Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Part Fibre Toxicol ; 21(1): 1, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225661

RESUMO

BACKGROUND: As the demand and application of engineered nanomaterials have increased, their potential toxicity to the central nervous system has drawn increasing attention. Tunneling nanotubes (TNTs) are novel cell-cell communication that plays a crucial role in pathology and physiology. However, the relationship between TNTs and nanomaterials neurotoxicity remains unclear. Here, three types of commonly used engineered nanomaterials, namely cobalt nanoparticles (CoNPs), titanium dioxide nanoparticles (TiO2NPs), and multi-walled carbon nanotubes (MWCNTs), were selected to address this limitation. RESULTS: After the complete characterization of the nanomaterials, the induction of TNTs formation with all of the nanomaterials was observed using high-content screening system and confocal microscopy in both primary astrocytes and U251 cells. It was further revealed that TNT formation protected against nanomaterial-induced neurotoxicity due to cell apoptosis and disrupted ATP production. We then determined the mechanism underlying the protective role of TNTs. Since oxidative stress is a common mechanism in nanotoxicity, we first observed a significant increase in total and mitochondrial reactive oxygen species (namely ROS, mtROS), causing mitochondrial damage. Moreover, pretreatment of U251 cells with either the ROS scavenger N-acetylcysteine or the mtROS scavenger mitoquinone attenuated nanomaterial-induced neurotoxicity and TNTs generation, suggesting a central role of ROS in nanomaterials-induced TNTs formation. Furthermore, a vigorous downstream pathway of ROS, the PI3K/AKT/mTOR pathway, was found to be actively involved in nanomaterials-promoted TNTs development, which was abolished by LY294002, Perifosine and Rapamycin, inhibitors of PI3K, AKT, and mTOR, respectively. Finally, western blot analysis demonstrated that ROS and mtROS scavengers suppressed the PI3K/AKT/mTOR pathway, which abrogated TNTs formation. CONCLUSION: Despite their biophysical properties, various types of nanomaterials promote TNTs formation and mitochondrial transfer, preventing cell apoptosis and disrupting ATP production induced by nanomaterials. ROS/mtROS and the activation of the downstream PI3K/AKT/mTOR pathway are common mechanisms to regulate TNTs formation and mitochondrial transfer. Our study reveals that engineered nanomaterials share the same molecular mechanism of TNTs formation and intercellular mitochondrial transfer, and the proposed adverse outcome pathway contributes to a better understanding of the intercellular protection mechanism against nanomaterials-induced neurotoxicity.


Assuntos
Estruturas da Membrana Celular , Nanotubos de Carbono , Nanotubos , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Nanotubos de Carbono/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Neuroglia/metabolismo , Trifosfato de Adenosina , Apoptose
2.
Part Fibre Toxicol ; 20(1): 41, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919797

RESUMO

BACKGROUND: Epidemiological studies have demonstrated that individuals with preexisting conditions, including diabetes mellitus (DM), are more susceptible to air pollution. However, the underlying mechanisms remain unclear. In this study, we proposed that a high glucose setting enhances ambient fine particulate matter (PM2.5)-induced macrophage activation and secretion of the proinflammatory cytokine, IL-1ß, through activation of the NLRP3 inflammasome, altering the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs). RESULTS: Exposure of mouse alveolar macrophages to non-cytotoxic doses of PM2.5 led to upregulation of IL-1ß, activation of the NLRP3 inflammasome, increased nuclear translocation of the transcription factor NF-κB, increased generation of reactive oxygen species (ROS), and increased expression and enzymatic activity of MMP-9; these effects were enhanced when cells were pretreated with high glucose. However, pretreatment in a high glucose setting alone did not induce significant changes. ROS generation following PM2.5 exposure was abolished when cells were pretreated with ROS scavengers such as Trolox and superoxide dismutase (SOD), or with an NADPH oxidase inhibitor, DPI. Pretreatment of cells with DPI attenuated the effects of a high glucose setting on PM2.5-induced upregulation of IL-1ß, activation of the NLRP3 inflammasome, and nuclear translocation of NF-κB. In addition, enhancement of PM2.5-induced expression and enzymatic activity of MMP-9 following high glucose pretreatment was not observed in primary alveolar macrophages obtained from NLRP3 or IL-1R1 knockout (KO) mice, where pro-IL-1ß cannot be cleaved to IL-1ß or cells are insensitive to IL-1ß, respectively. CONCLUSIONS: This study demonstrated that exposure of mouse alveolar macrophages to PM2.5 in a high glucose setting enhanced PM2.5-induced production of IL-1ß through activation of the NLRP3 inflammasome and nuclear translocation of NF-κB due to PM2.5-induced oxidative stress, leading to MMP-9 upregulation. The key role of NADPH oxidase in PM2.5-induced ROS generation and activation of the IL-1ß secretion pathway and the importance of IL-1ß secretion and signaling in PM2.5-induced increases in MMP-9 enzymatic activity were also demonstrated. This study provides a further understanding of the potential mechanisms underlying the susceptibility of individuals with DM to air pollution and suggests potential therapeutic targets.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos Alveolares/metabolismo , Material Particulado/toxicidade , NF-kappa B/metabolismo , Metaloproteinase 9 da Matriz , Espécies Reativas de Oxigênio/metabolismo , Glucose , NADPH Oxidases , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
3.
Part Fibre Toxicol ; 20(1): 22, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217992

RESUMO

BACKGROUND: Copper oxide nanoparticles (Nano-CuO) are one of the most produced and used nanomaterials. Previous studies have shown that exposure to Nano-CuO caused acute lung injury, inflammation, and fibrosis. However, the mechanisms underlying Nano-CuO-induced lung fibrosis are still unclear. Here, we hypothesized that exposure of human lung epithelial cells and macrophages to Nano-CuO would upregulate MMP-3, which cleaved osteopontin (OPN), resulting in fibroblast activation and lung fibrosis. METHODS: A triple co-culture model was established to explore the mechanisms underlying Nano-CuO-induced fibroblast activation. Cytotoxicity of Nano-CuO on BEAS-2B, U937* macrophages, and MRC-5 fibroblasts were determined by alamarBlue and MTS assays. The expression or activity of MMP-3, OPN, and fibrosis-associated proteins was determined by Western blot or zymography assay. Migration of MRC-5 fibroblasts was evaluated by wound healing assay. MMP-3 siRNA and an RGD-containing peptide, GRGDSP, were used to explore the role of MMP-3 and cleaved OPN in fibroblast activation. RESULTS: Exposure to non-cytotoxic doses of Nano-CuO (0.5 and 1 µg/mL) caused increased expression and activity of MMP-3 in the conditioned media of BEAS-2B and U937* cells, but not MRC-5 fibroblasts. Nano-CuO exposure also caused increased production of cleaved OPN fragments, which was abolished by MMP-3 siRNA transfection. Conditioned media from Nano-CuO-exposed BEAS-2B, U937*, or the co-culture of BEAS-2B and U937* caused activation of unexposed MRC-5 fibroblasts. However, direct exposure of MRC-5 fibroblasts to Nano-CuO did not induce their activation. In a triple co-culture system, exposure of BEAS-2B and U937* cells to Nano-CuO caused activation of unexposed MRC-5 fibroblasts, while transfection of MMP-3 siRNA in BEAS-2B and U937* cells significantly inhibited the activation and migration of MRC-5 fibroblasts. In addition, pretreatment with GRGDSP peptide inhibited Nano-CuO-induced activation and migration of MRC-5 fibroblasts in the triple co-culture system. CONCLUSIONS: Our results demonstrated that Nano-CuO exposure caused increased production of MMP-3 from lung epithelial BEAS-2B cells and U937* macrophages, which cleaved OPN, resulting in the activation of lung fibroblasts MRC-5. These results suggest that MMP-3-cleaved OPN may play a key role in Nano-CuO-induced activation of lung fibroblasts. More investigations are needed to confirm whether these effects are due to the nanoparticles themselves and/or Cu ions.


Assuntos
Cobre , Fibroblastos , Metaloproteinase 3 da Matriz , Nanopartículas Metálicas , Osteopontina , Humanos , Linhagem Celular , Metaloproteinase 3 da Matriz/metabolismo , Cobre/farmacologia , Fibroblastos/efeitos dos fármacos , Osteopontina/metabolismo , Técnicas de Cocultura , Pulmão/citologia , Células Epiteliais/metabolismo , Macrófagos/metabolismo
4.
Environ Pollut ; 329: 121670, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080518

RESUMO

With the rapid development of nanotechnology, the potential adverse health effects of nanoparticles have been caught more attention and become global concerns. However, the underlying mechanisms in metal nanoparticle-induced toxic effects are still largely obscure. In this study, we investigated whether exposure to nickel nanoparticles (Nano-Ni) and titanium dioxide nanoparticles (Nano-TiO2) would alter autophagy and apoptosis levels in normal human bronchial epithelial BEAS-2B cells and the underlying mechanisms involved in this process. Our results showed that the expressions of autophagy- and apoptosis-associated proteins were dysregulated in cells exposed to Nano-Ni. However, exposure to the same doses of Nano-TiO2 had no significant effects on these proteins. In addition, exposure to Nano-Ni, but not Nano-TiO2, led to nuclear accumulation of HIF-1α and decreased phosphorylation of mTOR in BEAS-2B cells. Inhibition of HIF-1α by CAY10585 abolished Nano-Ni-induced decreased phosphorylation of mTOR, while activation of mTOR by MHY1485 did not affect Nano-Ni-induced nuclear accumulation of HIF-1α. Furthermore, both HIF-1α inhibition and mTOR activation abolished Nano-Ni-induced autophagy but enhanced Nano-Ni-induced apoptosis. Blockage of autophagic flux by Bafilomycin A1 exacerbated Nano-Ni-induced apoptosis, while activation of autophagy by Rapamycin effectively rescued Nano-Ni-induced apoptosis. In conclusion, our results demonstrated that Nano-Ni exposure caused increased levels of autophagy and apoptosis via the HIF-1α/mTOR signaling axis. Nano-Ni-induced autophagy has a protective role against Nano-Ni-induced apoptosis. These findings provide us with further insight into Nano-Ni-induced toxicity.


Assuntos
Nanopartículas Metálicas , Níquel , Humanos , Níquel/toxicidade , Níquel/metabolismo , Células Epiteliais , Serina-Treonina Quinases TOR/metabolismo , Nanopartículas Metálicas/toxicidade , Apoptose , Autofagia
5.
Nanotoxicology ; 16(6-8): 695-712, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345150

RESUMO

We and others have previously demonstrated that exposure to nickel nanoparticles (Nano-Ni) caused fibrogenic and carcinogenic effects; however, the underlying mechanisms are still not fully understood. This study aimed to investigate the effects of Nano-Ni on epithelial-mesenchymal transition (EMT) in human bronchial epithelial cells (BEAS-2B) and its underlying mechanisms since EMT is involved in both cancer pathogenesis and tissue fibrosis. Our results showed that exposure to Nano-Ni, compared to the control Nano-TiO2, caused a remarkable decrease in the expression of E-cadherin and an increase in the expression of vimentin and α-SMA, indicating an inducible role of Nano-Ni in EMT development in human bronchial epithelial cells. HIF-1α nuclear accumulation, HDAC3 upregulation, and decreased histone acetylation were also observed in the cells exposed to Nano-Ni, but not in those exposed to Nano-TiO2. Pretreatment of the cells with a specific HIF-1α inhibitor, CAY10585, or HIF-1α-specific siRNA transfection prior to Nano-Ni exposure resulted in the restoration of E-cadherin and abolished Nano-Ni-induced upregulation of vimentin and α-SMA, suggesting a crucial role of HIF-1α in Nano-Ni-induced EMT development. CAY10585 pretreatment also attenuated the HDAC3 upregulation and increased histone acetylation. Inhibition of HDAC3 with specific siRNA significantly restrained Nano-Ni-induced reduction in histone acetylation and restored EMT-related protein expression to near control levels. In summary, our findings suggest that exposure to Nano-Ni promotes the development of EMT in human bronchial epithelial cells by decreasing histone acetylation through HIF-1α-mediated HDAC3 upregulation. Our findings may provide information for further understanding of the molecular mechanisms of Nano-Ni-induced fibrosis and carcinogenesis.


Assuntos
Nanopartículas , Níquel , Humanos , Níquel/toxicidade , Níquel/metabolismo , Vimentina/metabolismo , Vimentina/farmacologia , Transição Epitelial-Mesenquimal/genética , Histonas , Células Epiteliais , Caderinas/genética , Caderinas/metabolismo , Caderinas/farmacologia , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Fibrose , Subunidade alfa do Fator 1 Induzível por Hipóxia , Linhagem Celular Tumoral
6.
Ecotoxicol Environ Saf ; 246: 114180, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36265406

RESUMO

Benzo[a]pyrene (B[a]P) is a widespread carcinogenic pollutant in the environment. Although previous studies have demonstrated the neurodevelopmental toxicity of B[a]P, the precise mechanisms underlying the neurotoxic effects induced by prenatal B[a]P exposure remain largely unknown. In the present study, pregnant Sprague-Dawley (SD) rats were injected intraperitoneally with 0, 10, 20, or 40 mg/kg-bw of B[a]P for three consecutive days on embryonic days 17-19. The learning and memory abilities of offspring were determined by Morris Water Maze (MWM) test, while the number of dendritic branches and the density of dendritic spines in hippocampal CA1 and DG regions were evaluated by Golgi-Cox staining at PND 45 and PND 75. The mRNA expression of BDNF, PSD-95, and SYP in offspring hippocampus were detected by qRT-PCR, and the protein expression of BDNF, PSD-95, SYP, HDAC2, acH3K9, and acH3K14 were measured by Western blotting or immunohistochemistry. CHIP-PCR was performed to further detect the levels of acH3K9 and acH3K14 in the promoter regions of BDNF and PSD-95 genes. Our results showed that rats prenatally exposed to B[a]P exhibited impaired spatial learning and memory abilities and the number of dendritic branches and the density of dendritic spines in the hippocampal CA1 and DG regions were significantly reduced during adolescence and adulthood. The expression of HDAC2 protein was significantly upregulated, while acH3K9, acH3K14, BDNF, PSD-95, and SYP protein levels were significantly downregulated in the hippocampus of B[a]P- exposed rats. In addition, CHIP results showed that prenatal B[a]P exposure markedly decreased the level of acH3K9 and acH3K14 in the promoter region of BDNF and PSD-95 gene in the hippocampus of PND 45 and PND 75 offspring. All of the results suggest that prenatal B[a]P exposure impairs cognitive function and hippocampal synaptic plasticity of offspring in adolescence and adulthood, and HDAC2-mediated histone deacetylation plays a crucial role in these deficits.


Assuntos
Benzo(a)pireno , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Animais , Ratos , Ratos Sprague-Dawley , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Histonas/genética , Histonas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Hipocampo , Plasticidade Neuronal , Aprendizagem Espacial , Cognição , Aprendizagem em Labirinto , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/farmacologia
7.
Toxicology ; 481: 153354, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36265525

RESUMO

Melatonin (MLT) was reported to have therapeutic effects on inflammatory bowel disease (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD) due to its anti-inflammatory and immunomodulatory properties. However, whether the beneficial effects of melatonin on colitis are through altering the immune response of bone marrow-derived dendritic cells (BMDCs) has not been well characterized. Here, we propose that MLT alleviates dextran sulfate sodium (DSS)-induced colitis in mice through its regulation of the immune response of BMDCs, in which some lncRNA, circRNA, miRNA, and mRNA may be involved. We at first established a DSS-induced colitis mouse model and found that the concentration of MLT in the serum of DSS-induced colitis mice was significantly lower than that in the control mice. Supplementation with MLT alleviated DSS-induced colitis in mice, which was reflected by preventing mouse body weight loss, colon length shortening, inflammation, and epithelial tissue destruction and abscission in the colon. We then isolated and cultured BMDCs and found that MLT could inhibit the activation of BMDCs from the colitis mice, which was reflected by reducing the phagocytotic ability of the cells, inhibiting their migration, and decreasing their secretion of pro-inflammatory cytokines. RNA sequencing results showed that MLT promoted the transformation of BMDCs into immune tolerant phenotypes in DSS-induced colitis mice through affecting non-coding RNAs (ncRNAs). Among them, lncRNA ENSMUST00000226323, circRNA-0520, and circRNA-2243 were predicted to interact with miRNA-709, and mRNAs of Ywhaz and Ccl9 were the targets of miRNA-709, all of which were involved in MLT-induced alteration of BMDCs functions in DSS-induced colitis mice via PI3K-Akt pathway. Our findings may provide some clues for understanding MLT inhibiting inflammatory response in DSS-induced colitis, which may be through alteration of BMDCs function.


Assuntos
Colite , Melatonina , MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , Sulfato de Dextrana/toxicidade , Sulfato de Dextrana/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , RNA-Seq , RNA Longo não Codificante/metabolismo , RNA Circular , Medula Óssea/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , RNA Mensageiro/metabolismo , Células Dendríticas , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Endogâmicos C57BL
8.
Toxicology ; 477: 153271, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35872226

RESUMO

Air pollution is a public health threat and global epidemiological studies have shown that ambient air pollutants are closely related to various poor health conditions, including neurodegenerative diseases. Here, we evaluated the toxic effects and the underlying mechanisms of fine airborne particulate matter (PM2.5) on human glioblastoma LN-229 cells. Our results showed that exposure of LN-229 cells to PM2.5 (≥ 200 µg/mL) significantly reduced cell viability. PM2.5 exposure increased autophagy, apoptosis, and ROS production in the cells. Pre-treatment with a ROS scavenger, catalase, or depletion of mtDNA (ρ0 cells) abolished PM2.5-induced autophagy and apoptosis. PM2.5 exposure also activated MAPK signals in cells, which were blocked by catalase pre-treatment or mtDNA depletion. Furthermore, inhibition of JNK, but not ERK1/2 or p38, attenuated PM2.5-induced autophagy and apoptosis in cells. Finally, suppression of autophagy with Bafilomycin A1 or Beclin 1 siRNA exacerbated PM2.5-induced apoptosis, indicating a protective role of autophagy against PM2.5-induced apoptosis. Our results demonstrated that exposure of LN-229 cells to PM2.5 caused autophagy and apoptosis through PM2.5-induced ROS generation, mainly by mitochondria, and JNK activation. Autophagy may have a transient protective response in PM2.5-induced apoptosis. These findings have important implications for understanding the potential neurotoxicity of PM2.5.


Assuntos
Células Epiteliais , Material Particulado , Apoptose , Autofagia , Catalase , DNA Mitocondrial , Humanos , Material Particulado/toxicidade , Espécies Reativas de Oxigênio
10.
Environ Toxicol ; 37(8): 2103-2114, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35506645

RESUMO

Coal workers' pneumoconiosis (CWP) is a type of typical occupational lung disease caused by prolonged inhalation of coal mine dust. The individuals' different genetic background may underlie their different susceptibility to develop pneumoconiosis, even under the same exposure level. This study aimed to identify susceptibility genes associated with CWP. Based on our previous genome-wide association study (GWAS, 202 CWP cases vs. 198 controls) and gene expression data obtained by analyzing human lungs and whole blood from the Genotype-Tissue Expression (GTEx) Portal, a transcriptome-wide association study (TWAS) was applied to identify CWP risk-related genes. Luciferase report gene assay, qRT-PCR, Western blot, immunofluorescence assay, and TUNEL assay were conducted to explore the potential role of the candidate gene in CWP. Proteasome 20S subunit beta 9 (PSMB9) was identified as a strong risk-related gene of CWP in both lungs and whole blood (Lungs: PTWAS  = 4.22 × 10-4 ; Whole blood: PTWAS  = 2.11 × 10-4 ). Single nucleotide polymorphisms (SNPs) rs2071480 and rs1351383, which locate in the promoter region and the first intron of the PSMB9 gene, were in high linkage disequilibrium (LD, r2  = 0.98) with the best GWAS SNP rs4713600 (G>T, OR = 0.55, 95% CI: 0.42-0.74, P = 6.86 × 10-5 ). Both rs2071480 and rs1351383 significantly enhanced the transcriptional activity of PSMB9. Functional experiments revealed that silica exposure remarkably reduced the PSMB9 expression and caused cell apoptosis, while overexpression of PSMB9 markedly abolished silica-induced cell apoptosis. We here identified PSMB9 as a novel susceptibility gene for CWP and provided important insights into the further exploration of the CWP pathogenesis.


Assuntos
Antracose , Cisteína Endopeptidases/metabolismo , Pneumoconiose , Antracose/genética , Carvão Mineral , Poeira , Estudo de Associação Genômica Ampla , Humanos , Dióxido de Silício , Transcriptoma
11.
Comput Intell Neurosci ; 2022: 3343427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463237

RESUMO

The quality control process for sintered ore is cumbersome and time- and money-consuming. When the assay results come out and the ratios are found to be faulty, the ratios cannot be changed in time, which will produce sintered ore of substandard quality, resulting in a waste of resources and environmental pollution. For the problem of lagging sinter detection results, Long Short-Term Memory and Genetic Algorithm-Recurrent Neural Networks prediction algorithms were used for comparative analysis, and the article used GA-RNN quality prediction model for prediction. Through correlation analysis, the chemical composition of the sintered raw material was determined as the input parameter and the physical and metallurgical properties of the sintered ore were determined as the output parameters, thus successfully establishing a GA-RNN-based sinter quality prediction model. Based on 150 sets of original data, 105 sets of data were selected as the training sample set and 45 sets of data were selected as the test sample set. The results obtained were compared to the real value with an average prediction error of 1.24% for the drum index, 0.92% for the low-temperature reduction chalking index (RDI), 0.95% for the reduction index (RI), 0.40% for the load softening temperature T10%, and 0.43% for the load softening temperature T40%, with all within the running time thresholds. The study of this model enables the prediction of the quality of sintered ore prior to sintering, thus improving the yield of sintered ore, increasing corporate efficiency, saving energy, and reducing environmental pollution.


Assuntos
Algoritmos , Redes Neurais de Computação , Temperatura
13.
Environ Toxicol ; 37(1): 17-27, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34529316

RESUMO

Benzo[a]pyrene (B[a]P) is a ubiquitous carcinogenic pollutant in the environment, however, the potential neurotoxic effects of B[a]P has not been elucidated clearly. In the present study, we explored the potential involvement of p53 phosphorylation by Cdk5 in B[a]P-induced neuronal apoptosis at both in vitro and in vivo settings. For in vitro studies, primary cortical neurons isolated from the brains of Sprague Dawley (SD) rat pup were exposed to 0, 10, 20, and 40 µM of B[a]P for 12, 24, or 48 h. For in vivo studies, SD rats were injected intraperitoneally with 0, 1.0, 2.5, and 6.25 mg/kg of B[a]P every other day for 1, 2, or 3 months. Our results demonstrated that exposure to B[a]P caused a dose- and a time-dependent increase in neuronal apoptotic ratio in both in vitro and in vivo studies. There was also a dose- and a time-dependent upregulation of p35, p25, Cdk5, and phosphorylated p53 at Ser15 after B[a]P exposure. In order to explore whether B[a]P-induced increased neuronal apoptosis was through Cdk5/p53 pathway, roscovitine, a specific Cdk5 inhibitor, was applied to pretreat neurons prior to B[a]P exposure. The results showed that pretreatment of neurons with roscovitine partially rescued cells from B[a]P-induced apoptosis, and alleviated B[a]P-induced upregulation of phosphorylated p53 at Ser15. Our results suggest that Cdk5/p53 signaling pathway may be involved in B[a]P-induced neuronal apoptosis, which will provide information to further elucidate the molecular mechanisms of B[a]P-induced neurotoxicity.


Assuntos
Benzo(a)pireno , Proteína Supressora de Tumor p53 , Animais , Apoptose , Benzo(a)pireno/toxicidade , Quinase 5 Dependente de Ciclina/genética , Fosforilação , Ratos , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/genética
14.
J Nanobiotechnology ; 19(1): 370, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789290

RESUMO

BACKGROUND: Nickel nanoparticles (Nano-Ni) are increasingly used in industry and biomedicine with the development of nanotechnology. However, the genotoxic and carcinogenic effects of Nano-Ni and the underlying mechanisms are still unclear. METHODS: At first, dose-response (0, 10, 20, and 30 µg/mL) and time-response (0, 3, 6, 12, and 24 h) studies were performed in immortalized normal human bronchial epithelial cells BEAS-2B to observe the effects of Nano-Ni on DNA damage response (DDR)-associated proteins and the HIF-1α/miR-210/Rad52 pathway by real-time PCR or Western blot. Then, a Hsp90 inhibitor (1 µM of 17-AAG, an indirect HIF-1α inhibitor), HIF-1α knock-out (KO) cells, and a miR-210 inhibitor (20 nM) were used to determine whether Nano-Ni-induced Rad52 down-regulation was through HIF-1α nuclear accumulation and miR-210 up-regulation. In the long-term experiments, cells were treated with 0.25 and 0.5 µg/mL of Nano-Ni for 21 cycles (~ 150 days), and the level of anchorage-independent growth was determined by plating the cells in soft agar. Transduction of lentiviral particles containing human Rad52 ORF into BEAS-2B cells was used to observe the role of Rad52 in Nano-Ni-induced cell transformation. Nano-Ni-induced DNA damage and dysregulation of HIF-1α/miR-210/Rad52 pathway were also investigated in vivo by intratracheal instillation of 50 µg per mouse of Nano-Ni. gpt delta transgenic mice were used to analyze mutant frequency and mutation spectrum in mouse lungs after Nano-Ni exposure. RESULTS: Nano-Ni exposure caused DNA damage at both in vitro and in vivo settings, which was reflected by increased phosphorylation of DDR-associated proteins such as ATM at Ser1981, p53 at Ser15, and H2AX. Nano-Ni exposure also induced HIF-1α nuclear accumulation, miR-210 up-regulation, and down-regulation of homologous recombination repair (HRR) gene Rad52. Inhibition of or knocking-out HIF-1α or miR-210 ameliorated Nano-Ni-induced Rad52 down-regulation. Long-term low-dose Nano-Ni exposure led to cell malignant transformation, and augmentation of Rad52 expression significantly reduced Nano-Ni-induced cell transformation. In addition, increased immunostaining of cell proliferation markers, Ki-67 and PCNA, was observed in bronchiolar epithelial cells and hyperplastic pneumocytes in mouse lungs at day 7 and day 42 after Nano-Ni exposure. Finally, using gpt delta transgenic mice revealed that Nano-Ni exposure did not cause increased gpt mutant frequency and certain DNA mutations, such as base substitution and small base insertions/deletions, are not the main types of Nano-Ni-induced DNA damage. CONCLUSIONS: This study unraveled the mechanisms underlying Nano-Ni-induced cell malignant transformation; the combined effects of Nano-Ni-induced DNA damage and DNA repair defects through HIF-1α/miR-210/Rad52 pathway likely contribute to Nano-Ni-induced genomic instability and ultimately cell transformation. Our findings will provide information to further elucidate the molecular mechanisms of Nano-Ni-induced genotoxicity and carcinogenicity.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Nanopartículas Metálicas , MicroRNAs/genética , Níquel , Animais , Linhagem Celular , Reparo do DNA/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Níquel/química , Níquel/toxicidade , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo
15.
Front Pharmacol ; 12: 594586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220491

RESUMO

This study sought to use a newly developed intracellular ATP delivery to enhance incisional wound healing to reduce surgical wound dehiscence and to explore possible mechanism for this effect. Thirty-five adult New Zealand white rabbits were used. Skin incisions were made on the back and closed. ATP-vesicles were mixed with a neutral cream for one side of the wounds while the neutral cream alone was used on the other side of the wounds. Laser speckle contrast imaging (LSCI), biomechanical, histological, and immunohistochemical analyses were performed 7 and 14 days after surgery, and macrophage culture was used to test the enhanced collagen production ability. Among them, 10 were used for wound perfusion study and 25 were used for wound biomechanical and histological/immunohistochemical studies. Wound tissue perfusion was reduced after surgery especially in early days. Wound tissue tensile strength, breaking stress, and elasticity were all much higher in the ATP-vesicle treated group than in the cream treated group at days 7 and 14. The healing was complemented by earlier macrophage accumulation, in situ proliferation, followed by direct collagen production. The results were further confirmed by human macrophage culture. It was concluded that intracellular ATP delivery enhanced healing strength of incisional wounds via multiple mechanisms.

16.
Ecotoxicol Environ Saf ; 220: 112372, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082245

RESUMO

Silicosis is a devastating interstitial lung disease arising from long-term exposure to inhalable silica. Regrettably, no therapy currently can effectively reverse the silica-induced fibrotic lesion. Emerging evidence has indicated that the dysregulation of microRNAs is involved in silica-induced pulmonary fibrosis. The aim of this study is to explore the expression pattern and underlying mechanisms of miR-770-5p in silica-induced pulmonary fibrosis. Consistent with our previous miRNA microarray analysis, the results of qRT-PCR showed that miR-770-5p expression was downregulated in silica-induced pulmonary fibrosis in humans and animal models. Administration of miR-770-5p agomir significantly reduced the fibrotic lesions in the lungs of mice exposed to silica dust. MiR-770-5p also exhibited a dramatic reduction in TGF-ß1-activated human pulmonary fibroblasts (MRC-5). Transfection of miR-770-5p mimics significantly decreased the viability, migration ability, and S/G0 phase distribution, as well as the expression of fibronectin, collagen I, and α-SMA in TGF-ß1-treated MRC-5 cells. Transforming growth factor-ß receptor 1 (TGFBR1) was confirmed as a direct target of regulation by miR-770-5p. The expression of TGFBR1 was significantly increased in pulmonary fibrosis. Knockdown of TGFBR1 blocked the transduction of the TGF-ß1 signaling pathway and attenuated the activation of MRC-5 cells, while overexpression of TGFBR1 effectively restored the activation of MRC-5 cells inhibited by miR-770-5p. Together, our results demonstrated that miR-770-5p exerted an anti-fibrotic effect in silica-induced pulmonary fibrosis by targeting TGFBR1. Targeting miR-770-5p might provide a new therapeutic strategy to prevent the abnormal activation of pulmonary fibroblasts in silicosis.


Assuntos
Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , MicroRNAs/metabolismo , Fibrose Pulmonar/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Dióxido de Silício/efeitos adversos , Silicose/metabolismo , Adulto , Idoso , Animais , Regulação para Baixo , Fibroblastos/metabolismo , Fibrose , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fibrose Pulmonar/induzido quimicamente , Transdução de Sinais , Silicose/patologia , Fator de Crescimento Transformador beta1/metabolismo
17.
Part Fibre Toxicol ; 18(1): 13, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33740985

RESUMO

BACKGROUND: The increasing use of metal nanoparticles in industry and biomedicine raises the risk for unintentional exposure. The ability of metal nanoparticles to penetrate the skin ranges from stopping at the stratum corneum to passing below the dermis and entering the systemic circulation. Despite the potential health risks associated with skin exposure to metal nanoparticles, the mechanisms underlying the toxicity of metal nanoparticles on skin keratinocytes remain unclear. In this study, we proposed that exposure of human epidermal keratinocytes (HaCaT) to metal nanoparticles, such as nickel nanoparticles, dysregulates tight-junction associated proteins by interacting with the HIF-1α/miR-29b/MMPs axis. METHODS: We performed dose-response and time-response studies in HaCaT cells to observe the effects of Nano-Ni or Nano-TiO2 on the expression and activity of MMP-2 and MMP-9, and on the expression of tight junction-associated proteins, TIMP-1, TIMP-2, miR-29b, and HIF-1α. In the dose-response studies, cells were exposed to 0, 10, or 20 µg/mL of Nano-Ni or Nano-TiO2 for 24 h. In the time-response studies, cells were exposed to 20 µg/mL of Nano-Ni for 12, 24, 48, or 72 h. After treatment, cells were collected to either assess the expression of mRNAs and miR-29b by real-time PCR or to determine the expression of tight junction-associated proteins and HIF-1α nuclear accumulation by Western blot and/or immunofluorescent staining; the conditioned media were collected to evaluate the MMP-2 and MMP-9 activities by gelatin zymography assay. To further investigate the mechanisms underlying Nano-Ni-induced dysregulation of tight junction-associated proteins, we employed a HIF-1α inhibitor, CAY10585, to perturb HIF-1α accumulation in one experiment, and transfected a miR-29b-3p mimic into the HaCaT cells before Nano-Ni exposure in another experiment. Cells and conditioned media were collected, and the expression and activities of MMPs and the expression of tight junction-associated proteins were determined as described above. RESULTS: Exposure of HaCaT cells to Nano-Ni resulted in a dose-dependent increase in the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 and the activities of MMP-2 and MMP-9. However, exposure of cells to Nano-TiO2 did not cause these effects. Nano-Ni caused a dose-dependent decrease in the expression of miR-29b and tight junction-associated proteins, such as ZO-1, occludin, and claudin-1, while Nano-TiO2 did not. Nano-Ni also caused a dose-dependent increase in HIF-1α nuclear accumulation. The time-response studies showed that Nano-Ni caused significantly increased expressions of MMP-2 at 24 h, MMP-9 at 12, 24, and 48 h, TIMP-1 from 24 to 72 h, and TIMP-2 from 12 to 72 h post-exposure. The expression of miR-29b and tight junction-associated proteins such as ZO-1, occludin, and claudin-1 decreased as early as 12 h post-exposure, and their levels declined gradually over time. Pretreatment of cells with a HIF-1α inhibitor, CAY10585, abolished Nano-Ni-induced miR-29b down-regulation and MMP-2/9 up-regulation. Introduction of a miR-29b-3p mimic into HaCaT cells by transfection before Nano-Ni exposure ameliorated Nano-Ni-induced increased expression and activity of MMP-2 and MMP-9 and restored Nano-Ni-induced down-regulation of tight junction-associated proteins. CONCLUSION: Our study herein demonstrated that exposure of human epidermal keratinocytes to Nano-Ni caused increased HIF-1α nuclear accumulation and increased transcription and activity of MMP-2 and MMP-9 and down-regulation of miR-29b and tight junction-associated proteins. Nano-Ni-induced miR-29b down-regulation was through Nano-Ni-induced HIF-1α nuclear accumulation. Restoration of miR-29b level by miR-29b-3p mimic transfection abolished Nano-Ni-induced MMP-2 and MMP-9 activation and down-regulation of tight junction-associated proteins. In summary, our results demonstrated that Nano-Ni-induced dysregulation of tight junction-associated proteins in skin keratinocytes was via HIF-1α/miR-29b/MMPs pathway.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Humanos , Queratinócitos , Metaloproteinases da Matriz , Nanopartículas Metálicas/toxicidade , Proteínas de Junções Íntimas , Junções Íntimas
18.
Nanotoxicology ; 15(10): 1380-1402, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35108494

RESUMO

Copper oxide nanoparticles (Nano-CuO) are widely used in medical and industrial fields and our daily necessities. However, the biosafety assessment of Nano-CuO is far behind their rapid development. Here, we investigated the adverse effects of Nano-CuO on normal human bronchial epithelial BEAS-2B cells, especially determined whether Nano-CuO exposure would cause dysregulation of MMP-3, an important mediator in pulmonary fibrosis, and its potential role in epithelial-mesenchymal transition (EMT). Our results showed that exposure to Nano-CuO, but not Nano-TiO2, caused increased ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO-induced ROS generation was not observed in mitochondrial DNA-depleted BEAS-2B ρ0 cells, indicating that mitochondria may be the main source of Nano-CuO-induced ROS generation. Pretreatment of the cells with ROS scavengers or inhibitors or depleting mitochondrial DNA significantly attenuated Nano-CuO-induced MAPKs activation and MMP-3 upregulation, and pretreatment of cells with MAPKs inhibitors abolished Nano-CuO-induced MMP-3 upregulation, suggesting Nano-CuO-induced MMP-3 upregulation is through Nano-CuO-induced ROS generation and MAPKs activation. In addition, exposure of the cells to Nano-CuO for 48 h resulted in decreased E-cadherin expression and increased expression of vimentin, α-SMA, and fibronectin, which was ameliorated by MMP-3 siRNA transfection, suggesting an important role of MMP-3 in Nano-CuO-induced EMT. Taken together, our study demonstrated that Nano-CuO exposure caused mitochondrial ROS generation, MAPKs activation, and MMP-3 upregulation. Nano-CuO exposure also caused cells to undergo EMT, which was through Nano-CuO-induced dysregulation of ROS/MAPKs/MMP-3 pathway. Our findings will provide further understanding of the potential mechanisms involved in metal nanoparticle-induced various toxic effects including EMT and pulmonary fibrosis.


Assuntos
Cobre , Nanopartículas Metálicas , Cobre/metabolismo , Células Epiteliais , Transição Epitelial-Mesenquimal , Humanos , Pulmão/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/farmacologia , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Óxidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Environ Pollut ; 267: 115597, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33254626

RESUMO

Exposure to metal nanoparticles causes both pulmonary and systemic effects. Nanoparticles can enter the circulation and act directly or indirectly on blood cells, such as monocytes. Monocytes/macrophages are among the first cells to home to inflammatory sites and play a key role in the immune response. Here we investigated the effects of nickel nanoparticles (Nano-Ni), partially [O]-passivated Nano-Ni (Nano-Ni-P), and carbon-coated Nano-Ni (Nano-Ni-C) on MMP-2 and MMP-9 production in mouse primary monocytes both in vitro and in vivo and explored the potential mechanisms involved. The dose- and time-response studies showed that exposure of primary monocytes from wild-type (WT) mice to 30 µg/mL of Nano-Ni for 24 h caused significant MMP-2 and MMP-9 production; therefore, these dose and time point were chosen for the following in vitro studies. Nano-Ni and Nano-Ni-P caused miR-21 upregulation, as well as MMP-2, MMP-9, TIMP-1 and TIMP-2 upregulation in monocytes from WT, but not miR-21 knock-out (KO), mice, indicating the important role of miR-21 in Nano-Ni-induced MMPs and TIMPs upregulation. However, Nano-Ni-C did not cause these effects, suggesting surface modification of Nano-Ni, such as carbon coating, alleviates Nano-Ni-induced miR-21 and MMPs upregulation. These results were further confirmed by in vivo studies by intratracheal instillation of nickel nanoparticles into WT and miR-21 KO mice. Finally, our results demonstrated that exposure of primary monocytes from WT mice to Nano-Ni and Nano-Ni-P caused downregulation of RECK, a direct miR-21 target, suggesting the involvement of miR-21/RECK pathway in Nano-Ni-induced MMP-2 and MMP-9 production.


Assuntos
Metaloproteinase 9 da Matriz , MicroRNAs , Animais , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Metaloproteinases da Matriz , Camundongos , MicroRNAs/genética , MicroRNAs/fisiologia , Monócitos , Nanopartículas/toxicidade , Níquel/toxicidade
20.
Sci Rep ; 10(1): 20038, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208918

RESUMO

Obesity and its associated metabolic disorders are increasingly impacting public health worldwide. Sphingosine kinase 1 (Sphk1) is a critical enzyme in sphingolipid metabolism that has been implicated in various metabolic syndromes. In this study, we developed a mouse model constitutively expressing pseudoacetylated mouse Sphk1 (QSPHK1) to study its role in regulating glucose and lipid metabolism. The results showed that QSPHK1 mice gained less body weight than wide type (WT) mice on a high-fat diet, and QSPHK1 mice had improved glucolipid metabolism and insulin. Moreover, QSPHK1 mice had alleviated hepatic triglyceride accumulation and had high-fat-diet-induced hepatic steatosis that occurred as a result of reduced lipogenesis and enhanced fatty acid oxidation, which were mediated by the AMPK/ACC axis and the FGF21/adiponectin axis. Collectively, this study provided evidence that the K27Q/K29Q mutations of Sphk1 could have a protective role in preventing obesity and the related metabolic diseases. Hence, our results contribute to further understanding of the biological functions of Sphk1, which has great pharmaceutical implications.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/prevenção & controle , Glucose/metabolismo , Homeostase , Mutação , Obesidade/prevenção & controle , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Animais , Peso Corporal , Técnicas de Introdução de Genes , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA