with BCL2 (M/B) greatly enhanced conventional hPSCs to integrate into pre-implantation embryos of different species, such as mice, rabbits, and pigs, and substantially contributed to mouse post-implantation chimera in embryonic and extra-embryonic tissues. Strikingly, M/B-hPSCs injected into pre-implantation Flk-1+/- mouse embryos show further enhanced chimerism that allows for obtaining live human CD34+ blood progenitor cells from chimeras through cell sorting. The chimera-derived human CD34+ cells further gave rise to various subtype blood cells in a typical colony-forming unit (CFU) assay. Thus, we provide proof of concept to obtain functional human cells through enhanced interspecies chimerism with hPSCs.


Assuntos
Células-Tronco Pluripotentes , Teratoma , Animais , Diferenciação Celular , Quimera , Quimerismo , Humanos , Camundongos , Proteína Proto-Oncogênica N-Myc , Coelhos , Suínos
10.
Mol Ther ; 30(7): 2443-2451, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35443934

RESUMO

Predictable DNA off-target effect is one of the major safety concerns for the application of cytosine base editors (CBEs). To eliminate Cas9-dependent DNA off-target effects, we designed a novel effective CBE system with dual guiders by combining CRISPR with transcription activator-like effector (TALE). In this system, Cas9 nickase (nCas9) and cytosine deaminase are guided to the same target site to conduct base editing by single-guide RNA (sgRNA) and TALE, respectively. However, if nCas9 is guided to a wrong site by sgRNA, it will not generate base editing due to the absence of deaminase. Similarly, when deaminase is guided to a wrong site by TALE, base editing will not occur due to the absence of single-stranded DNA. In this way, Cas9- and TALE-dependent DNA off-target effects could be completely eliminated. Furthermore, by fusing TALE with YE1, a cytidine deaminase with minimal Cas9-independent off-target effect, we established a novel CBE that could induce efficient C-to-T conversion without detectable Cas9- or TALE-dependent DNA off-target mutations.


Assuntos
Citosina , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas , DNA/genética , Edição de Genes , RNA Guia de Cinetoplastídeos/genética , Efetores Semelhantes a Ativadores de Transcrição/genética
12.
Sci Total Environ ; 822: 153512, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35101500

RESUMO

Hydrological gradient variations in wetlands have a vital impact on wetland carbon storage. However, the mechanisms by which hydrological gradient variations affect biomass and carbon storage by regulating the soil nutrient contents and plant diversity remain unclear. This study attempted to explore these influencing mechanisms by studying the relationships between hydrological gradient variations and carbon storage in wetlands. The results showed that the average nutrient content, plant biomass and soil carbon content values in the high-frequency wet-dry alternating zones (HFWA, zones where the frequency of water level occurs between -25 cm and 25 cm greater than 0.5) were 1.4 times, 2.3 times and 0.43 higher, respectively, than those in the low-frequency wet-dry alternating zones (LFWA, zones where the frequency of water level occurs between -25 cm and 25 cm less than 0.3). These results indicated that the HFWA zones had higher soil nutrients, higher plant dominance, higher biomass and higher soil carbon contents than the LFWA zones. The structural equation model revealed a significant positive correlation between wet-dry alternations and the soil nutrient-plant biomass-soil carbon relation in wetlands. Moreover, there was also a significant positive correlation between wet-dry alternations and the plant dominance-plant biomass-soil carbon relation in wetlands. This implied that the concentrated effect of HFWA on soil nutrients promotes plant growth, enhances plant dominance, promotes plant productivity, and enhances the capacities of plants to input carbon to the soil, thereby increasing the soil carbon content. This study closely linked wetland hydrological gradients, plant biodiversity and wetland carbon sequestration and profoundly revealed the mechanisms by which hydrological gradients in wetlands regulate the concentrations of nutrient elements, thereby affecting vegetation growth and carbon sequestration; these results could provide a new cognitive basis for understanding the coupling of carbon and water.


Assuntos
Solo , Áreas Alagadas , Carbono , Sequestro de Carbono , China , Nutrientes , Solo/química
16.
J Biol Chem ; 296: 100464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639162

RESUMO

ß-thalassemia, an autosomal recessive blood disorder that reduces the production of hemoglobin, is majorly caused by the point mutation of the HBB gene resulting in reduced or absent ß-globin chains of the hemoglobin tetramer. Animal models recapitulating both the phenotype and genotype of human disease are valuable in the exploration of pathophysiology and for in vivo evaluation of novel therapeutic treatments. The docile temperament, short vital cycles, and low cost of rabbits make them an attractive animal model. However, ß-thalassemia rabbit models are currently unavailable. Here, using CRISPR/Cas9-mediated genome editing, we point mutated the rabbit ß-globin gene HBB2 with high efficiency and generated a ß-thalassemia rabbit model. Hematological and histological analyses demonstrated that the genotypic mosaic F0 displayed a mild phenotype of anemia, and the heterozygous F1 exhibited typical characteristics of ß-thalassemia. Whole-blood transcriptome analysis revealed that the gene expression was altered in HBB2-targeted when compared with WT rabbits. And the highly expressed genes in HBB2-targeted rabbits were enriched in lipid and iron metabolism, innate immunity, and hematopoietic processes. In conclusion, using CRISPR-mediated HBB2 knockout, we have created a ß-thalassemia rabbit model that accurately recapitulates the human disease phenotype. We believe this tool will be valuable in advancing the investigation of pathogenesis and novel therapeutic targets of ß-thalassemia and associated complications.


Assuntos
Modelos Animais de Doenças , Globinas beta/genética , Talassemia beta/genética , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Engenharia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Coelhos , Globinas beta/metabolismo , Talassemia beta/metabolismo
17.
FASEB J ; 35(2): e21226, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33236397

RESUMO

The Wiskott-Aldrich syndrome (WAS) is a severe recessive X-linked immunodeficiency resulting from loss-of-function mutations in the WAS gene. Mouse is the only mammalian model used for investigation of WAS pathogenesis. However, the mouse model does not accurately recapitulate WAS clinical phenotypes, thus, limiting its application in WAS clinical research. Herein, we report the generation of WAS knockout (KO) rabbits via embryo co-injection of Cas9 mRNA and a pair of sgRNAs targeting exons 2 and 7. WAS KO rabbits exhibited many symptoms similar to those of WAS patients, including thrombocytopenia, bleeding tendency, infections, and reduced numbers of T cell in the spleen and peripheral blood. The WAS KO rabbit model provides a new valuable tool for preclinical trials of WAS treatment.


Assuntos
Modelos Animais de Doenças , Coelhos , Proteína da Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/genética , Animais , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes/métodos , Fenótipo , Síndrome de Wiskott-Aldrich/patologia
18.
Mol Ther ; 29(3): 1001-1015, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33221434

RESUMO

Patients with hereditary tyrosinemia type I (HT1) present acute and irreversible liver and kidney damage during infancy. CRISPR-Cas9-mediated gene correction during infancy may provide a promising approach to treat patients with HT1. However, all previous studies were performed on adult HT1 rodent models, which cannot authentically recapitulate some symptoms of human patients. The efficacy and safety should be verified in large animals to translate precise gene therapy to clinical practice. Here, we delivered CRISPR-Cas9 and donor templates via adeno-associated virus to newborn HT1 rabbits. The lethal phenotypes could be rescued, and notably, these HT1 rabbits reached adulthood normally without 2-(2-nitro-4-trifluoromethylbenzyol)-1,3 cyclohexanedione administration and even gave birth to offspring. Adeno-associated virus (AAV)-treated HT1 rabbits displayed normal liver and kidney structures and functions. Homology-directed repair-mediated precise gene corrections and non-homologous end joining-mediated out-of-frame to in-frame corrections in the livers were observed with efficiencies of 0.90%-3.71% and 2.39%-6.35%, respectively, which appeared to be sufficient to recover liver function and decrease liver and kidney damage. This study provides useful large-animal preclinical data for rescuing hepatocyte-related monogenetic metabolic disorders with precise gene therapy.


Assuntos
Sistemas CRISPR-Cas , Dependovirus/genética , Edição de Genes , Vetores Genéticos/administração & dosagem , Hidrolases/genética , Tirosinemias/terapia , Animais , Animais Recém-Nascidos , Reparo do DNA por Junção de Extremidades , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Terapia Genética , Rim/metabolismo , Fígado/metabolismo , Masculino , RNA-Seq , Coelhos , Tirosinemias/genética , Tirosinemias/patologia
19.
J Immunol ; 205(9): 2532-2544, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32958688

RESUMO

The NLRP3 inflammasome is associated with a variety of human diseases, including cryopyrin-associated periodic syndrome (CAPS). CAPS is a dominantly inherited disease with NLRP3 missense mutations. Currently, most studies on the NLRP3-inflammasome have been performed with mice, but the activation patterns and the signaling pathways of the mouse NLRP3 inflammasome are not always identical with those in humans. The NLRP3 inflammasome activation in pigs is similar to that in humans. Therefore, pigs with precise NLRP3-point mutations may model human CAPS more accurately. In this study, an NLRP3 gain-of-function pig model carrying a homozygous R259W mutation was generated by combining CRISPR/Cpf1-mediated somatic cell genome editing with nuclear transfer. The newborn NLRP3 R259W homozygous piglets showed early mortality, poor growth, and spontaneous systemic inflammation symptoms, including skin lesion, joint inflammation, severe contracture, and inflammation-mediated multiorgan failure. Severe myocardial fibrosis was also observed. The tissues of inflamed skins and several organs showed significantly increased expressions of NLRP3, Caspase-1, and inflammation-associated cytokines and factors (i.e., IL-1ß, TNF-α, IL-6, and IL-17). Notably, approximately half of the homozygous piglets grew up to adulthood and even gave birth to offspring. Although the F1 heterozygous piglets showed improved survival rate and normal weight gain, 39.1% (nine out of 23) of the piglets died early and exhibited spontaneous systemic inflammation symptoms. In addition, similar to homozygotes, adult heterozygotes showed increased delayed hypersensitivity response. Thus, the NLRP3 R259W pigs are similar to human CAPS and can serve as an ideal animal model to bridge the gap between rodents and humans.


Assuntos
Mutação com Ganho de Função/genética , Inflamação/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Suínos/genética , Animais , Caspase 1/genética , Síndromes Periódicas Associadas à Criopirina/genética , Citocinas/genética , Homozigoto , Humanos , Inflamassomos/genética , Masculino , Pele/metabolismo
20.
BMC Biol ; 18(1): 131, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967664

RESUMO

BACKGROUND: Many favorable traits of crops and livestock and human genetic diseases arise from multiple single nucleotide polymorphisms or multiple point mutations with heterogeneous base substitutions at the same locus. Current cytosine or adenine base editors can only accomplish C-to-T (G-to-A) or A-to-G (T-to-C) substitutions in the windows of target genomic sites of organisms; therefore, there is a need to develop base editors that can simultaneously achieve C-to-T and A-to-G substitutions at the targeting site. RESULTS: In this study, a novel fusion adenine and cytosine base editor (ACBE) was generated by fusing a heterodimer of TadA (ecTadAWT/*) and an activation-induced cytidine deaminase (AID) to the N- and C-terminals of Cas9 nickase (nCas9), respectively. ACBE could simultaneously induce C-to-T and A-to-G base editing at the same target site, which were verified in HEK293-EGFP reporter cell line and 45 endogenous gene loci of HEK293 cells. Moreover, the ACBE could accomplish simultaneous point mutations of C-to-T and A-to-G in primary somatic cells (mouse embryonic fibroblasts and porcine fetal fibroblasts) in an applicable efficiency. Furthermore, the spacer length of sgRNA and the length of linker could influence the dual base editing activity, which provided a direction to optimize the ACBE system. CONCLUSION: The newly developed ACBE would expand base editor toolkits and should promote the generation of animals and the gene therapy of genetic diseases with heterogeneous point mutations.


Assuntos
Adenina/metabolismo , Citosina/metabolismo , Embrião de Mamíferos/metabolismo , Edição de Genes/instrumentação , Mutação Puntual , Animais , Feto/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA